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Tomáš Pevný ∗
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ABSTRACT
It is generally believed that a blind steganalyzer trained on
sufficiently many diverse steganographic algorithms will be-
come universal in the sense that it will generalize to previ-
ously unseen (novel) stego methods. While this is a partially
correct statement if the embedding mechanism of the novel
method resembles some of the methods on which the classi-
fier was trained, we demonstrate that if the classifier is pre-
sented with stego images produced by a completely different
embedding mechanism, it may fail to detect the images as
stego even for an otherwise fairly easily detectable method.
Motivated by this observation, we explore two approaches
for construction of universal steganalyzers—one-class and
one-against-all classifiers. Their advantages and disadvan-
tages are discussed and performance compared on a wide
variety of steganographic algorithms. One-against-all clas-
sifiers have generally better performance than approaches
based on characterizing just the class of covers but they may
fail catastrophically on previously unseen stego algorithms.
One-class methods are less likely to fail to detect unknown
stego algorithms but have lower overall detection accuracy
on known stego methods. The suitability of each approach
thus depends on the application.
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1. INTRODUCTION
The goal of blind steganalysis is to detect any stegano-

graphic method irrespective of its embedding mechanism.
Construction of blind schemes starts with a few assumptions
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that we now review. As in Cachin’s approach to stegano-
graphic security [1], it is assumed that there exists a random
variable c on the space of all theoretically possible covers
C, with probability density function (pdf) Pc. The value�
B Pc(x)dx is the probability of selecting c ∈ B ⊂ C for

hiding a message. Any practical blind steganalysis scheme,
however, cannot work with the full representation of cov-
ers due to its large dimensionality. Instead, blind schemes
work with a simplified model of C obtained by mapping C
to a low-dimensional feature space X , x : C 7→ X , (typically,
X = Rd and x(c) = (x1(c), . . . , xd(c)) ∈ Rd) inducing there
a random variable x(c) with pdf pc(x). Blind steganaly-
sis amounts to solving the following composite hypothesis
testing problem

H0 : x(c) ∼ pc

H1 : x(c) � pc. (1)

For blind steganalysis to work, we need one more condition,
which is surprisingly rarely discussed in the literature on
blind steganalysis. The feature space needs to be complete
in the sense

D(Ps||Pc) > 0 ⇒ D(ps||pc) > 0,

where D is the Kullback-Leibler divergence and Ps is the pdf
of stego images. Finding a complete feature set, however,
is a difficult problem and one we do not intend to study
in this paper. Here, we will simply assume that we have
a feature set that is approximately complete in the sense
that it is hard to practically construct a stego scheme with
D(ps||pc) = 0.

Applying classical detection theory to (1) would require
estimating the pdf pc, which is infeasible because the fea-
ture spaces that aspire to be complete in the above practical
sense are still relatively high-dimensional. To obtain accu-
rate parametric or non-parametric models of pc, in practice
the problem of estimating a pdf is replaced with yet a sim-
pler problem of classification. A classifier can be trained on
features x(c) for c drawn from a sufficiently large database.

Several avenues towards construction of blind steganalyz-
ers can now be taken. One possibility is to characterize the
cover features in the feature space by training a one-class de-
tector capable of recognizing the covers. The potential prob-
lem with this approach is that the database has to be very
large in the sense of number of images and diverse. The ad-
jective ’diverse’ should be emphasized because we certainly
do not wish to misidentify processed covers (e.g., sharpened
images) as containing stego. The second approach is to train



a cover vs. all-stego binary classifier on two classes: cover
images and stego images produced by a sufficiently large
number of stego algorithms. The hope is that if the classi-
fier is trained on all possible archetypes of embedding oper-
ations, it should be able to generalize to previously unseen
schemes. The third option is to train a multi-class detec-
tor capable of classifying images to known steganographic
programs. Again, the hope is that a multi-classifier trained
on sufficiently many algorithms will be able to correctly de-
tect a stego image embedded using a novel stego method
as stego (i.e., we desire the multi-classifier to recognize that
the image is not a cover image).

In Section 2, it is show that a good multi-class detector
does not necessarily have to be universal. On the example of
a state-of-the-art multi-class detector for JPEG images [11],
we demonstrate that while it is capable of detecting some
novel stego methods, it may badly fail when presented with
stego objects produced by schemes with a completely differ-
ent and previously unseen embedding method. And this is
despite the fact that the very same embedding method may
be otherwise easily detectable using the same feature set by
training a separate binary classifier with pairs of cover and
stego images embedded using the unseen method. In Sec-
tion 3, we identify sources of failure of the multi-class de-
tector and present several approaches to solve this problem.
The solutions are experimentally compared in Section 4. Fi-
nally, the paper is concluded in Section 5.

2. MULTI-CLASSIFIER FOR GENERAL
STEGANOGRAPHY DETECTION?

In the past, some authors proposed steganalyzers that can
classify stego images according to the stego method. An ex-
ample of such a multi-class detector for JPEG images is [11].
We review only the most essential facts about this classifier
in this paper, referring the reader to the original publication
for more details. This classifier was selected intentionally
because of its excellent performance (see the comparisons
in [11, 4, 18, 9]).

