
1

Effect of Cover Quantization on Steganographic

Fisher Information
Jessica Fridrich, Member, IEEE

Abstract—The square-root law of imperfect
steganography ties the embedding change rate
and the cover length with statistical detectability. In
this article, we extend the law to consider the effects
of cover quantization. Assuming the individual cover
elements are quantized i.i.d. samples drawn from an
underlying continuous-valued ’precover’ distribution,
the steganographic Fisher information scales as 4

s,
where 4 is the quantization step and s is determined
jointly by the smoothness of the precover distribution
and the properties of the embedding function. This
extension is relevant for understanding the effects of
the pixel color depth and the JPEG quality factor on
the length of secure payload.

I. Introduction

Perfectly secure stegosystems are statistically unde-
tectable in the sense that they preserve the statistical
distribution of covers. Granting a complete knowledge
of the cover distribution to both the embedder and the
Warden, perfectly secure stegosystems exist and they are
capable of communicating a positive payload per cover
sample (channel use) – their steganographic capacity is
positive. Another way of stating this is that the secure
payload is linearly proportional to the cover length. This
result has been established under fairly general conditions
for the case when the actions of the embedder are power-
restricted (distortion–limited embedder) and the Warden
is active and her actions power-restricted as well [25], [26].

When using empirical objects for steganography, such as
digital images or audio, the cover model is never known
completely and perfect security becomes unachievable [2].
In fact, so far all stegosystems designed for digital media
have been shown detectable because the Warden seems
always able to find such a representation of the media
(feature space) in which the distribution of covers is not
preserved. The square-root law (SRL) of steganography
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is an asymptotic scaling result concerning the length of
secure payload for stegosystems that are imperfect. It
allows quantifying how long a message can be embedded in
a cover of a certain size for a given non-zero level of statis-
tical detectability. The critical quantity here is the product
of the square root of the cover size, N , and the change rate
β with which the steganographer modifies cover samples.
If β

√
N → 0 with N → ∞, the law guarantees asymptotic

perfect security, while when β
√

N → ∞, the Warden
wins as asymptotically perfect detection becomes possible.
The SRL becomes readily apparent when expanding the
KL divergence between cover and stego distributions at
β = 0 using Taylor series – the leading quadratic term
is 1

2 Nβ2I(0), where I(0) is the steganographic Fisher
information.1

The effects of the law have been suspected2 and ob-
served by practitioners long before it was discovered [12],
formulated, formally established [7], and verified [17] –
the same relative payload was observed to be more easily
detectable in larger covers than in small covers. This
made the relative payload unsuitable for quantifying the
secure payload and lead to an alternative – the so-called
root rate tightly connected to the steganographic Fisher
information [6], [15].

The law manifests when the Warden is computationally
unbounded and granted the full knowledge of the cover
source and the embedding method. For an ignorant War-
den who needs to learn the cover source, the law may not
manifest in the above form depending on the knowledge
available to the Warden [16].3 In this paper, we con-
strain ourselves to a fully-informed and computationally
unbounded Warden.

For digital media, the individual cover elements are
typically obtained by quantizing an analog precover sig-
nal with scalar quantizer with step 4,4 such as photon
counts registered at pixel wells on a sensor or non-rounded
transform coefficients when compressing an image to the
JPEG format. The quantization step 4 directly affects
the statistical properties of covers and thus the asymptotic
scaling laws through changes in I(0).5 Investigation of this

1The first mentioning of Fisher information in steganography is
due to Ker [14].

2The fact that the secure payload length may be sublinear in cover
size appeared for the first time in [1].

3Recently, game theory was proposed as an alternative and ap-
pealing possibility to formally capture the sender’s and Warden’s
ignorance [3].

4The concept of precover is due to Ker [13].
5The importance of quantizers in the theoretical analysis of

steganographic security was studied in [28].
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effect is the main topic of this paper. The main result
is a theoretical understanding of the mechanism through
which the quantized precover distribution and the embed-
ding operation affect the steganographic Fisher informa-
tion. The original SRL is extended as constant statistical
detectability is now obtained when 1

2 Nβ24s = const.,
where s is the scaling exponent of the Fisher information
determined jointly by the precover distribution and the
embedding operation. Since the Fisher information is a
multiplicative factor in the error exponent, quantization
strongly affects statistical detectability.

Unlike the SRL, which is quite robust and observable
in practice even when the source is empirical and the
Warden uses feature-based classifiers instead or optimal
detectors, the scaling due to quantization is fragile as
it sensitively depends on the precover distribution. This
prevents applying the results for quantifying the scaling
in empirical cover sources with empirical measures of
security (e.g., relating the classifier error to color bit
depth or JPEG quality factor) although some qualitative
conclusions appear to be in agreement with experiments
and prior art.

