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ABSTRACT
In this paper, we propose a method for normalization of rich feature
sets to improve detection accuracy of simple classifiers in steganaly-
sis. It consists of two steps: 1) replacing random subsets of empirical
joint probability mass functions (co-occurrences) by their condi-
tional probabilities and 2) applying a non-linear normalization to
each element of the feature vector by forcing its marginal distri-
bution over covers to be uniform. We call the first step random
conditioning and the second step feature uniformization. When
applied to maxSRMd2 features in combination with simple classi-
fiers, we observe a gain in detection accuracy across all tested stego
algorithms and payloads. For better insight, we investigate the gain
for two image formats. The proposed normalization has a very low
computational complexity and does not require any feedback from
the stego class.
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1 INTRODUCTION
Currently, the most popular approach to steganalysis of digital
images puts emphasis on the feature representation rather than
machine learning. The so-called rich models consist of joint proba-
bility mass functions (co-occurrences) of neighboring noise resid-
uals extracted using a large bank of both linear and non-linear
filters (pixel predictors). Due to the high dimensionality of the fea-
tures and the ensuing training complexity, researchers resorted
to low-complexity machine learning paradigms, such as the en-
semble classifier [17], its linear version [3], and regularized linear
discriminants [4].

One possibility to improve the detection and better utilize the
information contained in the feature vector without employing a
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more complex machine learning tool is to transform or preprocess
the feature vector prior to classification. In [2], the authors showed
that a non-linear feature transformation may enable better separa-
tion of cover and stego features with a simple decision boundary as
long as the feature is a collection of co-occurrences. The approach
was linked to approximating implicit feature maps in kernelized
support vector machines with an explicit transformation [22, 32].

In this paper, we propose a related but different and much more
simple idea based on applying a non-linear normalization to the fea-
tures. It consists of two steps: L1 normalization of random subsets
of features and forcing the marginal distribution of each feature
across images to be uniform. The first step is equivalent to changing
the descriptor from joint distributions to conditional distributions,
which is why we call it in this paper random conditioning. The sec-
ond step is executed by applying the empirical cumulative density
function (cdf) to each feature bin and is thus essentially a non-
linear bin-dependent coordinate transformation that maximizes the
entropy of each feature bin across cover images.

It is rather interesting that the proposed feature normalization
leads to slightly larger gains in detection accuracy than the pre-
viously proposed explicit approximations of positive definite ker-
nels [2]. Curiously, combining these approaches does not lead to
further gain. We report the gain on four steganographic schemes
embedding in the spatial domain and a wide range of payloads on
two image sources – uncompressed images of BOSSbase 1.01 and
its quality 85 JPEG version (decompressed JPEGs).

Our work was inspired by normalization techniques applied in
convolutional neural networks conceived of to mimic inhibition
schemes observed in the biological brain. In the context of machine
learning, this technique is known as contrast normalization or
neighborhood (local) response normalization [16, 18, 21, 26].

In the next section, we explain random conditioning and search
for its single scalar parameter, the size of the random subsets. Sec-
tion 3 contains description and analysis of uniformization. The
proposed non-linear feature normalization is tested in Section 4,
where we also discuss and interpret the results. A summary of the
paper appears in Section 5.

2 FROM JOINT TO CONDITIONAL
The very first higher-order steganalysis features introduced in mid
2000’s were formed as empirical Markov transition probability ma-
trices. This applies both to the original publications on steganalysis
of JPEGs [28] and spatial domain images [33] as well to the follow
upwork [25] and the SPAM feature [23]. Themove from conditional
to joint statistics (co-occurrences) came with the introduction of
the embedding algorithm HUGO [24], where large third-order joint
distributions of pixel differences were approximately preserved

https://doi.org/10.1145/3082031.3083239
https://doi.org/10.1145/3082031.3083239


IH&MMSec ’17, June 20-22, 2017, Philadelphia, PA, USA Mehdi Boroumand and Jessica Fridrich

by the design of the distortion function minimized in HUGO. Co-
occurrences were then ported into the design of the spatial rich
model [7] and its many variants [6, 8, 30, 31]. The authors of this
article are not aware of any work aimed at reinvestigating the
suitability of conditional probability distributions for steganalysis.