2.1 The multi-class detector
The classifier was built around the Merged feature set con-

sisting of 193 extended DCT features and a reduced set of
81 Markov features [11]. The DCT features capture inter-
block dependencies among DCT coefficients and among pix-
els (blockiness), while the role of Markov features [17] is to
describe intra-block dependencies. All features were cali-
brated [2] to make them less sensitive to image content and
more sensitive to steganographic changes.

Support vector machines (SVM) were used to build a set
of

`
k+1
2

´
binary classifiers distinguishing between every two

classes among k stego algorithms and a set of covers (to-
tal k + 1 classes). Each classifier was a soft-margin SVM
with Gaussian kernel. The kernel width and the penalty
parameter were determined on a multiplicative grid using
five-fold cross-validation on the training data. The thresh-
old for each binary classifier was adjusted to produce less
than 1% of false alarms on the training set.

The training set contained 3500 single-compressed JPEG
75% quality images of a wide variety of scenes acquired with
22 different digital cameras1. The results of all tests were

1The image size ranged from 1.4Mpix to 6Mpix.

generated from experiments on 2504 JPEG images of the
same quality never seen by the classifier during training.

The multi-class detector was trained to recognize stego
images from k = 6 popular JPEG steganographic algo-
rithms: F5 [21], Model Based steganography with and with-
out deblocking [14] (MBS1 and MBS2), JP Hide&Seek2,
OutGuess [13], and Steghide [3]. Even though this multi-
class detector was not originally designed as a universal ste-
ganography detector, we may hope that by training it on
a large number of diverse embedding techniques, it will be-
come universal in the sense that it will assign a stego image
produced by an unknown stego method to one of the 6 stego
classes and not to the cover class. After all, there are not
that many different ways how to slightly modify quantized
DCT coefficients in a JPEG file.

2.2 Multi-class detector for novelty detection
The ability of the multi-class detector to generalize to pre-

viously unseen stego methods was assessed by first present-
ing it with stego images created by two methods on which
the classifier was not trained: Jsteg3 and the recently pro-
posed MMx [5]. Jsteg uses simple LSB embedding in quan-
tized DCT coefficients (coefficients 0 and 1 are skipped)
along a pseudo-random path generated from a secret key.
The MMx method is a more sophisticated algorithm that
requires side information in the form of the uncompressed
image. The algorithm minimizes the combined distortion
due to quantization and embedding with modified matrix
embedding using Hamming codes.

For Jsteg, 2504 images never seen by the classifier were
embedded with messages of relative length 100%, 50%, and
25% of the embedding capacity. The stego images for MMx
were embedded with random messages of relative length 2/3,
3/7, 4/15 bpac (bits per non-zero DCT coefficient). These
payloads were selected to match the capacities determined
by the co-dimension of the Hamming codes used for matrix
embedding in MMx. The abbreviations MM2 and MM3
stand for the versions of the MMx algorithm that allow up
to two or three modifications per embedding block, respec-
tively. The algorithm security improves with the number of
allowed changes. The quality factor for all stego images was
again set to 75. As can be seen from Table 1, the multi-class
detector reliably recognized stego images produced by Jsteg
as containing secret messages even though Jsteg embedded
images were not used for training the classifier. Note that
Jsteg was mostly detected as F5 and OutGuess. Images em-
bedded with the MMx algorithm were also reliably detected
as stego and were assigned mostly to Model Based Stegano-
graphy and Steghide (see Table 2). It is interesting to point
out that the missed detection rate for MMx quickly increases
with decreasing message length due to the decreased num-
ber of embedding changes arranged by matrix embedding.
Here, we remark that both Jsteg and MMx can be detected
more reliably using a targeted detector constructed from the
same feature set (e.g., see the results in [6]).

The multi-class detector seems to be able to generalize
well to both Jsteg and MMx. This is mainly due to their
embedding mechanisms, which are similar to the schemes on
which the multi-classifier was trained. For example, Jsteg,
as well as OutGuess, use LSB embedding, which is probably
why Jsteg was often classified as OutGuess.

2http://linux01.gwdg.de/~alatham/stego.html
3http://zooid.org/~paul/crypto/jsteg/



Cover F5 JP H&S MBS1 MBS2 OG Steghide

Jsteg 100% 0.20% 57.91% 0.00% 0.00% 0.04% 41.81% 0.04%
Jsteg 50% 0.20% 57.59% 0.00% 0.04% 2.40% 39.58% 0.20%
Jsteg 25% 1.04% 57.63% 0.00% 5.47% 3.67% 30.99% 1.20%

Table 1: Confusion table of the multi-classifier on images from the testing set embedded by Jsteg. The
multi-class detector was not trained to detect Jsteg images.

Cover F5 JP H&S MBS1 MBS2 OG Steghide

MM2-(1,3,2) 0.56% 0.92% 0.00% 0.80% 91.29% 1.92% 4.51%
MM2-(1,7,3) 0.92% 0.20% 0.00% 14.18% 27.08% 1.68% 55.95%
MM2-(1,15,4) 10.34% 0.44% 0.00% 27.52% 1.24% 0.68% 59.78%
MM3-(1,3,2) 0.44% 1.04% 0.00% 0.84% 91.61% 1.84% 4.23%
MM3-(1,7,3) 1.08% 0.20% 0.00% 15.06% 26.40% 1.88% 55.39%
MM3-(1,15,4) 17.05% 0.44% 0.04% 27.84% 1.16% 0.56% 52.92%

Table 2: Confusion table of the multi-class detector on images from the testing set embedded by MM2 and
MM3. The multi-class detector was not trained to detect MM2 or MM3 images.