The paper starts in the next section with a formalization
of basic concepts, such as the precover and cover source,
embedding operation, steganographic Fisher information,
and two types of continuous distributions used to model
elements of digital media files. In Section III, we establish
the main result, which is the scaling of the Fisher infor-
mation w.r.t. the quantization step for smooth precover
distributions as well as distributions with a singularity.
For better readability, the proofs of all theorems are in
appendices. The theory is applied to four common embed-
ding operations and two precover models in Section IV.
Extension of this work to the case when the embedding is
realized in the pixel domain but the model is built from
pixel residuals is outlined in Section V. The theoretical
results are interpreted in Section VI, where they are
also related to practical steganographic schemes in digital
media. In particular, the derived scaling appears to be in
qualitative agreement with experiments reported in prior
art. Section VII contains an experiment with a database
of grayscale images sampled at varying bit depths that
demonstrates the strong effect of cover quantization on
security. It also discusses the limitations of observing the
theoretical scaling in practice when using sampled data.
Finally, Section VIII summarizes the contribution.

A condensed version of this paper appeared at the 2012
IEEE Workshop on Information Forensic and Security.

II. Preliminaries

Throughout the paper, aij denotes a (potentially infi-
nite) two-dimensional array with elements aij , i, j ∈ Z.
Calligraphic font is reserved for sets, while capital letters
with their corresponding lower-case letters are used for
random variables and their realizations. The symbol dxe
stands for rounding up and Γ(x) for the gamma function.
For real functions g, h, we define g(x) = Θ(h(x)) at
x = a if G1h(x) ≤ g(x) ≤ G2h(x) for G1, G2 > 0 on

some neighborhood of a ∈ {R, −∞, ∞}. We write g ≈ h
whenever limx→a g(x)/h(x) exists and is positive. We also
use the standard Landau big-O and little-o notation. The
lth derivative of a real function F will be denoted F (l).

Given a countable set of scalar bin centroids, M = (mj),
mj < mj+1, a scalar quantizer is a mapping QM : R →
M, defined as QM(x) = arg minmj∈M |x − mj |. In this
paper, we will assume that QM is uniform, mj = j4,
j ∈ Z, where 4 > 0 is the bin width. A uniform quantizer
with bin width 4 will be denoted Q4.

A. Precover and cover source

An N -element precover source will be represented us-
ing a random variable Z , (Z1, . . . , ZN) where Zk are
mutually independent and identically distributed (i.i.d.)
continuous-valued random variables Zk ∼ f(x), where
f(x) is a probability density function. For convenience,
we will assume that f is even and that its domain can be
continuously extended to R.

A cover source X corresponding to a precover source Z
is obtained by applying Q4 to each element of Z, X =
(X1, . . . , XN) = (Q4(Z1), . . . , Q4(ZN )) with Xk ∼ p, a
probability mass function on M:

pj(f, 4) = Pr(Xk = mj) =

mj+4/2
ˆ

mj−4/2

f(x)dx. (1)

B. Embedding operation

Since the specific details of the embedding (and ex-
traction) algorithms are not important for our study, we
only model the probabilistic impact of embedding. In
particular, we narrow our study to the so-called mutu-
ally independent embedding6 that modifies every cover
element Xk independently to a corresponding element of
the stego object Yk with probability

Pr(Yk = mj |Xk = mi) , bij(β) =

{

1 + βcii if i = j

βcij otherwise,
(2)

for some constants cij ≥ 0 for i 6= j. Since
∑

j bij = 1,
we must have cii = −∑j 6=i cij for each i. The scalar
parameter β ≥ 0 will typically be the change rate. Also,
(2) implies that cij < C for some C > 0 and all i, j.

Note that the domain and range of the embedding
operation depend on 4. Since we will let 4 → 0, the
number of bins (indices i and j) will be unbounded. In this
paper, we restrict ourselves to embedding with changes
from a limited range: cij = 0 whenever |i − j| > L for
some fixed positive integer L. This restriction is quite
reasonable since most practical steganographic schemes
modify cover elements to a few neighboring values, such
as by ±1. Having said this, it is possible (and perhaps also
meaningful) to study embedding operations whose range
L increases with 4 → 0.

6The concept of mutually independent embedding was introduced
and studied for the first time in [7].
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C. Stego distribution and Fisher information

Given the embedding operation above, the stego object
is an i.i.d. sequence of random variables Y , (Y1, . . . , YN )
with Yk ∼ q(f, 4, β). For better readability, we will drop
the arguments 4 and f from p and q.