First, we briefly introduce the concept of a noise residual, its quan-
tized form, and a joint probability distribution, the co-occurrence.
For an n1 × n2 grayscale image xi j ∈ {0, . . . , 255}, 1 ≤ i ≤ n1,
1 ≤ j ≤ n2, let ri j be a noise residual obtained by subtracting from
each pixel value xi j its predicted value x̂i j , ri j = xi j − x̂i j . Before
forming co-occurrences, the residual is quantized using a quantizer
Q : R→ Q with 2T + 1 centroids Q = {−T ,−T + 1, . . . ,T }, T ∈ N:

zi j = QQ (ri j/q) ∈ Q, for each i, j, (1)

where q > 0 is a quantization step. Typically, for 8-bit grayscale
images, q ∈ {1, 1.5, 2} in the SRM [7]. To curb the dimensionality
of co-occurrences built from zi j and to keep them well populated,
small values of the threshold are typically used, such as T = 2.

A four-dimensional co-occurrence along the horizontal direction
is a four-dimensional array C ∈ Q4 defined as

Cd1d2d3d4 =
1

n1(n2 − 3)

n1∑
i=1

n2−3∑
j=1
[ri j = d1 & ri, j+1 = d2

& ri, j+2 = d3 & ri, j+3 = d4], (2)

where dm ∈ Q,m = 1, 2, 3, 4 and [P] is the Iverson bracket equal
to 0 when statement P is true and zero otherwise. Thus, the di-
mensionality of C is |Q|4. For compactness, we will use vector
notation for the four-dimensional indices d = (d1d2d3d4) belonging
to S ≜ {(d1,d2,d3,d4)|dm ∈ Q} = Q4.

In this article, we will consider a more general approach to
conditioning. Let and let S1, . . . ,Sk be k disjoint subsets of S
whose union is S = ∪kl=1Sl . For convenience, we introduce an
index mapping J : Q4 → {1, . . . ,k} that assigns to each d ∈ Q4
the unique index l ∈ {1, . . . ,k} such that (d1d2d3d4) ∈ Sl . We say
that the four-dimensional array C̃ ∈ Q4 is obtained from C by
conditioning on S1, . . . ,Sk when all elements of C̃ are obtained
from C by

C̃d = Pr{d|d ∈ SJ (d)}

=
Cd∑

e∈SJ (d) Ce
, (3)

for all d ∈ Q4. One can alternatively say that C has been L1 nor-
malized on S1, . . . ,Sk .

Replacing the joint distribution C with the conditional one C̃
increases the contrast of bins from each Sl , l = 1, . . . ,k , equaliz-
ing the magnitude of the co-occurrence bins across the index sets.
When the sets Sl are selected at random, we call this normalization
random conditioning.

Conditioning bears strong similarity to normalization in neural
networks [16, 18] applied across feature maps as implemented in,
e.g., ’cuda convnets’ with a local response normalization layer. The
convnet documentation states that this type of normalization layer
“encourages competition for big activities among nearby groups
of neurons.” The parallel between this layer and our conditioning
becomes more clear when one considers individual co-occurrence
bins as elements of feature maps that enter the normalization layer.

Table 1: Detection error of S-UNIWARD at 0.4 bpp on BOSS-
base 1.01 with the non-symmetrized EDGE3x3 SRM sub-
model of dimensionality 625 (the last row) and its four ver-
sions conditioned on index sets of cardinality 5 and 25.

Sl |Sl | PE
(d1,d2,d3, .) 5 0.2851±0.0033
(d1,d2, ., .) 25 0.2829±0.0041
Random 5 5 0.2854±0.0032
Random 25 25 0.2752±0.0018
Original 625 0.2875±0.0028

To get a feeling for the effect of conditioning on steganalysis
features, we start with a single SRM submodel ’EDGE3x3’ (some-
times called KB submodel) on BOSSbase 1.01 [1] images with the
steganographic algorithm S-UNIWARD [15] for payload 0.4 bits
per pixel (bpp). We keep the feature in its non-symmetrized form,
meaning its dimensionality is 54 = 625 rather than 169 as in the
SRM to allow for easier switching to conditional probabilities.