Next, we decided to test the multi-class detector on stego
images produced by a stego method with an entirely dif-
ferent embedding mechanism. To this end, we used the
steganographic algorithm –F5 [6]. It embeds message bits
into quantized DCT coefficients by changing their parity
(LSB) along a pseudo-random path. If a parity of a DCT
coefficient needs to be changed, instead of decreasing the ab-
solute value of the coefficient as in F5, it is increased. This
has a nice side effect of eliminating shrinkage from F5 (a sit-
uation when a non-zero DCT coefficient is changed to zero),
which complicates the embedding mechanism of F5 and de-
creases its embedding efficiency (number of bits embedded
per embedding change). Similar to F5, we used Hamming
codes for matrix embedding to decrease the number of em-
bedding changes. The embedding mechanism of none of the
above 8 tested steganographic techniques is similar to –F5.

We performed the same type of experiment as with Jsteg
and MMx. Total of 2504 images were embedded with a range
of relative payloads and then presented to the classifier. The
confusion matrix is displayed in Table 3. Quite surprisingly,
–F5 is the most detectable for medium embedding rates and
the least detectable at low embedding rates (as expected)
but also at very high embedding rates! In other words, the
multi-class detector completely failed to recognize images
fully embedded with –F5 as containing stego content and
instead classified them as covers. This is likely because the
6 individual binary classifiers distinguishing between covers
and a stego method were all adjusted for low false posi-
tive rate, which is a necessity for any practical steganalytic
tool. Consequently, because stego images fully embedded
with –F5 did not resemble any of the stego images on which
the classifier was trained, most of those 6 binary classifiers
(cover vs. stego) conservatively assigned the image to the
cover class.4 Even though the decisions of the remaining
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binary stego vs. stego classifiers were biased towards F5 and
OutGuess, stego classes usually did not get enough votes.

Despite the fact that the multi-classifier failed to detect
–F5 embedded images as stego images, the –F5 is a poor

4Additionally, the classifier was programmed to resolve ties
in the number of votes for the cover, F5, and OutGuess
classes by assigning the image to the cover class.

Target Cover –F5

–F5 100% 0.00% 100%
–F5 75% 0.00% 100%
–F5 50% 0.00% 100%
–F5 25% 0.04% 99.96%
–F5 20% 0.08% 99.92%
–F5 10% 0.32% 98.68%
–F5 5% 72.04% 27.95%
Cover 99.52% 0.48%

Table 4: Accuracy of a binary SVM classifier tar-
geted to –F5 on 2504 test images.

steganographic method. We trained a targeted binary SVM
classifier for –F5 on 3400 cover images and an even mix-
ture of 3400 stego images embedded by –F5 with relative
message lengths 5%, 10%, 20%, 25%, 50%, 75%, and 100%.
The accuracy of this classifier (see Table 4) estimated from
2504 images from the testing set shows that –F5 is easily
detectable even for relative payloads as small as 10% (re-
call that –F5 uses matrix embedding to further reduce the
number of embedding changes). In fact, there are good rea-
sons why –F5 is a bad choice for the steganographer. It can
be shown that it introduces the largest combined distortion
due to embedding and quantization [6] out of any embed-
ding operation that changes a fraction of δ ≥ 0 coefficients
towards zero and 1− δ away from zero (–F5 is obtained for
δ = 0 and F5 corresponds to δ = 1).

3. NOVELTY DETECTION IN STEGANAL-
YSIS

Multi-class detection is a multiple hypothesis testing prob-
lem where the pdf of features for each hypothesis (stego
method), ps(x), is sampled from stego images. On the other
hand, a universal steganography detector is supposed to
detect all known and unknown steganography algorithms,
which leads to a much harder composite hypothesis testing
problem. As the above experiment confirmed, a state-of-the-
art multi-class steganography detector may not be a good
general steganography detector (it is not universal).



Target Cover F5 JP HS MBS1 MBS2 OutGuess Steghide

–F5 100% 87.70% 7.23% 0.00% 0.04% 1.28% 3.71% 0.04%
–F5 75% 33.55% 23.12% 0.00% 0.20% 10.50% 30.47% 2.16%
–F5 50% 0.44% 0.08% 0.00% 2.52% 70.41% 1.36% 25.20%
–F5 25% 0.16% 0.00% 0.00% 12.86% 2.76% 0.28% 83.95%
–F5 20% 0.40% 0.00% 0.00% 12.86% 1.32% 0.32% 85.10%
–F5 10% 56.07% 0.36% 0.00% 3.99% 0.40% 1.12% 38.06%
–F5 5% 97.60% 0.76% 0.32% 0.16% 0.16% 0.60% 0.40%

Table 3: Confusion table of the multi-class detector on images from the testing set embedded by –F5. The
classifier was not trained to detect –F5 images.