Assumption (2) leads to the following relationship be-
tween pj and qj(β):

qj(β) = Pr(Yk = mj) =
∑

i

bijpi = pj + β
∑

i

cijpi. (3)

In this article, we study four specific embedding opera-
tions chosen as representative examples of today’s popular
stego algorithms. They all hide message bits by changing
the Least Significant Bit (LSB) of cover elements. In LSB
replacement (LSBR), the cover LSBs are replaced with
message bits, while in LSB matching (LSBM), the cover
LSB is matched with the message bit by randomly adding
or subtracting 1 from the cover value. In F5 [27], the
absolute value of the cover element is decreased if the
LSB needs to be changed; F5 does not embed in cover
elements that are equal to zero. Finally, symmetrized Jsteg
(symJsteg) is a symmetrized version [18] of Jsteg [23] in
which cover values are exchanged within the following
pairs of values: . . . , {−4, −3}, {−2, −1}, {1, 2}, {3, 4, . . .}.
Again, zeros are not used for embedding.

Assuming that the above embedding operations are
executed at change rate β at randomly selected cover
elements, the expected values of the stego distributions
are for LSBM, LSBR, F5, and symJsteg, respectively:

qj(β) = (1 − β)pj +
1

2
β(pj+1 + pj−1) for all j, (4)

qj(β) = (1 − β)pj + βpj+(−1)j for all j, (5)

qj(β) =

{

(1 − β)pj + βpj+sign(j) for j 6= 0,

p0 + β(p1 + p−1) for j = 0,
(6)

qj(β) =







(1 − β)pj + βpj+sign(j) for j odd,

(1 − β)pj + βpj−sign(j) for j even,

pj for j = 0.

(7)

In accordance with the information-theoretic definition
of steganographic security by Cachin [4], we measure
security using the Kullback–Leibler (KL) divergence be-
tween the cover and stego distributions, DKL(p||q(β)). By
expanding it using Taylor series at β = 0, the following
standard result (see, e.g., [8]) is obtained:

DKL(p||q) ,
∑

j

pj log
pj

qj(β)
=

1

2
β2I4(0) + O(β3), (8)

where, using (3),

I4(0) ,
∑

j

1

pj

(

dqj(β)

dβ

∣
∣
∣
∣
β=0

)2

=
∑

j

1

pj

(
∑

i

cijpi

)2

,

(9)
is the steganographic Fisher information (FI), which en-
capsulates the effect of embedding. Larger values of I4(0)
lead to larger DKL and thus lower the steganographic
security. The KL divergence is the scaling exponent that

controls the probability of missed detection, PMD, for a
fixed false alarm rate,7 PFA, in Neyman–Pearson hypoth-
esis testing, PMD ≈ e−NDKL(p||q) for large N (Chernoff–
Stein Lemma, Sec. 12.8 in [5]). Therefore, even a small
change in the FI has a pronounced effect on the detection
error. For example, twice as large FI changes PMD to P 2

MD.
Note that, formally, I4(0) depends on f and 4

through (1). It is precisely this relationship that is of
interest in this paper.

D. Common distributions

Two continuous densities commonly used for modeling
the distribution of digital media elements, such as pixel
differences or transform coefficients, are the generalized
Gaussian distribution (GGD) and the generalized Cauchy
distribution (GCD). Both depend on three parameters: the
mean µ, the shape parameter α > 0 (τ > 1), and the
parameter controlling the width of the distribution, b > 0:

fGG(x) =
α

2bΓ(1/α)
exp

(

−|x − µ|α
b

)

, (10)

fGC(x) =
τ − 1

2b

(

1 +
|x − µ|

b

)−τ

. (11)

Besides the case when α ≥ 2, α ∈ Z, the GGD has a
singularity at x = µ as its derivatives become unbounded
there, starting with the dαeth derivative. In contrast, all
one-sided derivatives of the GCD are bounded but do not
exist at x = µ.

III. Scaling due to quantization

In this section, we analyze the effects of cover quanti-
zation on the Fisher information. First, a general result is
derived for smooth precover densities and then extended
to densities with singularities to cover the GGD as well as
the GCD.

For 4 > 0 and x ∈ R, we define

F4(x) ,

x+4/2
ˆ

x−4/2

f(t)dt. (12)

Thus, pi = F4(i4) and (9) becomes:

I4(0) =
∑

j

(
∑

i cijF4(i4))
2

F4(j4)
. (13)

The sum in the numerator is a discrete filter with (a
generally non stationary) kernel c.j applied to F4 sampled
at j4. It is shown in this section that the scaling exponent
s in I4(0) ∝ 4s depends on the leading order, k, of

∑

i

cijF4(i4) ∝ 4k, (14)

which is jointly determined by f and the embedding
operation.

