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ABSTRACT

In an attempt to alleviate the negative impact of unavailable cover model, some steganographic schemes utilize
the knowledge of the so-called “precover” when embedding secret data. The precover is typically a higher-
resolution (unquantized) representation of the cover, such as the raw sensor output before it is converted to
an 8-bit per channel color image. The precover object is only available to the sender but not to the Warden,
which seems to give a fundamental advantage to the sender. In this paper, we provide theoretical insight for
why side-informed embedding schemes for empirical covers might provide high level of security. By adopting a
piece-wise polynomial model corrupted by AWGN for the content, we prove that when the cover is sufficiently
non-stationary, embedding by minimizing distortion w.r.t. the precover is more secure than by preserving a model
estimated from the cover (the so-called model-based steganography). Moreover, the side-informed embedding
enjoys four times lower steganographic Fisher information than LSB matching.

1. MOTIVATION

The problem of steganography is to devise a scheme using which secret messages can be passed to another party
by hiding them in cover objects so that a traffic-monitoring entity called Warden cannot distinguish between
genuine cover objects and objects carrying secret data.2 In steganography by cover modification, the secret
is embedded by making changes to the cover. If the cover-source distribution is known and available to the
communicating parties as well as the Warden, the rate of perfectly secure steganographic communication is
positive22, 23 even when the actions of both the sender and the (possibly active) Warden are power limited.
When the cover source is empirical in nature1 (e.g., digital media files acquired by a sensor), the individual
cover elements, such as pixels or JPEG DCT coefficients follow a highly non-stationary distribution that reflects
the content as well as numerous sources of noise. This enormous complexity makes perfect security essentially
unachievable in practice – the Warden always seems able to find a representation of the covers within which the
actions of the sender can be detected, forcing thus the sender to embed with a vanishing rate as the cover size
increases (the so-called square root law of imperfect steganography5, 7, 14–17).

To alleviate the negative impact of unavailable cover model, some steganographic schemes make use of the
knowledge of the so-called “precover” when embedding secret data. The precover is usually a higher-resolution
(unquantized) representation of the cover, such as the raw image before it is JPEG compressed or raw sensor
output before it is converted to an 8-bit per channel color image, such as TIFF or JPEG. Such side-informed
schemes provide a very high level of security in practice10, 18, 19, 21 at least when the security is measured empiri-
cally using feature-based steganalyzers implemented using machine learning. The failure of current steganalysis
to reliably detect side-informed schemes should, however, be taken with a grain of salt because it could simply
mean that current steganalysis lacks the right models (feature spaces). In short, to the best knowledge of the
author the role of side-information in steganography in empirical covers is largely unclear with a surprising lack
of rigorous arguments.

This paper is an attempt to shed more light on this intriguing topic while focusing on finding as simple
formalization as possible that already provides valuable insight. In Section 4, we formalize the concepts of
precover and cover sources. In particular, we model images as sequences of segments on which the content
follows a linearly parametrizable polynomial model corrupted by additive white Gaussian noise (AWGN) similar
in nature to the model investigated in.3 Here, the content is captured by segments’ boundaries and the model

E-mail: fridrich@binghamton.edu; http://www.ws.binghamton.edu/fridrich



parameters. Following a commonly adopted conservative viewpoint, we grant the Warden with a complete
knowledge of the model (the so-called fully informed Warden) while the sender needs to estimate the model
parameters. This allows us in Section 3 to quantify security in the limit of small payloads by the steganographic
Fisher information in the leading term of the Taylor expansion of KL divergence between the cover and stego
distributions.

In Section 4, we describe three different embedding methods – embedding while preserving an estimated
model, Quantization-Index Modulation (QIM), and the simple Least Significant Bit matching (LSBM), and
analyze them by computing their steganographic Fisher information. In Section 4.4, we prove that for a highly
non-stationary cover (a statement that can be precisely quantified), the QIM has a lower Fisher information than
when the sender embeds by preserving an estimated cover model. The QIM is also always more secure than the
uninformed LSBM whose steganographic Fisher information is four times larger than that of QIM. Conversely,
for less complex covers, the sender is better off to embed while preserving the estimated cover distribution instead
of applying the QIM. The paper is concluded in Section 5.

