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Abstract
Practical steganalysis inevitably involves the necessity to

deal with a diverse cover source. In the JPEG domain, one
key element of the diversification is the JPEG quality factor, or,
more generally, the JPEG quantization table used for compres-
sion. This paper investigates experimentally the scalability of var-
ious steganalysis detectors w.r.t. JPEG quality. In particular, we
report that CNN detectors as well as older feature-based detec-
tors have the capacity to contain the complexity of multiple JPEG
quality factors within a single model when the quality factors are
properly grouped based on their quantization tables. Detectors
trained on multiple JPEG qualities show no loss of detection ac-
curacy when compared with dedicated detectors trained for a spe-
cific JPEG quality factor. We also demonstrate that CNNs (but not
so much feature-based classifiers) trained on multiple qualities
can generalize to unseen custom quantization tables compared
to detectors trained for specific JPEG qualities. Their ability to
generalize to very different quantization tables, however, remains
a challenging task. A semi-metric comparing quantization tables
is introduced and used to interpret our results.

Introduction
The ALASKA stegnalysis challenge [9] revealed how time

and resource demanding it is to train deep learning steganalysis
detectors for the “real world.” A large part of this complexity
is due to training detectors for each JPEG quality factor as done
by the winners of the challenge [24]. This approach is not only
fastidious but also not scalable to cover a potentially large number
of custom quantization tables. Since deep learning architectures
have shown markedly better performance than classifiers trained
on hand crafted feature sets, in this paper we explore the topic of
building steganalysis detectors that would cover a wider range of
quantization tables to alleviate the computational and complexity
burden associated with having to train a separate detector for each
quantization table.

This paper starts by laying out preliminary definitions and
notation, discussing relevant prior art and describing datasets
used, steganographic schemes employed, and steganalysis tools
evaluated. In Section “Scalability w.r.t. JPEG quality,” we pro-
vide experimental evidence that CNN detectors as well as older
feature-based detectors are scalable w.r.t. JPEG quality; quanti-
tative comparison with dedicated detectors is given. In section
“Robustness w.r.t. custom quantization tables,” we look at the
problem of mismatched JPEG quantization tables and show that
CNN detectors trained on a range of quality factors do general-
ize to slightly different custom tables within the same range when
measured with a semi-metric that we introduce for this purpose.
In contrast, feature-based classifiers trained on the same range of
qualities appear to experience a much larger loss. Generalizing

to markedly different tables remains a challenge for both types of
detectors. The paper is concluded in the last section.

Preliminaries
JPEG stands for the Joint Photographic Experts Group that

published a format standard in 1992. A detailed description of
the format can be found in [21]. In this paper, we only consider
grayscale images represented with the luminance component Y
quantized by rounding the DCT coefficients divided by quantiza-
tion steps to the nearest integer.1

During JPEG compression, quantization of DCT coefficients
is performed on 8×8 blocks using 8×8 quantization tables q. Be-
cause the JPEG standard allows arbitrary quantization tables to be
used, as long as they are stored in the header of the JPEG file, en-
gineers and camera makers are free to create their own. The JPEG
standard recommends a set of quantization matrices parametrized
by a quality factor Q ∈ {1,2, ...,100} :

q(Q) =

{
max{1, round(2(1−Q/100) ·q(50))} Q > 50
min{255 ·1, round((50/Q) ·q(50))} Q≤ 50

,

(1)

where q(50) is the 50% quality standard quantization table :

q(50) =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


.

(2)

A standard quantization table for quality Q is denoted q(Q).
Custom quantization tables (or when no distinction is needed) are
denoted by q or p not necessarily indexed by any quality factor.

Relevant prior art
The problem of mismatched JPEG quantization tables has

been addressed in [18], where the authors used the 548-
dimensional CC-PEV feature vector and the 22,510-dimensional
CC-JRM rich model to steganalyze nsF5 [10] in different JPEG
sources. The authors proposed a semi-metric comparing quanti-
zation tables, and showed that both training on a mixture of JPEG

1As described in [1], some cameras and phones use the operation of
truncation (rounding towards zero) instead of rounding.



qualities as well as using the semi-metric to find the best detec-
tor from a bank of pre-trained detectors can be used in practice to
steganalyze custom quantization tables without training dedicated
detectors. This work does not show how those detectors trained
on a mixture of qualities compare to dedicated detectors.