Table 1 shows the minimal total error probability (average of
false-alarm and missed-detection rates PFA and PD) under equal
priors

PE = min
PFA

1
2
(PFA + PMD) (4)

averaged over ten 50/50 splits of the database into training and
testing sets obtained with the FLD-ensemble classifier [17] and
the KB submodel conditioned on four different tessellations of all
54 co-occurrence indices S. The statistical spread is the mean ab-
solute deviation (MAD) across the ten database splits. The first
two rows of the table correspond to the cases when the condi-
tioning is performed on the first three indices d1d2d3 and on the
first two d1d2, respectively. Formally, for the first row, Sd1d2d3 =
{(d1,d2,d3,d4)|d4 ∈ Q}, Q = {−2,−1, 0, 1, 2}, and thus |Sd1d2d3 | =
5 for all d1d2d3 and Sd1d2 = {(d1,d2,d3,d4)|d3,d4 ∈ Q} with
|Sd1d2 | = 25 for the second row. The third and fourth rows cor-
respond to Sl being selected uniformly at random from Q4. The
last row is for the original KB feature vector. The conclusion that
can be made from this initial experiment is that, considering the
statistical spread, the transition probability matrices offer about
the same detection as the joint or random conditioning on groups
of five bins. Conditioning on random groups of 25, however, leads
to a statistically significant improvement. Selecting the index sets
Sl randomly seems better than in a structured manner obtained
when considering the residuals as a Markov chain, which hints
at the importance of diversity for the index sets. To obtain more
insight, as our next experiment we forced diversity on Sl . For the
experiment, we moved to the full maxSRMd2 feature vector on
BOSSbase 1.01 images for HILL and WOW embedding algorithms
at 0.4 bpp while keeping the FLD-ensemble as the classifier. To pre-
vent potential problems when conditioning on bins that are always
zero, we removed from the feature all bins that are guaranteed to
be zero independently of the input image (see Section 4.1 in [2] for
more detail regarding the zeros in rich models). After removing the
zero bins, the maxSRMd2 feature vector has a dimensionality of
D = 32, 016.
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Table 2: Detection error PE as a function of the index sets size s = |Sl | for HILL and WOW at 0.4 bpp with the maxSRMd2
feature when conditioning on index sets (5) with diversity forced in four different ways as explained in the text.

HILL 0.4 bpp
s 2 3 4 8 12 16 24 46 58
Mean .2122±.0029 .2041±.0034 .2018±.0026 .2016±.0017 .2017±.0023 .2030±.0030 .2035±.0028 .2072±.0025 .2077±.0030
Var .2123±.0020 .2055±.0037 .2011±.0030 .1999±.0017 .2007±.0032 .2029±.0026 .2036±.0033 .2062±.0039 .2062±.0031
σ/µ .2067±.0018 .2035±.0029 .2021±.0029 .2008±.0024 .2003±.0013 .2033±.0027 .2029±.0024 .2061±.0029 .2077±.0019
Corr .2106±.0025 .2043±.0025 .2027±.0026 .2018±.0040 .2013±.0021 .2016±.0029 .2030±.0031 .2060±.0021 .2056±.0027

WOW 0.4 bpp
Mean .1346±.0013 .1285±.0025 .1270±.0026 .1321±.0032 .1337±.0022 .1356±.0034 .1389±.0033 .1446±.0028 .1469±.0034
Var .1334±.0015 .1285±.0021 .1286±.0022 .1292±.0032 .1341±.0032 .1350±.0038 .1395±.0024 .1425±.0022 .1448±.0028
σ/µ .1333±.0030 .1304±.0024 .1301±.0022 .1349±.0028 .1380±.0038 .1383±.0024 .1395±.0033 .1447±.0027 .1437±.0023
Corr .1337±.0021 .1297±.0019 .1283±.0027 .1319±.0024 .1358±.0045 .1363±.0022 .1397±.0036 .1436±.0033 .1455±.0030

The diversity was forced on Sl by first ordering the features in
the maxSRMd2 feature vector according to some scalar quantity
and then selecting s equally spaced (interleaved) bins from the
ordered feature vector. Given an integer s that divides the feature
dimensionality D,

Sl = {l + nD/s |n = 0, . . . , s − 1}, l = 1, . . . ,D/s . (5)

For example, when s = 8 S1 = {1, 4003, 8005, 12007, 16009, 20011,
24013, 28015} and the last S4002 ={4002, 8004, 12006, 16008, 20010,
24012, 28014, 32016}.

We denote the ith feature (bin) in the maxSRMd2 feature vector
of jth cover image as f

(j)
i , i = 1, . . . ,D, j = 1, . . . ,Ntrn , where

Ntrn is the number of images in the training set. The following
scalar quantities were investigated for ordering:

(1) Sample mean bin population across all training cover im-
ages µi = 1/Ntrn

∑Ntrn
j=1 f

(j)
i .