Calligraphic font is reserved for sets, while capital letters with their corresponding lower-case letters are used
for random variables and their realizations. Matrices will be upright boldface symbols (e.g., Ars is the rsth
element of matrix A) with AT standing for the transpose. For a statement P , the Iverson bracket [P ] = 1
when P is true, and it is zero when P is false. We reserve the symbols R and Z for the set of real numbers
and integers and In for an n × n unity matrix. Gaussian distribution with mean vector µ ∈ R

n and covariance
matrix C ∈ Rn×n will be denoted N(µ, C). Finally, we use h2(β) = −β log2 β − (1−β) log2(1−β) for the binary
entropy function.

Given a countable set of scalar bin centroids, M = {mj}, mj < mj+1, a scalar quantizer is a mapping
QM : R → M, defined as QM(x) = arg minmj∈M |x − mj |. In this paper, we will assume that QM is uniform,
mj = j4, j ∈ Z, where 4 > 0 is the bin width. A uniform quantizer with bin width 4 will be denoted Q4.

2. PRECOVER AND COVER SOURCE

An n-element precover source will be represented using a random variable Z , (Z1, . . . , Zn) divided into S ≥ 1
segments containing pixels with indices from Ni , {ni−1 + 1, . . . , ni}, i = 1, . . . , S, where n0 = 0, ni < ni+1,
nS = n are segments’ boundaries. On each segment, the content is modeled using a polynomial of degree d
corrupted by a AWGN:

Z(i) = Hθ(i) + Ξ(i), (1)

where Z(i) , (Zni−1+1, . . . , Zni
)T, θ(i) , (θ

(i)
0 , . . . , θ

(i)
d )T, Ξ(i) ∼ N(0, σ2I|Ni|), and

H =









1 1 · · · 1
1 2 · · · 2d

· · · · · · · · · · · ·
1 |Ni| · · · |Ni|d









. (2)

This is a non-stationary model with content that is smooth, spatially-correlated on each segment with discon-
tinuities (edges) at segment boundaries. Equivalently, one can say that Zk are mutually independent continuous-
valued random variables Zk ∼ N(µk, σ2) with

µk ,

d
∑

l=0

θ
(i)
l (k − ni−1)l, k ∈ Ni. (3)

The log-likelihood of observing z(i) = (zni−1+1, . . . , zni
) given θ(i) is

log L(z(i)|θ(i)) = −
|Ni|

2
log(2πσ2) −

1

2σ2

∑

k∈Ni

(zk − µk)2. (4)

The varying means represent the content, while Ξ stands for various acquisition noise sources. The assumption
that the variance σ2 is constant across the cover is also reasonable as sensor noise is often modeled in this
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Figure 1. Precover distribution f(x) and the quantization intervals. Note that the p.m.f. of the quantized cover is
pj = lj + rj .

manner.11–13 Having said this, some components of this noise depend on the light intensity (shot noise, photo-
response non-uniformity, and fixed-pattern noise), but these are typically either suppressed in the final image or
small w.r.t. the dominant noise component formed by an approximately spatially uniform readout and electronic
noise, which are Gaussian in nature.

For better readability, from now on the symbols i, j, k, and l will be exclusively reserved to index segments,
quantization bins, individual pixels, and parameters, respectively. Additionally, for any vector v ∈ R

n, v(i) ,

(vni−1+1, . . . , vni
)T.

A cover source X corresponding to a precover source Z is obtained by applying Q4 to each element of Z,
X = (X1, . . . , Xn) = (Q4(Z1), . . . , Q4(Zn)) with Xk ∼ p(k) a probability mass function (p.m.f.) on M:

p
(k)
j , Pr(Xk = mj) =

(mj+1/2)4
ˆ

(mj−1/2)4

fk(x)dx, (5)

where fk(x) = (2πσ2)−1/2 exp
(

−(x − µk)2/(2σ2)
)

is the Gaussian density for N(µk, σ2). From Figure 1, p
(k)
j =

l
(k)
j + r

(k)
j , where

r
(k)
j ,

(j+1/2)4
ˆ

j4

fk(x)dx, l
(k)
j ,

j4
ˆ

(j−1/2)4

fk(x)dx. (6)

3. ASSUMPTIONS

In this section, we lay out the basic assumptions of our study, including the sender’s ignorance, properties of
embedding schemes, and a measure of security.