To obtain the scaling of the FI (13) w.r.t. 4, we will
typically divide the set of all real numbers into a union

7False alarm corresponds to identifying a cover image as stego.
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of finitely many disjoint intervals, [m1, m2], m1, m2 ∈ R∪
{∞, −∞}, and establish the scaling separately for each
partial sum defined as

sm1,m2(4) ,
∑

m1≤j4≤m2

(
∑

i cijF4(i4))
2

F4(j4)
. (15)

A. f differentiable

From the first mean value theorem for integration:

F4(j4) = 4f(uj) (16)

for some uj ∈ (j4−4/2, j4+4/2). For i 6= j, |i−j| ≤ L,
we expand F4(i4) = F4(j4 + (i − j)4) at j4 using
Taylor series with Lagrange remainder. Assuming F4(x)
is k ≥ 0 times continuously differentiable

F4(i4) =
k−1∑

l=0

F
(l)
4 (j4)

l!
4l(i − j)l

+
F

(k)
4 (ξij)

k!
4k(i − j)k, (17)

where ξij ∈ (j4, i4) or (i4, j4), depending on whether
i > j or j > i. Therefore,

∑

i

cijF4(i4) =
k−1∑

l=0

F
(l)
4 (j4)

l!
4lwjl

+
4k

k!

∑

i

cij(i − j)kF
(k)
4 (ξij) (18)

=

k−1∑

l=0

f (l)(φjl)

l!
4l+1wjl

+
4k+1

k!

∑

i

cij(i − j)kf (k)(φ̃ij), (19)

where

φjl ∈ (j4 − 4/2, j4 + 4/2), (20)

φ̃ij ∈ (ξij − 4/2, ξij + 4/2) ⊂ Ij(L, 4), (21)

Ij(L, 4) , [(j − L − 1/2)4, (j + L + 1/2)4] , (22)

and the weights

wjl =
∑

i

cij(i − j)l, (23)

depend only on the embedding operation but not on the
density f . Equation (19) follows from F

(l)
4 (x) = f (l−1)(x+

4/2) − f (l−1)(x − 4/2) = 4f (l)(φ) for 1 ≤ l ≤ k + 1 and
some φ ∈ (x − 4/2, x + 4/2).

The scaling of the FI w.r.t. 4 depends on the scal-
ing of the sum (14) for each bin j, which from (19)
depends on the first non-zero element in the sequence
wj0, wj1, wj2, . . .. This justifies the following definition.

Definition 1. The leading order k? of the sum (14) at
x = j4 is defined as the largest k for which wjl = 0 for
all l < k. If wjl = 0 for all l ≥ 0, we set k? = ∞ (as is the
case of symJsteg for j = 0). Note that (23) implies that in

TABLE I
Leading order k? for four embedding operations. For F5,

the numbers in brackets are at j = 0.

Embedding k? wk?

LSBM 2 1
LSBR 1 1

F5 1 (0) 1 (2)
symJsteg 1 1

cj−m,j = cj+m,j 2 2
∑L

m=1
m2cj+m,j

general k? ∈ {0, 1, 2, ∞}. Furthermore, if |wjk? | = wk? for
all j, such that j4 ∈ I ⊂ R, we say that the embedding
operation is bin-invariant on I.

To obtain more insight on how the leading order de-
pends on the embedding operation, we now run through
the four embedding operations described in Section II-C.
For LSBR and symJsteg, wj0 =

∑

i cij = 0 for all j. The
condition wj0 = 0 for all j is equivalent with bij being
doubly stochastic (the sum of rows and columns is equal
to 1). For LSBM, wj0 6= 0 only at the boundary of the
dynamic range of cover elements, which cannot happen in
our formulation with an unbounded dynamic range. Thus,
the only embedding operation with non-zero wj0 is F5 for
j = 0 where w00 = 2 because c−1,0 = c1,0 = 1, and c00 = 0
(see (6)).

Example 1. Hypothetically, one could construct embed-
ding operations with wj0 6= 0 for all j, such as a scheme
that does not embed in bins 3j and always changes 3j − 1
and 3j + 1 into 3j.

Continuing our discussion of the weights and the leading
order, note that wj1 = 0 for embedding operations that are
“symmetrical” in the sense that they modify each value
of the cover by ±(i − j) with equal probabilities, e.g., for
LSBM. For LSBR, symJsteg, and F5 (at j 6= 0), |wj1| = 1.
Finally, in general wj2 > 0 for all embedding operations
except when the embedding does not embed in bin j (cij =
0 whenever i 6= j). In particular, for all four embedding
operations wj2 = 1 for all j with the exception of F5,
where w02 = 2, and symJsteg where w0k = 0 for all k ≥ 0.