(2) Sample variance of the bin σ 2
i = 1/(Ntrn −1)

∑Ntrn
j=1 (f

(j)
i −

µi )2.
(3) Relative statistical spread σi/µi .
(4) Sample correlation between bins,

ρkm =
1/Ntrn

∑Ntrn
j=1 (f

(j)
k − µk )(f

(j)
m − µm )

σkσl
. (6)

To obtain the ordering, all D2 values ρkl , 1 ≤ k, l ≤
D are ordered from the largest to the smallest: ρk1l1 ≥
ρk2l2 ≥ ρk3l3 ≥ . . .. Then, the ordering is obtained as
k1, l1,k2, l2,k3, l3, . . ., while skipping over indices already
present in the sequence.

Table 2 shows the detection error PE as a function of the index
subset size s for HILL [20] and WOW [11] at 0.4 bpp with the
maxSRMd2 feature set. All four orderings seem to produce similar
results with a minimal detection error for 4 ≤ s ≤ 8. A simple way
to force diversity is to choose the index sets Sl randomly, all of
cardinality s = |Sl |. Figure 1, shows the detection error PE(s) and its
statistical spread over ten database splits as a function of s on four
steganographic algorithms and payload 0.4 bpp. Lennard–Jones
potential function [19] in the form V (x) = ax12 + bx6 was used
to obtain the fit. The detection error for the original maxSRMd2
feature vector is shown on the far right to highlight the gain due to
random conditioning. We note that a qualitatively similar behavior
was observed for payload 0.2 bpp.

To conclude the experiments in this section, we can say that
random conditioning provides approximately the same detection
gain as forcing diversity with index sets (5). We choose random
conditioning for the rest of this paper because this feature normal-
ization is independent of the properties of images across the source
and does not need examples of cover or stego images to estimate
any parameters.

Since random conditioning contains randomness, the detection
error PE will slightly vary even when all other experimental pa-
rameters are fixed. Figure 2 shows the histogram of the detection
error averaged over ten splits of the database repeated for 50 differ-
ent seeds used for random conditioning. The figure was obtained
for HILL at relative payload 0.2 and 0.4 bpp (left and right). We
wish to point out that the distribution appears symmetrical and
unimodal. The difference in PE between the best and worst detec-
tion is approximately 0.5%. We investigated whether it is possible
to identify a good seed that would consistently give good results
across embedding algorithms and payloads. We could not, however,
identify any consistent fluctuations. Thus, to simplify the matters,
we recommend that the randomness in random conditioning be
simply fixed.

3 UNIFORMIZATION
Besides conditioning as described in the previous section, the sec-
ond measure we propose in this paper is normalization across
images. Because a typical linear normalization would have no effect
when coupled with a linear classifier, we apply a non-linear proce-
dure that ensures that the marginal distribution of each feature j
has the maximal entropy. That is, we force it to be uniform on [0, 1]
across images (j), f (j)i ∼ U [0, 1] for each bin i .

In general, given n independent realizations x1, . . . ,xn of a ran-
dom variable X sorted from the smallest to the largest in a non-
decreasing sequence, the empirical cumulative density function
(c.d.f.) of X is

F (x) =
{
l−1
n , l = argminl x < xl , when x < xn

1 when x ≥ xn .
(7)

To force f
(j)
i ∼ U [0, 1] across images j for each bin i , we use

the realizations f
(j)
i , j = 1, . . . ,Ntrn , to estimate the empirical

c.d.f. Fi (x) using Eq. (7). Because this normalization is a property
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Figure 1: Detection error PE(s) as a function of the random set size s = |Sl |. The last datapoint corresponds to s = D, the full
feature dimensionality (no conditioning). Left to right, top to bottom: S-UNIWARD, HILL, MiPOD, WOW, payload 0.4 bpp,
BOSSbase 1.01, maxSRMd2.
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Figure 2: Histogram of the average detection error PE across 50 seeds used for random conditioning with s = 8 for HILL on
BOSSbase 1.01 using maxSRMd2. Left: payload 0.2 bpp, Right: payload 0.4 bpp.
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Table 3: Detection error PE for HILL and WOW at 0.4 bpp
with the maxSRMd2 feature when applying the uniformiza-
tion to all bins (row 2), combing uniformization on all bins
with random conditioning (RC), and combining uniformiza-
tion on selected bins coupled with random conditioning
(rows 4–7).