In [26], the authors use a kernel based feature transformation
to adapt CC-PEV and CC-JRM to mismatched JPEG quantiza-
tion tables. However, it is unclear how to adapt this transforma-
tion to deep learning detectors where the feature representation is
learned.

The mismatch of JPEG quantization tables between training
and testing sets is a special case of what is recognized as the cover
source mismatch problem [20, 11]. In [19], it is shown that, for
a fixed feature set (CC-300), simple classifiers, such as the FLD-
ensemble, are more robust to the cover source mismatch. This
begs a question of how the mismatch affects modern detectors
built using deep learning, which jointly optimize the feature rep-
resentation and the classifier and are thus highly non-linear.

In [5], the authors showed that the SRNet (trained as a multi-
class detector) is able to contain the complexity of a diversified
stego source. The findings of this paper were used by the winners
of the ALASKA challenge [24] to build detectors for a more di-
verse stego source. Even though the ability to generalize to unseen
steganographic methods is still a challenge, these results indicate
that properly trained CNNs do have the capacity to deal with di-
verse sources.

Datasets

Most experiments in this paper were executed on images pre-
pared from BOSSbase 1.01 [2] and BOWS2 [3] each with 10,000
grayscale images resized to 256×256 using the ’imresize’ func-
tion in Matlab with default parameters. The dataset was randomly
divided into three sets with 14,000 (BOSSbase+BOWS2) / 1,000
(BOSSbase) / 5,000 images (BOSSbase) for training, validating
and testing respectively. The splits were made to be compatible
with the datasets used in [4, 6].

In Section “ALASKA,” the ALASKA v1 [9] dataset has been
used with development and processing scripts adapted to produce
only 256×256 crops. The ALASKA dataset was randomly di-
vided into three sets with 42,500 / 3,500 / 3,500 for training, vali-
dating and testing, respectively. The splits were made to be com-
patible with the datasets used in [24].

When training detectors based on hand-crafted feature sets,
the validation set is merged with the training set and a k-fold cross
validation or any other prediction performance estimate can be
used to determine the optimal hyper-parameters.

The steganographic algorithms used in this paper are: J-
UNIWARD [15], UED-JC [12], EBS [22], and nsF5 [10], embed-
ded with 0.4 and 0.3 bpnzac (BOSS+BOWS2) or adaptive pay-
load based on the image processing history, with priors πi = 0.4,
0.3, 0.15, and 0.15, respectively (ALASKA v1). In ALASKA v1,
color steganography is done by spreading the payload between
between the image components (Y , Cr, and Cb) as described in
Section Payload repartition among color channels in [9].

Steganalysis feature sets and CNN architec-
ture
Feature based steganalysis

The steganalysis community has come up with numerous
feature sets built in different domains and for different stego algo-
rithms. In this paper, we work with the popular feature set called
DCTR [14].

The DCTR features are histograms of absolute values of un-
decimated DCT coefficients quantized by

qQ = 8×
(

2− Q
50

)
. (3)

The undecimated DCT coefficients are defined as a set of 64
convolutions indexed by (k, l) with the DCT bases B(k,l)

m,n =
1
4 α(k)α(l)cos

[
(2m+1)kπ

16

]
cos
[
(2n+1)lπ

16

]
, where α(0) = 1√

2
and

α(k) = 1 for k > 0.
In this paper, we extend (3) to custom quantization tables q

as

q = 8× r, (4)

where r = q./q(50) is the elementwise division of both matrices,
and r corresponds to the average of all elements of matrix r.

The FLD-ensemble [17] is then used with its default parame-
ters for constructing the detector. When trained on multiple JPEG
qualities, the training dataset corresponds to copies of the same
set of images compressed with each quality.