3.1 Sender’s ignorance

Assuming that the noise properties of images do not change over time and across images, the sender can estimate
the noise variance, σ2, with an arbitrarily high accuracy simply by taking many content-less pictures, such as
blue sky shots.∗

∗Carrying this task in practice may be quite elaborate, but not impossible, as, e.g., the power of the dark current noise
depends on the exposure and ambient temperature.



We also assume that the sender can segment the image and thus has access to ni. The means, µk, on each
segment, however, are scene dependent and must be estimated as they are corrupted by noise. The best the
sender can do is to estimate µk from the corresponding segment of the precover.

Due to the cover-model linearity w.r.t. θ, the maximum-likelihood (ML) estimator of θ is minimum-variance
unbiased (MVU):

θ̂(i) = (HTH)−1HTZ(i) ∼ N

(

θ(i),
1

|Ni|
I−1(θ(i))

)

, (7)

where I(θ(i)) ∈ R
(d+1)×(d+1) is the Fisher information matrix, for which from (3) and (4):

Irs(θ(i)) = −E

[

∂2 log L(y(i)|θ(i))

∂θ
(i)
r ∂θ

(i)
s

]

=
1

σ2

∑

k∈Ni

(k − ni−1)r+s =
1

σ2
(HTH)rs. (8)

With sender’s estimate θ̂(i) = (θ̂
(i)
0 , . . . , θ̂

(i)
d )T, k ∈ Ni,

µ̂k =
d
∑

l=0

θ̂
(i)
l (k − ni−1)l. (9)

3.2 Embedding schemes

A fair comparison of different embedding schemes requires fixing the payload. However, the relationship between
the payload and the number, character, and placement of embedding changes will generally depend on the details
of the embedding, including the coding scheme, assignment of pixel costs, content-adaptivity criteria, etc.†

To obtain a more general result, in this paper we compare three different ways the sender can execute

embedding changes once the pixels that are to be modified have already been determined by the embedding
algorithm for a given payload. To further simplify the analysis, we will assume that for a given number of modified
pixels (or, for a given change rate β), the modified pixels are selected pseudo-randomly and independently of the
cover element values. Thus, given a change rate β, on average |Ni|β randomly selected pixels will be modified in
the ith segment. Apparently, this assumption is not valid for content-adaptive embedding schemes and for JPEG
steganography that avoids modifying DCT coefficients equal to zero. Section 4.4.1 contains more discussion of
this issue.

The above assumptions essentially allow us to compare security by evaluating the Fisher information (11)
w.r.t. the change rate β. It is true that even for the simplest case when the sender minimizes the number of
embedding changes, the same change rate allows embedding different payloads (e.g., LSBM may use ternary
codes while some other schemes, such the QIM below, are limited to binary codes). However, in the asymptotic
limit of β → 0, the payloads are the same for a rather wide class of embedding methods. This is because by
replacing the pixel value, x, with x + W , where W follows some integer-valued distribution, one can embed
hW (β) = h2(β) + βH(W |W 6= 0) bits per pixel. However, because hW (β) = −β(1 + o(β)) log2 β, for small
change rates the payloads are asymptotically identical independently of W .

3.3 Measuring security

It is common in security studies to grant the opponent the absolute knowledge (the worst case scenario). Thus,
we will assume that the Warden knows µk, ni, and σ exactly.‡ The Warden is also assumed to be passive.

†For example, in Ref. [19], the cover elements that are to be modified, xk 6= yk, are determined using BCH codes
on small blocks to minimize the total embedding distortion D(x, y; ρ) =

∑n

k=1
ρk(xk) · [xk 6= yk], where ρk(xk) is the

embedding cost at the kth DCT coefficient determined from the rounding error and the value xk. In contrast, the authors
of Ref. [21] used syndrome-trellis codes6 with embedding costs that consider both the rounding error and the entropy of
the DCT block to which the coefficient belongs.

‡A perhaps more realistic model of Warden’s ignorance introduced in Ref. [16] and one we do not use in this paper is
based on granting the Warden with a limited access to a cover oracle.



Under these assumptions, it makes sense to measure the security using the KL divergence between the
quantized cover and stego distributions as in the framework outlined by Cachin.2 To further simplify the
matters, we resort to asymptotic analysis of small change rates β (payloads) and use the steganographic Fisher
information,4, 5, 15 which appears in the leading term of the Taylor expansion of the KL divergence between the
quantized cover p(k) and stego q(k)(β) distributions at β = 0:

DKL(p(k)||q(k)) =
∑

j

p
(k)
j log

p
(k)
j

q
(k)
j (β)

=
1

2
β2Ik(0) + O(β3), (10)

where,

Ik(0) =
∑

j

1

p
(k)
j

(

dq
(k)
j (β)

dβ

∣

∣

∣

∣

β=0

)2

(11)

is the steganographic Fisher information for the kth pixel.