Normalization HILL WOW
1 Original 0.2196±0.0039 0.1559±0.0024
2 Uniform 0.2072±0.0031 0.1349±0.0025
3 RC only 0.2008±0.0030 0.1295±0.0025
4 32,016 + RC 0.1995±0.0028 0.1263±0.0025
5 20,000 + RC 0.1972±0.0027 0.1255±0.0022
6 15,000 + RC 0.1987±0.0029 0.1243±0.0025
7 10,000 + RC 0.1996±0.0030 0.1248±0.0032
8 5,000 + RC 0.1989±0.0031 0.1257±0.0022

of the source, it needs a training set of cover images from which
the empirical c.d.f. is estimated.

To observe the effect of uniformization, we selected two embed-
ding algorithms, HILL andWOW, and payload 0.4 bpp on BOSSbase.
All results appear in Table 3, which we now comment upon. The
first four rows show the detection error for the original maxSRMd2
feature vector after applying uniformization to all bins, applying
only random conditioning (RC), and combining uniformizationwith
random conditioning. The parameter s for RC was chosen s = 4 for
WOW and s = 8 for HILL, respectively. Comparing the effect of RC
with uniformization (row 3 and 2) to the original feature (row 1),
one can conclude that while both measures boost the detection, the
RC has a more beneficial effect. Also, an additional small gain is
obtained when combining them (row 4).

The marginal distribution of the individual bins in the maxS-
RMd2 feature vector varies greatly. Figure 3 shows four examples
of such distributions (left column) together with the impact of em-
bedding on the bin (right column) in the form of graphs showing
the bin population after embedding versus before embedding (stego
vs. cover bin population). The diagonal line should help the reader
infer the impact of embedding on the bin population. Notice the
scale of the x axis, which informs us about the typical population of
the bin across images. The embedding has a strong impact on the
bin shown in the top graph, only a rather small impact on the next
two bins, and virtually no impact on the fourth bin at the bottom
of the figure. Generally speaking, we noticed that all bins whose
marginal distribution is similar to what is shown in the first graph
are affected by embedding the most. One can also say that the bins
with marginal distribution similar to the first bin correspond to the
most populated and most correlated bins from the feature vector.
Based on extensive experiments, we determined that such bins ben-
efit from being non-linearly normalized (uniformized) while it is
beneficial to not apply such a normalization to the remaining bins.

Based on this finding, we adjusted the uniformization to be ap-
plied only to the firstw bins when ordering them according to their
correlation as explained in the previous section. Rows 4–8 contain
the detection error when the maxSRMd2 feature is first randomly
conditioned and then the first w ∈ {D, 20000, 15000, 10000, 5000}
bins uniformized with the remaining D − w bins left untouched.

A further small gain seems to be obtained when applying the uni-
formization only to the firstw ≈ D/2 bins when sorting them based
on correlation. This finding is consistent with what was observed
for other embedding algorithms, payloads, and across sources.

In general, we found it rather difficult to optimize the non-linear
coordinate normalization by trying to find alternative ways to se-
lectively normalize. In fact, if the individual bins were independent,
the log-likelihood ratio in its empirical form learned (estimated)
from the training set would be an optimal “normalization” or, more
properly, statistical test for steganalysis. However, in the presence
of complex non-linear dependencies among individual bins, we
were forced to resort to heuristics.

Even though the selective uniformization is unlikely to be close
to an optimal way of normalizing the bins, it is beneficial as it lowers
the detection error and decreases the computational complexity.

4 EXPERIMENTS
In this section, we experimentally evaluate the proposed feature
normalization on four steganographic algorithms, five payloads,
and two cover sources - BOSSbase 1.01 and BOSSbaseJ85. BOSS-
baseJ85 (J as in JPEG, 85 is the JPEG quality factor) was formed
from BOSSbase 1.01 images by JPEG compressing them with qual-
ity factor 85 and then decompressing to the spatial domain and
representing the resulting image as an 8-bit grayscale. The low-
pass character of JPEG compression makes the images less textured
and much less noisy. The tested steganographic schemes include
MiPOD [27], HILL [20], S-UNIWARD [15], and WOW [11].

Before we present the results of the detection, we provide a
pseudo-code for the experimental routine to clarify the procedure
that was applied to the features before classification.