CNN steganalysis
Recently, the community turned to deep learning for steg-

nanalysis in an attempt to improve detection accuracy by jointly
optimizing the image representation (features sets) as well as the
classifier. Deep learning architectures, such as [23, 25, 4], have
been shown to outperform hand-crafted feature sets in the JPEG
domain. A detailed survey on deep learning in steganalysis can
be found in [8].

In this paper, we use the SRNet [4], a residual [13] CNN
with 3×3 convolution kernels and ReLU activation functions. The
first 8 layers of SRNet are un-pooled, and the next convolutional
blocks are pooled using a 3× 3 averaging layer with stride 2, as
well as strided 1×1 convolutions in the skip connections. SRNet
applies global average pooling in the last pooled layer to a 512
feature map, which is then Fully Connected (FC) to the classifi-
cation logits. SRNet is trained with the Adamax optimizer [16]
using various mini-batch sizes adapted to the diversity of the
sources, as opposed to the mini-batch size of 32 initially proposed
in [4]. At the time of publishing this work, SRNet achieved the
best overall results for steganalysis in the JPEG domain.

When trained on multiple qualities, each batch is formed by
repeatedly uniformly sampling a JPEG quality factor and select-
ing a cover-stego pair of that JPEG quality.

Scalability w.r.t. JPEG quality
In this section, we investigate whether feature-based and

CNN steganalysis can contain the complexity of multiple JPEG
quality factors within a single model. Note that quality factors
99 and 100 are not studied in this section because a very reliable
JPEG compatibility attack is available for these qualities [7]. We
study the scalability of this attack w.r.t. JPEG quality in .
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Figure 1: Maximum loss of accuracy of multi-quality SRNets w.r.t. dedicated detectors in multiple JPEG quality ranges for J-UNIWARD
(0.4 bpnzac). Black lines correspond to selected ranges, widening them (red lines) leads to an increase of this loss.

Starting with small ranges, we compute the maximum loss of
accuracy of the detector trained on the range w.r.t. dedicated de-
tectors trained on individual qualities. The range is then expanded
until we start observing high losses. Figure 1 shows the results of
these experiments.

The selected ranges of quality factors in Figure 1 show an
interesting general rule of thumb. A range of JPEG quality factors
[Qmin,Qmax] can be grouped in a single detector as long as :

qkl(Qmin)/qkl(Qmax). 2,∀0≤ k, l ≤ 7. (5)

Note that when training SRNet on the range [70, 85] we use
mini-batch size 128 due to the increased diversity introduced by
mixing many JPEG qualities. All other ranges are trained using
mini-batch size 64, no scaling of learning rates or the number of
training iterations has been performed.

BOSS+BOWS2
Figure 2 shows the minimum total error probability PE under

equal priors for J-UNIWARD (0.4 bpnzac) and UED (0.3 bpn-
zac) for detectors dedicated to a specific JPEG quality (crosses)
and detectors trained on each bin (range). Both DCTR+FLD-
ensemble and SRNet seem to scale to multiple quality factors with
no substantial loss in performance in both stego sources.

SRNet, however, has a significantly better detection accuracy
that does not come at the expense of capacity of scaling to mul-
tiple qualities. The “ripples” in performance are explained in [6]
and are due to the rounding and maxing in quantization matri-
ces 1.

ALASKA
In order to move the experiments to a more realistic setting,

we now use the ALASKA v1 dataset to test the proposed JPEG
qualities grouping strategy. We show that the proposed grouping
scales to more diverse cover and stego sources as well. Figure 3
shows the minimum error probability PE and MD52 of YCrCb-
SRNet tile detectors (c. f., Channel separation in [24]), trained as

2Missed detection rate at 5% false alarm.

multi-class and used as binary detectors as executed by the au-
thors. The grouping strategy does not affect the detectors’ per-
formance using either performance measure. For all QF ranges,
we use mini-batch size 128 due to the increased diversity of the
ALASKA dataset.