Table I summarizes the leading order for all embedding
operations considered so far. The leading order for F5 is
1 for j 6= 0 and it is equal to 0 for j = 0. LSBR and
LSBM are bin-invariant on R while F5 and symJsteg are
bin-invariant on R − {0} as they both apply a different
embedding rule at j = 0.

We are now ready to state the first scaling theorem for
precover densities f(x) satisfying the following regularity
conditions for some sufficiently large M > 0:

R1. |f (k)(x)| is monotone decreasing for 0 ≤ k ≤ k? and
x > M .

R2. There exists δ0 > 0 such that
´∞

M
(f(k?)(x))2

f(x+δ) dx is

convergent in Riemann sense for all δ ∈ (0, δ0].

Assumption R2 essentially guarantees that f(x) does
not fall to zero too quickly. An example of a density that
satisfies R2 for δ = 0 but not for any δ > 0 is the
double exponential, exp(− exp(x2)). Assumptions R1–R2
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are easily established for both the GGD and GCD for all
k ≥ 0, k ∈ Z.

Theorem 1. Let the embedding operation be bin-
invariant with leading order k? everywhere. Assuming that
f(x) is k?+1 times continuously differentiable and satisfies
the regularity conditions R1–R2, the Fisher information
scales as

lim
4→0+

I4(0)

42k? =
w2

k?

k?!2

∞̂

−∞

(f (k?)(x))2

f(x)
dx. (24)

The theorem is proved in Appendix A by writing I4(0)
as a sum of three partial sums, I4(0) = s−∞,−M +s−M,M+
sM,∞, and analyzing each sum separately. After substitut-
ing (19) and (16) into the numerator and denominator,
respectively, the infinite partial sums are shown to be
42k? × o(M) due to the restrictions at ∞ imposed on f ,
while s−M,M ≈ 42k?

.

Remark 1. By analyzing the technical approach in the
proof, it can be seen that Theorem 1 can be easily
extended to non-even precover densities by imposing the
regularity condition at both ±∞. It can also be generalized
to embedding operations that are not bin-invariant on
the entire range. Quite often, special embedding rules
are adopted at j = 0. For example, the F5 embedding
operation has w00 6= 0 in which case, I(0) ∝ 41 since at
most 2L + 1 bins (a number which does not depend on
4) are affected. In general, modifying the embedding rule
so that the leading order is k′ < k? for finitely many bins
j changes the scaling from 42k?

to 42k′+1. Finally, note
that I(0) ∝ 40 for the operation from Example 1 since
k? = 0 for all j.

Remark 2. For the GGD (10), the integral R(f) =
´

R
(f (k?)(x))2/f(x)dx in Theorem 1 can be evaluated an-

alytically:

R(f) =

{
α2

b2/α

Γ(2−1/α)
Γ(1/α) for k? = 1, α ≥ 1/2,

α2(α−1)(3α−4)
b4/α

Γ(2−3/α)
Γ(1/α) for k? = 2, α ≥ 3/2.

(25)

B. f with singularity

We limit our analysis to densities with only one singu-
larity located at x = 0. Since the scaling of the partial
sums (15) on closed intervals [m1, m2] not containing the
singularity can be carried out as for smooth densities, we
only need to address the scaling near or at the singularity.
(The meaning of both terms will be specified shortly.)
In particular, we restrict our study to the case when
the embedding operation and precover density satisfy the
following two assumptions:8

S1. The embedding operation is bin-invariant on R− {0}
with leading order k? ≥ 1.

S2. f(x) is continuous on R and has a singularity at x = 0
such that on some neighborhood of zero, f (k?)(x) =
g(x)|x|−n, n > 0 for a continuous g(x) with g(0) 6= 0.

8Both assumptions hold for the GGD and GCD and all four
embedding operations studied in this paper.

Under these assumptions, a fairly general result (Theo-
rem 2 below) can still be obtained for partial sums on the
“immediate neighborhood” of the singularity – intervals
[(L + 2)4, ε] for a fixed ε > 0. Since many steganographic
algorithms adjust the embedding rule at the singularity,
the scaling of the remaining 2L + 3 terms j for |j| ≤ L + 1
is carried out in less generality only for specific embedding
schemes in Section III-B2.