4. ANALYZING THREE EMBEDDING STRATEGIES

We investigate three different strategies for modifying the pixels – two utilize the side-information at the sender
but each in a different manner, while the third is the LSBM included as an example of the most common
and simplest embedding paradigm studied in steganography today. The first side-informed embedding follows
the paradigm of model-based steganography originally introduced in Ref. [20]. Here, the sender estimates the
precover model from one instance of the cover (segment) and then modifies the pixels to preserve (force) the
quantized model. The second strategy is a simple QIM where the sender quantizes the precover to two interleaved
sublattices to minimize the embedding distortion. The ±1 changes in LSBM are made by flipping an unbiased
coin independently of the precover value or the cover model.

4.1 Embedding while preserving estimated model

The sender embeds the secret while preserving the estimated cover distribution, which is the Gaussian N(µ̂k, σ2)
quantized using Q4. Irrespectively of exactly how the embedding is executed, the pixels from the ith segment
of the stego object, k ∈ Ni, will be realizations of the following random variable:

Yk = Q4(Z ′
k), (12)

where
Z ′

k ∼ (1 − β)N(µk, σ2) + βN(µ̂k, σ2) (13)

is the stego-image mixture (this follows from the random changes assumption). The cover image pixels, on the
other hand, Xk = Q4(Zk).

By (10) and (11), the KL divergence between X(i) = (Xni−1+1, . . . , Xni
) and Y (i) = (Yni−1+1, . . . , Yni

) is

DKL(X(i)||Y (i)) =
∑

k∈Ni

DKL(Xk||Yk) ≈
1

2
β2
∑

k∈Ni

Ik(0)
(a)
=

1

2
β2
∑

k∈Ni

(µk − µ̂k)2

σ2
+ O(4). (14)

(Equality (a) is established in Appendix A.1.) Thus, we have the following leading term for the expected value
of the KL divergence on the ith segment:

E[DKL(X(i)||Y (i))] ≈
β2

2σ2

∑

k∈Ni

E[(µk − µ̂k)2] =
β2

2σ2

∑

k∈Ni

E





(

d
∑

l=0

(θ
(i)
l − θ̂

(i)
l )(k − ni−1)l

)2


 (15)

=
β2

2σ2

d
∑

s=0

d
∑

r=0

1

|Ni|
I−1

rs (θ(i))Irs(θ(i))σ2 =
β2

2
, (16)



which gives

E[DKL(X ||Y )] =

S
∑

i=1

E[DKL(X(i)||Y (i))] ≈
Sβ2

2
. (17)

Note that this result does not depend on 4, ni, µ, or σ. Intuitively, it makes sense – the more pixels are
in the segment, the more accurately the sender can estimate the mean. At the same time, the KL divergence
increases linearly with the signal length. These two effects cancel each other.

4.2 Quantization-index modulation

For the purpose of embedding using QIM (previously used in steganography in perturbed quantization9), the
quantized cover values are assigned parities on two interleaved sublattices covering M = (mj), for example as
the LSBs of j. The sender embeds the message by changing the parity of some pixels by quantizing the precover
value either “up” or “down,” depending on the desired parity of the stego pixel yk, to minimize the distortion
between the stego image and the precover.

Under the random modifications assumption, Yk ∼ q(k) with (follow Figure 1):

q
(k)
j = (1 − β)p

(k)
j + β(l

(k)
j+1 + r

(k)
j−1). (18)

Substituting the Fisher information (11) for (18) computed in Appendix A.2 into (10)

DKL(p(k)||q(k)) =
β244

16σ4
, (19)

gives us the final result:

DKL(p||q) =

S
∑

i=1

∑

k∈Ni

DKL(p(k)||q(k)) =
nβ244

16σ4
. (20)

4.3 Embedding using LSB matching

LSBM is a popular embedding scheme in which each cover element (e.g., pixel or DCT coefficient) is changed
by {−1, 0, 1} to embed a message. The random modifications assumption implies that the impact of LSBM on
the first-order statistic of quantized signals is

q
(k)
j = (1 − β)p

(k)
j +

1

2
β(p

(k)
j+1 + p

(k)
j−1). (21)

By evaluating the Fisher information (see Appendix A.2), we obtain:

DKL(p||q) =
nβ244

4σ4
. (22)

4.4 Discussion

First, the comparison of (20) with (22) informs us that QIM has a four-times smaller Fisher information than
LSB matching, indicating that it provides better security (one can increase the change rate twice at the same
statistical detectability). This is to be expected as QIM distorts the first-order statistic of the cover less than
LSBM.