Because a general steganography detector may never have
enough information about the distribution of stego images
ps(x), we can construct steganalysis by classifying every-
thing that does not resemble a cover image to the stego class.
Such a detector can be described by the decision function
h : X 7→ {0, 1}

h(x) =

(
1 if pc(x) > λ

0 otherwise.
(2)

The free parameter λ in the decision function h(x) is called
the density level. It forms the threshold, above which the
image is recognized as cover, and thus controls the trade-off
between the probability of false alarm (cover image clas-
sified as stego), α = 1 −

�
X h(x)pc(x)dx, and the proba-

bility of missed detection (stego image classified as cover),
β =

�
X h(x)ps(x)dx.

The region of acceptance in (2) depends on the pdf pc(x)
as well as on the density level λ. Without any prior infor-
mation about h, the density and the parameter need to be
estimated from samples, which makes the design of the de-
tector inherently difficult.

The problem of designing the decision function (2) only
from examples of one class (in our case the cover class) is
known in the field of machine learning as the novelty /
anomaly / density level detection problem. In the rest of
this section, we describe some solutions [15, 19, 20, 8] to
this problem that we believe are the most suitable for ste-
ganography. The approaches are experimentally compared
in Section 4.

3.1 One-Class Support Vector Machines (OC-
SVM)

For a fixed false positive rate α, the problem (2) can be
approached by finding the minimum volume set Cα (the deci-
sion region), so that the probability pc(Cα) ≡

�
Cα

pc(x)dx ≥
1 − α. Denoting the volume of C ⊂ X as µ(C) for some
µ : 2X 7→ R (where 2X is the power set of X ), we can write

Cα = arg min
C⊂X

{µ(C)| pc(C) ≥ 1− α} . (3)

In fact, we want to find the 1−α quantile of pc assuming it
exists. Estimators of this form are called minimum volume
estimators.

To make the optimization problem (3) tractable, in OC-
SVMs the minimum is taken over a restricted set C ∈ A ⊂
2X consisting of pre-images of all half-spaces in F under a
mapping φ : X 7→ F for some suitably chosen mapping φ
and a space F equipped with the dot product 〈·, ·〉F

A =
˘
C ⊂ X| ∃w ∈ F , (x ∈ C) ⇔ 〈w, φ(x)〉F > 0

¯
.

Additionally, instead of minimizing the volume of C, which
might be difficult to calculate and the volume may not be
finite, OC-SVMs minimize an SVM-style regularizer µ(C) =
‖w‖2F controlling the length of the weight vector w (and con-
sequently the complexity of the solution) in F . The mapping
φ as well as the space F are typically determined from a ker-
nel function k : X ×X 7→ R as φ(x) = k(·,x). The space F ,
obtained by completing the space of all finite linear combina-
tions

P
aiφ(xi), ai ∈ R, is a space of functions X 7→ R ans is

called the Reproducing Kernel Hilbert Space (RKHS) [16].
Denoting the training set {x1, . . . ,xl}, the training of a

OC-SVM leads to a quadratic programming problem on con-
vex sets [15]:

min
w∈F,ρ,ξi∈R

1

2
‖w‖2F +

1

νl

lX
i=1

ξi − ρ (4)

subject to

w · φ(xi)− ρ ≥ −ξi, i ∈ {1, . . . , l}
ξi ≥ 0, i ∈ {1, . . . , l}.

The solution determines a hyperplane in F with w as its
normal vector, {y ∈ F|w · y − ρ = 0}, and the decision
function of the OC-SVM

h(x) =
1

2
(1 + sgn(w · φ(x)− ρ)).

The optimization problem does not require all training sam-
ples to lie on the correct side of the hyperplane (w, ρ). No-
tice that if the slack variable ξi > 0, then the corresponding
training sample xi is classified as novelty (w ·φ(xi)−ρ < 0).
The parameter ν controls the trade-off between the com-
plexity of the solution and the number of misclassified points
from the training set. Its role is to prevent the optimization
reach a degenerate solution because there always exists a
combination of (w, ρ) correctly classifying all training sam-
ples. If ν is set to desired false positive rate α, the OC-SVM
asymptotically converges to the optimal solution of (3) [15].

The major issue with the use of OC-SVM is setting the
parameters of the kernel function k : X × X 7→ R and the
parameter ν controlling the false positive rate. In binary
SVMs, this is usually done by estimating the performance
by cross-validation on a finite grid of possible parameter
values. Since the missed detection rate of a OC-SVM cannot
be estimated (we have examples only from one class), this
approach cannot be used. To illustrate this issue, one can
imagine that it is always possible to choose the kernel wide
enough to guarantee a zero false positive rate on testing set.
However, the missed detection of this classifier would likely
be very high and the lack of stego training examples prevents



us to estimate it. The setting of the parameters of OC-SVM
thus relies on experience of the user and heuristics. One
general heuristics5 is to use the Gaussian kernel k(x,y) =
exp(−γ‖x− y‖2) with γ = 1

η2 , where η is the median of L2

distances between samples in the feature space, and setting
ν to the desired false positive rate α.

Minimum enclosing balls [15] employed by Farid and Lyu [7]
for blind steganalysis with wavelet features, can also be
casted as a OC-SVM.