1) Immediate neighborhood of singularity:

Theorem 2. Under Assumptions S1–S2, for all suffi-
ciently small ε > 0 and 4 such that (L + 2)4 < ε,

s(L+2)4,ε =

{

Θ(42k?+1−2n) when n ≥ 1/2,

Θ(42k?

) when n < 1/2.
(26)

The proof, which appears in Appendix B, starts with
rewriting (19) using the fact that

∑

i γif(xi) = f(x)
∑

i γi,
x ∈ [mini xi, maxi xi], for any f continuous when all γi are
of the same sign. Then, thanks to the assumption on the
k?th derivative, the partial sum s(L+2)4,ε can be squeezed
between two integrals that are shown to exhibit the same
scaling.

Remark 3. Since for the GGD (10), f ′(x) ≈ |x|α−1 and
f ′′(x) ≈ |x|α−2 at x = 0, the scaling of the partial sum
near the singularity depends only on the shape parameter
α. Table (II) summarizes Theorem 2 for the GGD.

Remark 4. For the GCD, the scaling is much simpler
than for the GGD. In fact, whenever the singularity is
such that f is not differentiable at x = 0 but the one-
sided derivatives exist and are bounded (which holds for
the GCD but not for the GGD), the same approach as
in the proof of Theorem 1 can be used to show that
s(L+2)4,ε ∝ 42k?

.

2) At the singularity: In this section, we explain how to
obtain the scaling of the remaining 2L + 3 terms of the
partial sum – the cases when |j| ≤ L + 1. As shown in
Appendix C, Assumptions S1–S2 guarantee the following
form of the precover density on some neighborhood of the
singularity: f(x) = a0 − a1|x|λ + o(|x|λ) for some λ > 0,
a0 > 0, and |a1| > 0. Since f is even, pi = p−i for all i,
and straightforward integration gives:

p0 = 2

4/2
ˆ

0

a0 − a1xλ + o(xλ)dx (27)

= a04 − a14λ+1

2λ(λ + 1)
+ o(4λ+1), (28)

pi =

(i+1/2)4
ˆ

(i−1/2)4

a0 − a1xλ + o(xλ)dx (29)

=

[

a0x − a1xλ+1

λ + 1

](i+1/2)4

(i−1/2)4

+ o(4λ+1), (30)

= a04 − a14λ+1

λ + 1

(
(i + 1/2)λ+1 − (i − 1/2)λ+1

)
(31)

+ o(4λ+1).
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TABLE II
Scaling of the sum s(L+2)4,ε near the singularity for GGD

depends only on the shape parameter α.

k? s(L+2)4,ε α

1 41+2α α ≤ 1/2

42 α > 1/2

2 41+2α α ≤ 3/2
44 α > 3/2

Once the cover distribution pi is obtained using these for-
mulas, it can be substituted into (9) for a given embedding
operation to compute all 2L + 3 remaining terms of the
partial sum at the singularity.

IV. Scaling for specific distributions

We now combine the results from Sections III-A
and III-B to obtain the scaling of the Fisher information
for four embedding operations and two precover distribu-
tions for the entire range of their parameters.

First, we work out the scaling of the partial sums at the
singularity for all four embedding operations. For LSBM,
equations (28) and (31) can be used to compute

dq1

dβ
=

p2 + p0

2
− p1 = − a14λ+1

2λ+2(λ + 1)

× (4 + 5λ+1 − 3λ+2) + o(4λ+1), (32)

dq0

dβ
=

p−1 + p1

2
− p0 = p1 − p0

= − a14λ+1

2λ+1(λ + 1)
(3λ − 1) + o(4λ+1). (33)

Since pj ≈ 4, we obtain 1
pj

(
dqj

dβ

)2

≈ 41+2λ for j =

−1, 0, 1. Similarly, for LSBR, since dq1

dβ = p0 − p1 = − dq0

dβ ,

using the result above, 1
pj

(
dqj

dβ

)2

≈ 41+2λ for j = 0, 1. For

F5, dq0

dβ = p−1 + p1 = 2p1, which means that dq0

dβ ≈ 4 and

thus 1
p0

(
dq0

dβ

)2

≈ 41. Finally, for symJsteg, the bin j = 0

is invariant to embedding and thus the scaling for this
algorithm is only influenced by scaling in the immediate
neighborhood and at the points of smoothness, which is
the same as for LSBR.

A. Generalized Gaussian

The analysis now splits depending on the precover
distribution. Starting with the GGD, since fGG(x) ≈
exp(−|x|α/b) = 1 − |x|α/b + o(|x|α), λ = α for the
expansion at zero. Combining the results from the previous
paragraph with Table II, we obtain the second column
of Table III graphically rendered in Figure 1. To verify
the results, the figure contains simulations obtained by
evaluating pj (1) in the sum (9) by numerical integration.