By inspecting (16) and (20), we conclude that QIM is more secure than model preservation when

nβ244

16σ4
<

Sβ2

2
, (23)



which is equivalent to

n <
8σ4

44
, (24)

where n = n/S is the average number of pixels in a segment. This condition is essentially an upper bound on the
average segment size or a lower bound on the content complexity (the number of segments). When the image
content is sufficiently complex, the sender is unable to estimate the content accurately enough and is better off
using the heuristic QIM instead of approximate model preservation.

The bound (24) increases with finer quantization and stronger corrupting noise. This makes sense as stronger
noise prevents cover estimation that is accurate enough. Also, while finer quantization decreases the Fisher
information for the QIM, it plays no role in model-based steganography.

The QIM is generally an attractive choice for embedding in empirical covers because it is “model-free.”
Preserving an approximate model is potentially dangerous unless the model is a truthful representation of reality.
Forcing the distribution of stego images to follow an approximate model further increases the KL divergence
and may also create an opportunity for the Warden to detect the embedding. A good example is the attack
on model-based steganography described in.24 Here, a symmetric model was used for the histogram of DCT
coefficients. The lack of deviations from perfect symmetry inherently present in histograms of natural images
enabled mounting a successful attack.

4.4.1 Extension to content-adaptive embedding

The analysis of this paper can be extended with some effort to the case when the embedding changes are not
uniform across the image. We now state a generalization of the result obtained above for content-adaptive binary
embedding schemes that minimize an additive distortion D(x, y) =

∑

k ρk[xk 6= yk] with pixel costs ρk > 0.

As each segment shares one model, it is reasonable to assume that the pixel costs are the same on each
segment, ρk = %i for all k ∈ Ni, i = 1, . . . , S. To embed relative payload 0 < α ≤ 1, the embedding changes each

pixel k ∈ Ni with probability βi = e−λρi

1+e−λρi
, where λ ≥ 0 satisfies the payload constraint (see, e.g., Chapter 7 in

Ref. [8]):

α(λ) =
1

n

S
∑

i=1

|Ni|h2

(

e−λρi

1 + e−λρi

)

. (25)

The Fisher information now needs to be expressed w.r.t. α as the concept of the change rate is no longer
meaningful. Without providing the full details, it can be shown that in the asymptotic limit of α → 0 (or
λ → ∞), the FI computed w.r.t. α is determined only by the pixels with the smallest cost, %i0

, i0 = arg mini %i,
giving the following result for the KL divergence between the cover object X and the steganographic mixture Y :

DKL(X ||Y ) =
1

2

( α

ln α

)2 n2

|Ni0
|2

∑

k∈Ni0

Jk(0) + O
(

(α/ ln α)3
)

, Jk(0) =
∑

j

1

p
(k)
j

(

dq
(k)
j (βi0

)

dβi0

∣

∣

∣

∣

βi0
=0

)2

. (26)

This is natural as for infinitesimaly small α, the only embedding changes will occur in the most textured
segment with the smallest %. Note that the scaling is quadratic in terms of α/ ln α rather than α2. The FI can
be computed in the same manner as above and gives the following equivalent of Equation (24):

|Ni0
| <

8σ4

44
, (27)

which is in agreement with the result obtained for the uniform embedding – instead of a condition on the average

size of a segment, we get a condition on the size of the most textured segment, which is the only segment playing
a role in the asymptotics.



5. CONCLUSION

Practitioners of steganography have observed long time ago that empirical steganographic security can be
markedly improved when the sender makes use of a higher-resolution representation of covers (the so-called
precover) when embedding a secret message. Fundamentally, the side information compensates for the lack of
knowledge of the cover model. In this paper, we show that if the cover is sufficiently non-stationary the sender
is better off embedding by minimizing the distortion to the precover instead of estimating the non-stationary
model and preserving it.