3.2 One Class Neighbor Machine (OC-NM)
For the description of One Class Neighbor Machine [8], we

need the notion of sparsity measure M . Let Sl = {x1, . . . ,xl}
be a set of iid samples drawn according to pdf pc. The func-
tion M : X ×Sl 7→ R, defined for all l ∈ N, is a sparsity mea-
sure if and only if ∀x,y ∈ X , pc(x) > pc(y) ⇒ M(x, Sl) <
M(y, Sl). A sparsity measure characterizes closeness of the
sample x to the set of training examples Sl. The rationale
behind OC-NMs is to find a threshold ρ so that all sam-
ples x with M(x, Sl) > ρ are classified as anomalies, i.e.,
h(x) = sgn(ρ−M(x, Sl)).

The training of an OC-NM is simple because we only need
to find the threshold ρ. It starts with calculating the sparsity
of all training samples mi = M(xi, Sl), i ∈ {1, . . . , l} and
ordering them so that m1 ≤ m2 ≤ . . . ≤ ml. By setting ρ =
m[(1−α)l]+1, we ensure that at most α fraction of training
samples are classified as anomalies. As in the case of OC-
SVMs, it has been shown that OC-NMs converge to optimal
solution with increasing number of training samples l [8].

Note that there is a key difference between utilizing sam-
ples Sl in OC-NM and in OC-SVM. While OC-SVMs only
use a fraction of them during classification (support vectors
defining the hyperplane), OC-NMs use all samples, which
shows the relation to classifiers of the nearest neighbor type.

The original publication [8] presents several types of spar-
sity measures. The one we adopted here is based on the
Hilbert kernel density estimator

M(x, Sl) = log

0@ 1Pl
i=1

1

‖x−xi‖hd
2

1A . (5)

Note the free parameter h in (5) controlling the smoothness
of the measure.

3.3 Density Level Detection by Support Vec-
tor Machines (DLD-SVM)

Intuitively, if we had some information about the distri-
bution of features of stego images, the performance of the
steganography detector should improve. Steinwart et al. [19,
20] introduced an approach to anomaly detection problem
that assumes that we have available samples from the pdf
of stego images, µ. This converts the composite hypothesis
testing problem (2) to a simple hypothesis test

H0 : x(c) ∼ pc (6)

H1 : x(c) ∼ µ.

The pdf µ expresses prior information about the possible lo-
cation of novelties in the feature space. If no prior informa-
tion is available, we can choose µ to be the least informative,
e.g., uniform on X .

5Private discussion with Bernard Schölkopf.

The H0 acceptance region, R0, is determined by the de-
cision function f(x) : X 7→ {−1, +1}, R0 = {x ∈ X|f(x) =
+1} to be learned from available samples (the training set)

{(x1, +1), . . . , (xl̃, +1), (xl̃+1,−1), . . . , (xl,−1)},

where x1, . . . ,xl̃ ∼ pc and xl̃+1, . . . ,xl ∼ µ. The decision
function f(x) can be learned by any method for binary clas-
sification. The authors showed that if the probability mea-
sure defined by pc is absolutely continuous with respect to
the probability measure defined by µ and if the decision
function f(x) is implemented by Support Vector Machines,
this approach guarantees nearly optimal finite sample per-
formance. In [19], DLD-SVMs were compared to other ap-
proaches and were reported to perform very well.

The problem with DLD-SVMs is that under no prior in-
formation about µ, the uniform distribution µ does not scale
well with the dimensionality of the feature space d. The scal-
ability issue can be illustrated by the following simple ex-
ample. Let µ be uniform, the dimension of feature space be
d = 300, and the number of training examples be 2×100000
(a very optimistic scenario). With this setting, we have rel-
atively log300(10000) ≈ 2.01 examples drawn according to
µ per each dimension, which is clearly not enough to learn
f(x) with reasonable precision. We need examples from µ
to “surround” examples from pc.

The only way to remedy this curse of dimensionality is
to localize the region of possible novelties. In steganogra-
phy, we can do so by training a cover vs. all-stego classifier
on examples of cover and stego images embedded by some
“known” algorithms (algorithms detected by the multi-class
detector from section 2). Similar to the multi-class detector,
we hope that if the training set contains stego images from
a large number of sufficiently diverse steganographic algo-
rithms, the detector should be able to detect new algorithms.
Unfortunately, as shown in Section 4 stego algorithms with
previously unseen embedding mechanisms may be misclas-
sified. On the other hand, this approach offers a very good
detection accuracy on “known” algorithms, which is impor-
tant if the steganography detector is used as a pre-classifier
for a multi-class detector assigning images to known stegano-
graphic algorithms.

4. EXPERIMENTAL COMPARISON
In this section, we present experimental comparison of

the novelty detection methods described in Section 3. The
training and testing conditions were similar to the condi-
tions under which the multi-class detector from Section 2
was prepared. The database of 6004 source raw images was
divided into two disjoint sets. The first set with 3500 im-
ages was used only for training and the second set with 2504
images was used solely for testing. The steganographic tech-
niques involved in our experiments were divided into known
algorithms: F5, JP Hide&Seek, MBS1, MBS2, Steghide,
and OutGuess, and unknown algorithms –F5, Jsteg, MM2,
MM3, and F5 without shrinkage (nsF5) [6]. While the
known algorithms could be possibly used during training
of the classifiers, the unknown algorithms had to be kept
unknown because they are needed to estimate the ability of
the detectors to detect novel algorithms. All experiments
were performed exclusively on single-compressed JPEG im-
ages with quality factor 75. All classifiers used the Merged
feature set [11]. The parameters of methods were set ei-



ther according to heuristics (OC-SVM, OC-NM) or by grid-
search (DLD-SVM) to obtain 1% false positive rate.