Note that, unlike the figures in [24], where the authors re-
ported on a single test set comprising the stego mixture, measures
in Figure 3 are computed using the following characterization of
the ROC curve. If we denote the soft-output of a detector as ŷ and
the true label as y, then:

PMD(T ) = P(ŷ≤ T | y > 0)

=
4

∑
i=1

P(ŷ≤ T | y = i)P(y = i | y > 0)

PMD(T ) =
4

∑
i=1

πiP(ŷ≤ T | y = i). (6)

PFA(T ) = P(ŷ≥ T | y = 0)

PFA(T ) = 1−P(ŷ≤ T | y = 0). (7)

This gives a more robust estimation of performance mea-
sures as PMD is computed over stego versions of all available
TST covers instead of only a portion of TST covers for each stego
scheme.

Reverse JPEG compatibility attack
The reverse JPEG compatibility attack is a powerful univer-

sal steganalysis attack for quality factors 99 and 100. In [7], the
authors explain that for JPEG QF99 and QF100, the best detectors
are built by training on the rounding errors of decompressed im-
ages instead of the images themselves. In particular, they replace
the inputs of SRNet with the rounding errors to get the best detec-
tors. Table 1 shows that for these two qualities, SRNet trained on
rounding errors is also scalable w.r.t. the diversification.

Robustness w.r.t. custom quantization tables
In this section, we selected 14 custom quantization tables

from various camera models. The goal is to investigate the ability
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Figure 2: Minimum error probability PE of multi-quality detectors for J-UNIWARD (0.4 bpnzac) (left) and UED (0.3 bpnzac) (right)
detectors compared to dedicated detectors using DCTR+FLD-ensemble (a) and SRNet (b). Dashed grey lines represent the bins of JPEG
qualities for multi-quality detectors.
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Figure 3: Minimum error probability PE and missed detection rate
at 5% false alarm MD5 of multi-quality detectors for ALASKA
v1 compared to dedicated detectors trained during the competi-
tion. Dashed grey lines represent the bins of JPEG qualities for
multi-quality detectors.

QF 100 99
Payload 0.1 0.05 0.1 0.05

Dedicated 0.02 0.54 6.84 20.11
Trained on QF99–100 0.09 0.43 6.96 19.41

Table 1: Minimum error probability PE of multi-quality detectors
for J-UNIWARD compared to dedicated detectors trained using
of the reverse JPEG compatibility attack.

of both detection paradigms to generalize to unseen custom JPEG
quantization tables.

A semi-metric comparing quantization tables
We introduce the following semi-metric to compare two

quantization tables q and p:

d2(q,p) = ∑
k,l

1
(k+ l)2

(
qkl −pkl

qkl +pkl

)2
, (8)

which is a weighted sum of the squares of relative differences be-
tween corresponding quantization coefficients. The weights are
larger for low spatial frequencies (upper left of the table) and
lower for high spatial frequencies (lower right of the table). We
refer to it as the quantization table “dissimilarity” measure. It al-
lows us to link each quantization table to the nearest JPEG qual-
ity: Q̂(q) = argminQ d(q,q(Q)). For a quantization table q, we
denote B(q) as the bin of JPEG qualities (used for training) to
which Q̂(q) belongs. For notational simplicity, we denote the PE
obtained when training on p (one or multiple standard or custom
quantization tables) and testing on q as PE(p,q).

Figure 4 shows how the dissimilarity relates to SRNet’s per-
formance when the quantization tables are mismatched: the min-
imums are synchronized or sometimes relatively flat around the
optimal values. This shows that the Q̂(q) computed using the
proposed dissimilarity measure will usually be the best JPEG
quality to steganalyze with, i. e., Q̂(q) = argminQ d(q,q(Q)) =
argminQ PE(q(Q),q), which is a desirable property of the dissim-
ilarity measure.

Table 3 shows the PE of SRNet and DCT+FLD-ensemble
in different settings. Each row corresponds to a custom quanti-
zation table q. These results are visualized in Figure 5, which
shows that SRNet is markedly more robust to mismatched custom
quantization tables. Figure 5 also shows that training on multiple
JPEG qualities does not seem to affect this robustness on average.
Finally, Figure 5 points at some irregular behavior of the dissim-
ilarity measure proposed. Even though, in most cases, a large
dissimilarity value implies a larger loss in PE, these losses are not
consistently decreasing as a function of the dissimilarity.