Algorithm 1 Training a classifier with Ntrn training images by
normalizing with D-dimensional cover/stego features stored as
matrices f (c) ∈ RNtrn×D and f (s) ∈ RNtrn×D . The same random
conditioning with permutation P is done to features from the test
set. The uniformization learned on the training set (the permutation
R and FR(i), i = 1, . . . ,D/2) is then also applied to all features from
the testing set.
1: Set set size for RC
2: Generate random permutation P of indices 1, . . . ,D
3: Apply random conditioning to each row of f :
4: for l = 1, . . . ,D/s do
5: for j = 1 : Ntrn do
6: fc/s (j, P((l − 1)s + 1 : ls) ← fc/s (j,P ((l−1)s+1:ls))∑l s

k=(l−1)s+1 f
c/s (j,k )

7: end for
8: end for
9: Order all D cover features by correlation (Eq. (6)), denote order

R (a permutation of 1, . . . ,D)
10: for i = 1, . . . ,D/2 do
11: Compute FR(i) (Eq. (7)) for Ntrn samples fc (:,R(i))
12: for j = 1 : Ntrn do
13: Apply FR(i) to fc (j,R(i)) and fs (j,R(i))
14: end for
15: end for
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Figure 3: Examples of marginal (cover) distributions of four bins (left) from maxSRMd2 feature vector and the impact of
embedding on the bin by plotting the cover bin population vs. stego bin population (right). The graphics was obtained across
the entire BOSSbase database for HILL at 0.4 bpp. The bin indices are 16054, 24327, 19107, and 23974 in the maxSRMd2 feature
after removing all zero bins.
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Table 4: Detection error PE for four steganographic schemes and five payloads in bpp on BOSSbase 1.01 with the FLD-ensemble
trained with maxSRMd2 features.

Payload (bits per pixel)
S-UNI 0.1 0.2 0.3 0.4 0.5

maxSRMd2 0.3652±0.0008 0.2919±0.0023 0.2374±0.0023 0.1917±0.0042 0.1569±0.0035
Square root 0.3588±0.0025 0.2851±0.0034 0.2276±0.0021 0.1785±0.0033 0.1433±0.0026
exp-Hellinger 0.3608±0.0033 0.2803±0.0027 0.2181±0.0028 0.1720±0.0020 0.1348±0.0025

RC 0.3614±0.0030 0.2818±0.0026 0.2190±0.0028 0.1721±0.0034 0.1334±0.0030
RC+SU 0.3618±0.0020 0.2788±0.0014 0.2156±0.0023 0.1701±0.0035 0.1307±0.0032
HILL

maxSRMd2 0.3742±0.0022 0.3105±0.0033 0.2580±0.0033 0.2196±0.0039 0.1815±0.0033
Square root 0.3669±0.0032 0.3007±0.0025 0.2512±0.0036 0.2116±0.0026 0.1736±0.0030
exp-Hellinger 0.3653±0.0024 0.2974±0.0028 0.2451±0.0024 0.2004±0.0019 0.1649±0.0031

RC 0.3661±0.0030 0.2998±0.0024 0.2453±0.0030 0.2031±0.0044 0.1655±0.0039
RC+SU 0.3655±0.0020 0.2980±0.0014 0.2408±0.0022 0.2008±0.0022 0.1627±0.0020
MiPOD

maxSRMd2 0.3949±0.0031 0.3246±0.0034 0.2709±0.0027 0.2272±0.0037 0.1865±0.0029
Square root 0.3926±0.0047 0.3185±0.0022 0.2635±0.0027 0.2209±0.0036 0.1818±0.0022
exp-Hellinger 0.3911±0.0038 0.3148±0.0026 0.2568±0.0024 0.2104±0.0028 0.1720±0.0031

RC 0.3903±0.0037 0.3115±0.0027 0.2541±0.0021 0.2112±0.0044 0.1733±0.0032
RC+SU 0.3900±0.0029 0.3111±0.0032 0.2516±0.0046 0.2068±0.0030 0.1690±0.0033
WOW

maxSRMd2 0.2984±0.0020 0.2331±0.0018 0.1907±0.0028 0.1559±0.0024 0.1279±0.0030
Square root 0.2854±0.0033 0.2140±0.0031 0.1702±0.0026 0.1375±0.0020 0.1118±0.0033
exp-Hellinger 0.2820±0.0024 0.2094±0.0025 0.1645±0.0031 0.1310±0.0028 0.1068±0.0032