For a OC-SVM, we followed the heuristics described in
Section (3.1) and set the width of the Gaussian kernel γ =
0.181526 according to the “median” rule, and ν = 0.01,
which is the desired false positive rate. The training data
were scaled so that all features were in the range [−1, +1]
(the scaling parameters were derived from cover images only).

An important design decision in OC-NMs is the choice
of the sparsity measure M(x, Sl). The original paper [8]
describes several different sparsity measures. We tried all
of them but only report the results for the measure (5),
because it gave us the best performance. We used this
measure with the following values of the parameter h =
{0.01, 0.02, 0.05, 0.08, 0.1} based on the recommendations in
the paper. The detection accuracy varied very little with
h. The results presented in this paper were obtained for
h = 0.01.

The data pre-processing in DLD-SVM with µ being uni-
form probability distribution is not so straightforward, be-
cause the data from µ has to be artificially generated. We
did so in the following manner. We first derived the scaling
parameters on 3400 examples of cover images to bring all fea-
tures to the range [−1, +1]. Then, we generated 15000 artifi-
cial samples from the underlying pdf µ according to uniform
distribution µ = U([−1, +1]d). Because the resulting train-
ing set with 18400 examples was imbalanced (there are more
examples from one of the classes), we used weighted Sup-
port Vector Machines (2C-SVM) with Gaussian kernel. The
hyper-parameters (C+, C−, γ) were selected from a multi-
plicative grid, where we estimated the accuracy on the cover
and µ (stego) classes by means of a 5-fold cross-validation.
We have to point out that all triplets (C+, C−, γ) evaluated
during the grid-search had the false negative rate (class µ
detected as cover) always equal to 0. This shows that we
did not provide enough samples from µ. Even though it is
easy to generate more samples from µ, the problem becomes
quickly computationally intractable, since the complexity of
training a SVM is approximately l2.3, where l is number of
training examples. Nevertheless, for the sake of complete-
ness we did include results of this approach under the label
“DLD-SVMuni”.

In order to localize the novelties in the input space, a bi-
nary SVM with Gaussian kernel was trained on 3400 exam-
ples of cover images and 3400 examples of images embedded
by “known” algorithms with message lengths 100%, 50%,
and 25% of their capacity (the only exception were images
from MBS2 that were embedded with 30% of capacity of
MBS1). As in the case of the DLD-SVMuni, the hyper-
parameters C and γ were determined by a grid-search com-
bined with 5-fold cross-validation. This approach is a prac-
tical embodiment of a cover vs. all-stego binary classifier.

The accuracy of detectors was estimated on JPEG images
created from 2504 raw images not used during training. We
embedded messages with length 100%,75%, 50%, 25%, 20%,
10%, and 5% bits per non zero AC coefficient (bpac) by –F5,
Jsteg and nsF5, and messages with length 0.66, 0.42, and
0.26 bpac by MM2 and MM3 (the message lengths for MMx
correspond to the maximal messages for Hamming codes
(1,3,2), (1,7,3), and (1,15,4)).

4.1 Accuracy on stego images
The DLD-SVMloc detector performed best on all known

algorithms and all unknown algorithms with the exception
of Jsteg, where it grossly failed. This is rather surprising
considering the fact that the multi-class detector and DLD-
SVMloc were constructed under similar conditions and Jsteg
was easily detectable by the multi-class detector (Section 2).
Apparently, DLD-SVMloc suffers from the same drawback
as the multi-class detector. It may fail to detect stego algo-
rithms with a completely different embedding mechanism.
In contrast, all true novelty detection methods (OC-SVM,
OC-NM, and DLD-SVMuni) detected Jsteg even at low em-
bedding rates.

In order to compare OC-SVM, OC-NM, and DLD-SVMuni

more fairly, we shifted the threshold of OC-SVM so that
the false positive rate of OC-SVM and OC-NM on testing
images was the same. The performance of this shifted OC-
SVM (labeled in Table 6 “OC-SVMshift”) is better than the
performance of OC-NM, especially on “known” algorithms
(Table 5).

Table 6 shows that the –F5 algorithm, which was not de-
tected by the multi-class detector in Section 2, is now reli-
ably detected by all classifiers except DLD-SVMuni, which
detected it only when the images were embedded with 75%
or larger payload.

As expected, the DLD-SVMuni method performed the
worst because it suffers from curse of dimensionality. It can
only detect poor algorithms, such as –F5 or Jsteg.

The results also reveal differences between novelty and bi-
nary detectors. The DLD-SVMloc (and all binary classifiers
in general) identify the boundary between cover and stego
images only in those parts of the feature space that are oc-
cupied by the features from the known stego methods. In
those regions of the feature space where the examples from
the stego class are absent, the decision boundary can be too
far from the cover class making the classifier vulnerable to
catastrophic failures to detect stego images falling into this
region. By contrast, novelty detectors try to find the deci-
sion boundary in all parts of the feature space, which makes
them suitable for universal steganalysis.