Conclusions
This paper investigates the problem of detecting steganogra-

phy in a diverse cover source of JPEG images. We are particularly
interested in how steganalysis detectors scale to multiple JPEG
qualities within a single model training, which we refer to as scal-
ability w.r.t. JPEG quality factors. We show that both feature-
based and CNN based detectors scale to multiple quality factors.
We propose a set of detectors trained on a mixture of quality fac-
tors which, when compared with dedicated detectors trained for
a specific JPEG quality factor, show no substantial loss in perfor-
mance. The mixtures have been developed by gradually adding
quality factors until a loss is observed when compared to dedi-
cated detectors.

A set of 14 custom quantization tables with various dissimi-
larity measures to standard tables has been used to experimentally
demonstrate that the scalability w.r.t. multiple JPEG qualities
does not come at the expense of the detectors’ robustness when
facing mismatched custom quantization tables. CNN based ste-
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Figure 5: Loss in PE for custom quantization tables: PE(q,q)−PE(q(Q̂),q) in solid, PE(q,q)−PE(B(q),q) in dashed for SRNet (green)
and DCTR+FLD-ensemble (blue). Subplots refer to the three groups of quantization tables in Table 3.



ganalysis show a markedly better robustness compared to feature-
based detectors.

This paper’s general outcome is that we do not need to train
a detector for each quality factor. This is very useful in practice,
where one inevitably faces a diverse JPEG cover source, as it was
the case, for example, in the ALASKA challenge.
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Custom Quantization Table Standard Quantization Table Q̂ d(q,q(Q̂)) (×100)

8 6 7 7 9 12 25 36
6 6 7 9 11 18 32 46
5 7 8 11 19 28 39 48
8 10 12 15 28 32 44 49
12 13 20 26 34 41 52 56
20 29 29 44 55 52 61 50
26 30 35 40 52 57 60 52
31 28 28 31 39 46 51 50

8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39

12 18 28 32 41 52 57 46
25 32 39 44 52 61 60 51
36 46 48 49 56 50 52 50

75 11.99

8 8 8 8 8 17 25 25
8 8 8 8 8 25 25 25
8 8 8 8 17 25 25 25
8 8 8 8 25 33 33 25
8 8 17 25 25 42 42 33
8 17 25 25 33 42 50 42
17 25 33 33 42 50 50 42
33 42 42 42 50 42 42 42

8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39

12 18 28 32 41 52 57 46
25 32 39 44 52 61 60 51
36 46 48 49 56 50 52 50

75 14.38

4 3 2 4 6 11 14 16
3 3 3 5 7 16 16 15
3 3 4 6 11 15 19 15
3 4 6 8 14 24 22 17
4 6 10 15 18 30 28 21
6 9 15 17 22 28 31 25
13 17 21 24 28 33 33 27
19 25 26 27 30 27 28 27

4 3 2 4 6 10 12 15
3 3 3 5 6 14 14 13
3 3 4 6 10 14 17 13
3 4 5 7 12 21 19 15
4 5 9 13 16 26 25 18
6 8 13 15 19 25 27 22

12 15 19 21 25 29 29 24
17 22 23 24 27 24 25 24

88 4.57

3 3 3 3 8 5 13 13
3 3 3 3 5 11 13 13
3 3 5 5 5 11 16 16
3 5 5 8 13 16 24 24
3 5 8 13 16 18 13 26
11 8 13 16 18 24 18 24
5 16 21 18 24 26 24 21
16 18 21 21 26 26 24 24

4 3 2 4 6 10 12 15
3 3 3 5 6 14 14 13
3 3 4 6 10 14 17 13
3 4 5 7 12 21 19 15
4 5 9 13 16 26 25 18
6 8 13 15 19 25 27 22

12 15 19 21 25 29 29 24
17 22 23 24 27 24 25 24

88 15.46

3 2 2 3 4 3 8 9
2 2 2 3 4 9 9 8
2 2 3 4 6 9 10 8
2 3 4 5 8 13 12 9
3 4 6 8 10 16 15 11
4 5 8 9 12 15 16 13
7 9 11 13 15 18 17 15
11 13 14 14 16 15 15 14