RC 0.2826±0.0040 0.2113±0.0027 0.1633±0.0039 0.1301±0.0035 0.1055±0.0019
RC+SU 0.2801±0.0032 0.2051±0.0019 0.1588±0.0023 0.1257±0.0036 0.1017±0.0024

We note that the permutation P of indices {1, . . . ,D} for random
conditioning is generated and then fixed across all experiments. The
feature orderR by correlation (6) and the c.d.f.s FR(i), i = 1, . . . ,D/2,
are learned from all Ntrn cover features from the training set and
then applied to the testing set. The size of the random subsets
is set to four for WOW and eight for other embedding schemes.
The results of experiments on BOSSbase 1.01 and BOSSbaseJ85 are
reported in Tables 4 and 5, respectively. As above, random condi-
tioning is abbreviated as RC and, when combined with selective
uniformization, we abbreviate as RC+SU. The results are also con-
trasted with what can be achieved with preprocessing the features
using explicit non-linear maps [2]. Note that in most cases random
conditioning achieves the same performance as the transformation
with the exponential Hellinger kernel. As explained in the previous
section, due to the randomness in RC, the results for RC can be
slightly better or worse depending upon which seed is used for
the random permutation. In our experiments, we fixed our seed
(’seed = 1’ in Matlab’s Mersenne twister generator) for all tested
steganographic methods, payloads, and image sources.

While combining random conditioningwith selective uniformiza-
tion further improves the detection performance, the improvement
due to random conditioning is much larger than that of selec-
tive uniformization. The detection accuracy can be enhanced by

up to 2.5% using random conditioning and up to 0.6% additional
improvement can be achieved using selective uniformization. The
effect of selective uniformization is most pronounced for WOW.

Since BOSSbaseJ85 is less noisy than BOSSbase 1.01, it is eas-
ier to steganalyze thus the detection error rates are overall much
lower. While a consistent gain is observed for random conditioning,
selective uniformization generally does not help for this source.

Figure 4 shows a graphical representation of how the proposed
normalization affects the detection performance of maxSRMd2 for
all tested embedding methods at two payloads, 0.2 bpp and 0.4 bpp,
for both image sources. Normalization generally helps more for
larger payloads than for smaller payloads. As already mentioned
above, selective uniformization does not bring any performance
boost in BOSSbaseJ85. Its effect also fades at the lower payloads for
BOSSbase.

Finally, we note that, similar to the previously proposed ex-
plicit non-linear mappings of features, random conditioning and
selective uniformization do not improve performance of features
formed by histograms of residuals, such as the projection spatial
rich model [12] and JPEG-phase-aware features [5, 13, 14, 29] for de-
tection of modern JPEG steganography [9, 10, 15]. This is likely due
to the fact that the bins of such feature vectors are better populated
with far smaller differences between the least and most populated
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Figure 4: PE for four different embedding schemes and two image sources at 0.2 bpp and 0.4 bppwith the FLD-ensemble trained
with maxSRMd2 feature set and its normalized versions.

bins. With a more uniform distribution of the bins across images,
the normalization methods proposed here are naturally less likely
to be effective.

5 CONCLUSION
In this paper, we propose a low-complexity method for feature
normalization of rich feature sets built as co-occurrences to im-
prove the detection performance of simple classifiers. It adds only
negligible computational overhead to feature computation and can
be considered as a cheap pre-processing step before feeding the
feature sets to a classifier.

We introduced two types of normalization: normalization on
random subsets of the feature set called random conditioning and
normalization of each bin across the database, uniformization. Ran-
dom conditioning can be interpreted as switching from a joint
distribution to a conditional distribution. It does not require any
training data and can be applied to feature sets independently of
the cover source, embedding algorithm, and payload. Since the in-
herent randomness associated with this process causes fluctuations
in the final detection rate by approximately ±0.5% in terms of PE,
the authors encourage researchers employing this normalization
method to specify the seed used for generating the random subsets
in their papers.

Experimental results show a consistent performance improve-
ment across all tested steganographic methods, payloads, and datab-
ases. Random conditioning is more effective than selective uni-
formization and is responsible for most of the gain we observed. In
particular, in decompressed JPEGs, selective uniformization was
observed as ineffective.
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