The comparison of different universal steganography de-
tectors shows that the choice has to be made with respect
to the intended application. If the detector is going to be
used as a pre-classifier module in a multi-class detector, the
DLD-SVMloc (cover vs. all-stego) is a good choice because
of its superior performance on “known” algorithms in com-
parison to other approaches (see Table 5). For a universal
blind detector trained only on cover images, the OC-SVM
offers slightly better performance than OC-NM, though the
tricky setting of hyper-parameters makes them difficult to
implement in practice.

4.2 Steganalysis of processed images
It has been recognized by the research community that

the source of covers has a major influence on steganalysis in
the spatial domain. Steganalysis of JPEG covers is gener-
ally expected to be less sensitive to the cover source due to
the quantization performed during JPEG compression. The
one-class novelty detectors described in the previous section,
however, may be more sensitive to the cover source because
they are only trained on covers. In this section, we test
the performance of the blind steganalyzers on images that
underwent various processing to see if covers processed by
common image processing operations are likely to be mis-
taken for stego images by the universal blind steganalyzers.



Target OC-SVM OC-SVMshift OC-NM DLD-SVMuni DLD-SVMloc

F5 100% 100.00% 99.60% 98.96% 1.92% 99.96%
F5 50% 78.11% 29.09% 20.10% 0.12% 99.60%
F5 25% 13.06% 2.64% 2.40% 0.12% 90.73%
JP Hide&Seek 100% 100% 99.68% 99.52% 0.52% 99.84%
JP Hide&Seek 50% 85.18% 54.19% 41.73% 0.48% 98.28%
JP Hide&Seek 25% 40.13 21.60% 19.04% 0.44% 73.52%
MBS1 100% 100.00% 100.00% 99.92% 0.20% 99.96%
MBS1 50% 97.88% 53.36% 29.50% 0.16% 99.80%
MBS1 30% 35.12% 7.03% 4.27% 0.12% 98.88%
MBS1 25% 21.33% 3.59% 2.56% 0.12% 96.81%
MBS1 15% 9.95% 1.84% 1.76% 0.12% 71.19%
MBS2 30% 93.49% 55.95% 32.47% 0.12% 99.12%
MBS2 15% 33.63% 5.51% 2.88% 0.12% 77.92%
OutGuess 100% 100.00% 100.00% 100.00% 1.72% 99.96%
OutGuess 50% 99.80% 80.07% 57.51% 0.20% 99.96%
OutGuess 25% 41.25% 8.15% 5.19% 0.12% 98.12%
Steghide 100% 100.00% 99.96% 99.44% 0.20% 99.96%
Steghide 50% 85.90% 27.76% 16.61% 0.16% 99.84%
Steghide 25% 18.61% 4.19% 2.84% 0.20% 96.37%

Table 5: Detection accuracy of universal blind steganalyzers on known stego algorithms. Note that the
DLD-SVMloc was the only detector that needed examples of stego images for its training. The detector OC-
SVMshift is an OC-SVM classifier with the threshold shifted to match the false positive rate of the OC-NM
classifier.

Target OC-SVM OC-SVMshift OC-NM DLD-SVMuni DLD-SVMloc

–F5 100% 100% 100% 100.00% 98.88% 99.08%
–F5 75% 100% 100% 100.00% 89.50% 99.44%
–F5 50% 100% 100% 100.00% 6.75% 99.60%
–F5 25% 100% 95.64% 93.93% 0.12% 98.48%
–F5 20% 99.6% 66.57% 55.87% 0.16% 96.09%
–F5 10% 17.73% 3.7% 3.27% 0.16% 33.11%
–F5 5% 6.70% 1.55% 1.48% 0.12% 3.55%
nsF5 100% 100% 100% 99.96% 16.41% 99.96%
nsF5 75% 100% 99.96% 99.92% 3.04% 99.96%
nsF5 50% 98.76% 74.56% 80.91% 0.20% 99.72%
nsF5 25% 11.50% 2.87% 3.19% 0.12% 88.86%
nsF5 20% 9.78% 2.07% 2.24% 0.12% 72.12%
nsF5 10% 5.99% 1.47% 1.44% 0.12% 6.11%
nsF5 5% 5.47% 1.31% 1.40% 0.12% 1.72%
MM2-(1,3,2) 100% 100% 100.00% 18.37% 99.64%
MM2-(1,7,3) 100% 100% 99.92% 0.12% 99.20%
MM2-(1,15,4) 62.61% 20.24% 17.69% 0.12% 53.67%
MM3-(1,3,2) 100% 100% 100.00% 18.29% 99.72%
MM3-(1,7,3) 100% 100% 99.92% 0.12% 99.32%
MM3-(1,15,4) 51.71% 17.17% 15.14% 0.12% 58.51%
Jsteg 100% 100% 100% 100% 98.24% 42.41%
Jsteg 75% 100% 100% 100% 87.85% 42.33%
Jsteg 50% 100% 100% 100% 66.85% 42.37%
Jsteg 40% 100% 100% 100% 60.54% 42.29%
Jsteg 25% 100% 99.84% 99.45% 56.94% 42.05%
Jsteg 20% 99.88% 99.12% 98.09% 56.78% 42.09%
Jsteg 10% 96.13% 83.11% 65.36% 56.62% 32.98%
Jsteg 5% 78.87% 63.53% 40.27% 56.62% 5.99%
Cover 94.76% 98.64% 98.64% 99.88% 98.96%

Table 6: Detection accuracy of universal blind steganalyzers on four unknown stego algorithms. The detector
OC-SVMshift is an OC-SVM classifier with the threshold shifted to match the false positive rate of the OC-
NM classifier.