TABLE III
Scaling of the Fisher information I4(0) w.r.t. the

quantization step 4 for four embedding operations for the
GGD and GCD; α > 0 is the shape parameter of GGD. The
scaling is invariant to the shape parameter τ of the GCD.

Embedding GGD GCD

LSBM 4min{4,1+2α} 43

LSBR 4min{2,1+2α} 42

F5 4 4
symJsteg 4min{2,1+2α} 42

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

α

 s

LSBR, sym. Jsteg

LSBM

F5

Fig. 1. Scaling exponent s versus the parameter α for the generalized
Gaussian precover model and four embedding operations. Solid lines
show the theoretical result; the markers are from numerical simula-
tions.

B. Generalized Cauchy

The GCD is smooth everywhere with bounded deriva-
tives. At zero, the derivatives do not exist but the one-
sided ones do and are bounded. Thus, from Remark 4, the
scaling is determined solely by the terms at the singularity.
Since the expansion of (11) at zero is

fGC(x) =
τ − 1

b

(

1 − τ

b
|x| +

τ(τ + 1)

b2
a2x2 + · · ·

)

, (34)

λ = 1 and is independent of the shape parameter τ . Since
all bins with the exception of −1, 0, 1 scale as 44, the
resulting scaling for the GCD and LSBM is 41+2λ = 43.
For LSBR and symJsteg, the scaling at smooth points is
42 while the scaling at bin 0 is 43, giving the final scaling
42 for both algorithms for all τ > 0. Finally, for the
F5 operation, the scaling is determined by the zero bin,
which scales as 4 for all τ . The scaling for the GCD is
summarized in the third column of Table III.

V. Extension to noise residuals

Modern spatial-domain steganalysis algorithms repre-
sent images with co-occurrences of their noise residuals
(see [29], [22], [9] and the references therein) obtained by
applying a high-pass filter to the image. This extensive
body of literature provides an empirical justification for
modeling just the noise component of images – since
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steganographic embedding changes typically manifest as
a high-frequency noise, the SNR between the image and
the stego signal is increased. Moreover, the residual has a
narrower distribution that can be better modeled and also
represented with a lower-dimensional feature vector.

In this section, we analyze the case when the embedding
occurs in the pixel domain, yet the steganalysis utilizes
models based on the noise-residual representation. The
derivations are carried out for the simplest case of the
noise residual – the difference between two adjacent pixels,
which is the basis of the SPAM model [22]. For simplicity,
we also limit ourselves to a one-dimensional co-occurrence,
which is the histogram of pixel differences. The author
hopes that extending the analysis to more complicated
residuals should be apparent.

We start with a joint pdf for two neighboring precover
pixels, f(x, y), and define

F4(i4, j4) =

(i+1/2)
ˆ

(i−1/2)4

(j−1/2)4
ˆ

(j−1/2)4

f(x, y)dxdy. (35)

Using the more compact notation, pij , F4(i4, j4),
we have for the histogram of pixel differences:

pd = Pr(j − i = d) =
∑

i

pi,i+d. (36)

For the stego image:

qij(β) =
∑

u,v

puvbuibvj (37)

= pij(1 + ciiβ)(1 + cjjβ)

+
∑

v 6=j

piv(1 + ciiβ)βcvj

+
∑

u6=i

puj(1 + cjjβ)βcui + O(β2), (38)

qd(β) ,
∑

i

qi,i+d(β), (39)

which implies, after simplification:

dqij(β)

dβ

∣
∣
∣
∣
β=0

=
∑

v

pivcvj + pvjcvi (40)

dqd(β)

dβ

∣
∣
∣
∣
β=0

=
∑

i

i+d+L∑

v=i+d−L

pvicv,i+d

+
∑

i

i+L∑

v=i−L

pv,i+dcvi (41)

=
∑

i

L∑

v=−L

(pi+d+v,ici+d+v,i+d

+ pi+v,i+dci+v,i). (42)

To further simplify the matters, we adopt the following
two assumptions:

C1. pij = pji for all i, j (symmetry of natural images).
C2. cij = ci+d,j+d for all i, j and d.

Assumption C2 postulates invariance of the embed-
ding operation. Although this invariance seems to exclude
parity-based operations, such as those used in LSBR or
symJsteg, the impact of such operations on pixel dif-
ferences is essentially identical to that of parity-blind
operations, such as the LSBM.