This work should be considered as an initial step in the quest to better understand the role the side information
plays in practice. The results were derived under the assumption of i.i.d. Gaussian covers, which is not valid
for the JPEG domain. The asymptotic analysis of infinitesimal payloads also makes analysis of content-adaptive
embedding singular as only the most textured segment plays any role.

More importantly, however, one should challenge the assumptions made about sender’s and Warden’s igno-
rance. Granting full knowledge of the cover to the Warden may seem overly pessimistic given that it is the
sender who has side information, not the Warden. Moreover, in practice the Warden, just like the sender, must
estimate her model. In fact, it is an open question how to use the side information in the best possible manner
in these cases and it is not even clear whether the side information in fact gives any advantage to the sender.
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APPENDIX A. TECHNICAL ARGUMENTS

Here, we provide outlines of proofs of some of the statements used in the paper.

A.1 Fisher information for MBS

Let f(x) be a probability density and 4 > 0 a quantization step. For µ ∈ R, we define the quantized p.m.f.

pj(µ) =

(j+1/2)4
ˆ

(j−1/2)4

f(x − µ)dx , F4(j4 − µ). (28)

Note that F4(j4) = 4f(uj) for some uj ∈ Ij , Ij , (j4 − 4
2 , j4 + 4

2 ) by the first mean-value theorem of
integration. For the mixture q(β) = (1 − β)p(0) + βp(µ), β > 0, the FI (11) becomes:

I(0) =
∑

j

1

qj(0)

(

dqj(β)

dβ

∣

∣

∣

∣

β=0

)2

=
∑

j

(

pj(µ) − pj(0)
)2

pj(0)

=
∑

j

(

F4(j4 − µ) − F4(j4)
)2

F4(j4)
= µ2

∑

j

(

F ′
4(j4)

)2

F4(j4)
+ O(µ3)

≈ µ2
∑

j

(

f(j4 + 4/2) − f(j4 − 4/2)
)2

4f(uj)
= µ2

∑

j

(

f ′(φj)
)2

f(uj)
4

for φj ∈ Ij determined again by the first mean-value theorem for integration. The sum
∑

j 4
(

f ′(φj)
)2

/f(uj)

can be approximated by
´

R

(

f ′(x)
)2

/f(x) (up to a term proportional to 4). For a Gaussian density f , this
integral is equal to σ−2, which gives us Ik(0) ≈ µ2/σ2.



This is only an outline of the proof as the approximation of the sum by an integral needs a more precise
argument since the sum is not technically a Riemann sum as the arguments of the functions in the numerator
and denominator are different.

A.2 Fisher information for QIM and LSBM

We first introduce

F −
4(x) ,

x
ˆ

x−4/2

f(t)dt, F +
4(x) ,

x+4/2
ˆ

x

f(t)dt,

and write using Taylor expansion of F − and F + at x = j4:

lj+1 = F −
4(j4 + 4) =

∞
∑

m=0

F
−(m)
4 (j4)

m!
4m, rj−1 = F +

4(j4 − 4) =

∞
∑

m=0

F
−(m)
4 (j4)

m!
(−1)m4m,

pj = F −
4(j4) + F +

4(j4).

From (18), after straightforward algebra:

∂qj

∂β

∣

∣

∣

∣

β=0

= −pj + lj+1 + rj−1 =
43

4
f ′′(j4) + O(44).

Finally, the Fisher information

I(0) =
∑

j

1

pj

(

∂qj

∂β

∣

∣

∣

∣

β=0

)2

≈
∑

j

1

4f(uj)
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(

f ′′(j4)
)2

≈
44

8σ4

by approximating the above “Riemann sum” with the integral
´

R

(

f ′′(x)
)2

/f(x)dx = 2/σ4.

The same analysis can be carried out for LSBM. By substituting

pj±1 = F4(j4 ± 4) =

∞
∑

m=0

F
−(m)
4 (j4)

m!
(±4)m,

into the expression for qj (21) and simplifying:

∂qj

∂β

∣

∣

∣

∣

β=0

= −pj + (pj+1 + pj−1)/2 =
43

2
f ′′(j4) + O(44),

which finally leads to

I(0) =
∑

j

1

pj

(

∂qj

∂β

∣

∣

∣

∣

β=0

)2

=
∑

j

1

4f(uj)

46

4

(

f ′′(j4)
)2

≈
44

2σ4
.
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