3 2 2 3 4 6 8 10
2 2 2 3 4 9 10 9
2 2 3 4 6 9 11 9
2 3 4 5 8 14 13 10
3 4 6 9 11 17 16 12
4 6 9 10 13 17 18 15
8 10 12 14 16 19 19 16

12 15 15 16 18 16 16 16

92 3.01

2 2 2 2 6 4 9 9
2 2 2 2 4 8 9 9
2 2 4 4 4 8 13 11
2 4 4 6 9 11 17 17
2 4 6 9 11 13 9 19
8 6 9 11 13 17 13 17
4 11 15 13 17 19 17 15
11 13 15 15 19 19 17 17

3 2 2 3 4 6 8 10
2 2 2 3 4 9 10 9
2 2 3 4 6 9 11 9
2 3 4 5 8 14 13 10
3 4 6 9 11 17 16 12
4 6 9 10 13 17 18 15
8 10 12 14 16 19 19 16

12 15 15 16 18 16 16 16

92 15.60

Table 2: Examples of custom quantization tables used and their closest standard counterparts.



d(q,q(Q̂)) J-UNIWARD (0.4 bpnzac) UED (0.3 bpnzac)
Q̂ (x100) PE(q,q) PE(B(q),q) PE(q(Q̂),q) PE(q,q) PE(B(q),q) PE(q(Q̂),q)

75

11.99 6.42 5.81 6.63 2.87 2.24 3.10
12.55 6.83 5.99 6.93 3.14 2.52 3.63
12.98 4.47 5.93 6.93 3.05 2.49 3.48
14.38 6.91 14.08 9.00 1.35 6.93 4.39

88

4.57 10.58 11.80 11.24 4.66 5.12 5.09
5.90 8.57 8.77 9.07 4.28 4.24 3.62
7.25 8.39 8.90 8.75 3.41 4.31 3.50

14.24 8.83 8.67 9.41 3.99 3.94 4.42
15.46 9.66 9.97 9.83 4.09 4.30 4.05

92

3.01 9.84 10.13 10.00 5.10 5.32 5.33
5.95 9.61 10.90 10.13 4.72 5.50 5.10
9.29 13.10 13.14 14.01 6.63 6.64 7.54

11.17 9.00 12.86 10.94 4.05 6.14 4.55
15.60 12.28 12.11 12.87 5.59 5.38 6.04

(a) SRNet

d(q,q(Q̂)) J-UNIWARD (0.4 bpnzac) UED (0.3 bpnzac)
Q̂ (x100) PE(q,q) PE(B(q),q) PE(q(Q̂),q) PE(q,q) PE(B(q),q) PE(q(Q̂),q)

75

11.99 27.48 34.62 35.41 22.85 26.16 28.13
12.55 28.2 34.36 35.94 24.51 28.14 31.05
12.98 27.47 33.65 35.27 23.41 26.06 28.74
14.38 23.73 41.92 39.84 15.79 39.5 36.78

88

4.57 35.82 36.98 38.61 30.43 31.88 35.36
5.90 33.47 41.58 41.58 27.44 30.06 31.06
7.25 33.18 40.24 41.35 27.15 31.54 32.08

14.24 34.22 42.64 38.29 28.38 31.51 32.89
15.46 34.02 48.74 40.07 27.24 34.66 31.27

92

3.01 35.24 41.89 39.38 30.64 35.52 35.65
5.95 34.98 45.19 42.84 29.83 39.16 39.18
9.29 37.88 40.96 40.76 34.35 35.55 39.05

11.17 33.85 47.86 44.89 28.34 45.11 43.19
15.60 37.07 44.26 41.97 31.92 39.14 36.35

(b) DCTR+FLD-ensemble
Table 3: Minimum total error probability PE of various detectors: (i) dedicated PE(q,q) (ii) trained on the corresponding bin PE(B(q),q)
(iii) trained on the closest JPEG quality PE(q(Q̂),q), using SRNet (a) and DCTR+FLD-ensemble (b). Each row corresponds to a custom
quantization table.