Target OC-SVM OC-SVMshift OC-NM DLD-SVMuni DLD-SVMloc

Blurring σ = 0.4 94.33% 98.48% 98.92% 99.88% 98.84%

Blurring σ = 0.8 93.97% 98.32% 98.76% 99.80% 98.84%

Blurring σ = 1.2 91.85% 98.00% 98.72% 99.76% 98.76%

Blurring σ = 1.6 88.06% 97.68% 98.52% 99.80% 98.44%

Blurring σ = 2.0 79.03% 96.92% 98.08% 99.80% 98.04%

Color quantization 93.13% 98.72% 99.00% 99.88% 97.60%

Despeckling 93.05% 98.08% 98.68% 99.76% 98.64%

Gamma corr. γ = 0.7 95.21% 98.52% 98.88% 99.84% 98.64%

Normalization 94.97% 99.04% 99.44% 100.00% 99.60%

Sharpened σ = 0.4 94.81% 98.72% 98.52% 99.88% 98.84%

No processing 94.76% 98.64% 98.64% 99.88% 98.96%

Table 7: Percentage of processed covers detected correctly as covers.

To this end, the testing database of 2504 images was pro-
cessed using the following operations: blurring with Gaus-
sian kernel with kernel width σ ∈ {0.4, 0.8, 1.2, 1.6, 2.0},
sharpening with σ ∈ {0.4, 0.8, 1.2, 1.6, 2.0}, despeckling, color
quantization to 256 colors, histogram normalization in all
three color channels, and gamma correction with γ ∈ {0.7,
0.9, 1.1, 1.3}. All operations were carried out in Image Mag-
ick’s Convert routine. To avoid producing double compressed
JPEGs, we always processed the raw, never compressed im-
age and then saved it as 75% quality JPEG.

Table 7 shows the percentage of correctly classified pro-
cessed covers by all five tested steganalyzers. Blurring with
Gaussian kernel with σ = 1.6 and σ = 2.0 increased the
false positive rate the most, especially for OC-SVM. The
other processing did not have a significant influence on the
detection accuracy.

Because the Merged features are computed directly from
quantized DCT coefficients, they are very sensitive to repet-
itive JPEG compression. A double-compressed cover image
will exhibit artifacts due to double quantization of DCT
coefficients, which is likely to be misinterpreted by the one-
class detectors as an anomalous image. Table 8 confirms
this educated guess. It shows the percentage of correctly
classified covers that were double JPEG compressed with
the primary quality factor PQF ∈ {65, 70, 80, 85, 90} and
secondary quality factor 75. The negative influence of dou-
ble compression on steganalysis that uses features computed
from DCT coefficients is well-known. This problem can be
resolved by estimating the primary quantization matrix [12]
and training appropriate detectors for double-compressed
JPEG images [10].

Overall, we can say that OC-NM is more robust to pro-
cessing than OC-SVMshift (see Tables 7 and 8). On the
other hand, as reported in Section 4, OC-SVMshift better
detects stego content than OC-NM. This indicates that the
decision boundary of OC-SVMshift surrounds cover images
more tightly.

Binary classifiers (DLD-SVMuni and DLD-SVMloc) are
less likely to misclassify processed images (especially double-
compressed images) than novelty detectors.

5. CONCLUSIONS
A steganalyzer trained to detect variety of steganographic

algorithms does not necessarily have to be a good universal
steganography detector because it can fail to recognize im-
ages produced by steganographic methods with a completely

novel embedding mechanism as stego. This applies to both
multi-class detectors and binary cover-against-all-stego de-
tectors.

The task of recognizing novelty in machine learning is also
known as anomaly detection. We adapted several existing
approaches to anomaly detection for steganalysis and com-
pared their performance. The methods differed in their ma-
chine learning techniques as well as in utilizing side infor-
mation in the form of examples of “known” steganographic
algorithms. Among the techniques that do not utilize any
information about stego images, the one-class SVM trained
only on examples of cover images had the best overall perfor-
mance and was less prone to failures to detect an unknown
stego method. The detection accuracy of one-class detec-
tors on known stego algorithms is understandably somewhat
worse than detection accuracy of binary cover-against-all-
stego detectors trained on such stego images.

For applications where reliable universal blind detector
is required, such as for automatic traffic monitoring, tar-
geted steganalyzers or multi-class detectors should be sup-
plemented with a reliable one-class detector.
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undetectable JPEG steganography: Dead ends,
challenges, and opportunities. In J. Dittmann and
J. Fridrich, editors, Proceedings of the 9th ACM
Multimedia & Security Workshop, pages 3–14, Dallas,
TX, September 20–21, 2007.

[7] S. Lyu and H. Farid. Steganalysis using higher-order
image statistics. IEEE Transactions on Information
Forensics and Security, 1(1):111–119, 2006.

[8] A. Munoz and J. M. Moguerza. Estimation of
high-density regions using one-class neighbor
machines. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(3):476–480, 2006.
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