Assumptions C1–C2 together with (39) allow us to
simplify (42):

dqd(β)

dβ

∣
∣
∣
∣
β=0

=

L∑

v=−L

(pd+v + pd−v)cv,0. (43)

The next step is to expand pd+z using Taylor series at d
and convert the entire analysis to the one-dimensional case
of Section III. To this end, formally, we need to require f
to have continuous partial derivatives up to order k. For
|d − z| ≤ L,

pd+z =

k−1∑

l=0

(z4)l

l!
p

(l)
d +

(z4)k

k!
p

(k)
ξdk

, (44)

where ξdk ∈ (d, d + z) and

p
(l)
d ,

d(l)pd+z

dzl

∣
∣
∣
∣
z=0

. (45)

The derivatives for l ≥ 1 are obtained from (35)
and (36):

p
(l)
d =

∑

i

(i+1/2)4
ˆ

(i−1/2)4

∂f (l−1)

∂ul−1

∣
∣
∣
∣

(u,(i+d+1/2)4)

(u,(i+d−1/2)4)

du (46)

= 4
∑

i

(i+1/2)4
ˆ

(i−1/2)4

∂f (l)

∂ul
(u, φidl)du, (47)

where φidl ∈ ((i + d − 1/2)4, (i + d + 1/2)4). The scaling
for a given joint precover density f can now be obtained
by substituting (47) into (44) and (43) and following the
same steps as in Section III.

VI. Discussion

It is not possible to directly relate the results of this
paper to empirical cover sources because real digital im-
ages are complicated mixtures that are not iid signals.
Additionally, since modern steganalysis works with low-
dimensional representations of images (features), this pro-
cessing decreases the KL divergence between cover and
stego features. Nevertheless, some interesting qualitative
conclusions could still be reached. With finer quantization
(smaller quantization step 4), the FI decreases as 4s,
where the scaling exponent s is determined jointly by
the precover distribution smoothness and the embedding
function. In general, s (and thus the secure payload)
is larger for smoother distributions and for embedding
operations that act as low-pass filters of the first-order
statistic of cover samples. Operations that tend to make
the singularity “sharper” (e.g., F5 or the operation from
Example 1) have a lower leading order k? and thus a lower
scaling exponent s.
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The singularity in the precover distribution has no effect
on scaling (Theorem 2 and Section III-B1) as long as the
singularity is “not sharp enough” (formally, f (k?)(x) ≈
1/|x|n with n < 1/2). For “sharper” singularities, formally
n ≥ 1/2, the scaling exponent starts decreasing, which in
turn increases the FI and makes the embedding scheme
more detectable. This can be understood on an intuitive
basis in the following manner. Since steganographic em-
bedding changes are similar to adding noise, embedding
acts as a low-pass filter on the first-order statistic (his-
togram) of cover elements. This smoothing will impact
sharper singularities more. Theorem 2 is a more precise
formulation of this intuitive statement.

For JPEG images, larger quality factors correspond to
smaller 4 and thus smaller FI. At the same time, the
width of the distribution b increases (c.f., (25)). Both
mechanisms will allow the steganographer to embed larger
payloads for a given level of security than what one would
expect from the square root law only.

Theorems 1 and 2 show that the scaling exponent
increases with increasing k?. It is thus desirable for the
steganographer to choose embedding operations with a
larger leading order k? to decrease the FI and thus increase
security. LSBM with its leading order of 2 provides better
security than LSBR with order 1, a fact already known in
steganalysis for other reasons. Furthermore, the presence
of bins with lower leading order increases the FI and
thus lowers security. From this point of view, F5 might
become more secure if it allowed changing zero coefficients
to non-zero to increase the leading order of bin 0. In fact,
some recently proposed JPEG-domain steganographic al-
gorithms [11], [24] that allow changes of zero coefficients
indeed exhibit lower empirical detectability.

For the GG precover, equation (25) informs us that
the FI increases with decreasing b or, equivalently with
decreasing precover variance. This is natural as detection
of steganography in covers with lower entropy should
indeed be easier. Table III tells us that the precover
singularity impacts GC-distributed precovers very differ-
ently than precovers with the GG distribution and this
impact depends strongly on the embedding operation. The
singularity decreases the scaling exponent (and thus lowers
the security) for the GG model. This negative impact is
larger for more “sharp” distributions, which are more likely
to occur in images with smooth content. Curiously, for F5
the scaling exponent is the same (and the lowest) for both
models, which is due to the properties of the embedding
operation at zero.

Unquantized discrete cosine and wavelet coefficients of
digital images are often modeled using the GGD as well as
GCD (see, e.g., the comparison in [21] and the references
therein). While both GGD and GCD are often “good
enough” models for other signal processing applications,
such as source coding, their secure payload scales very
differently w.r.t. the quantization step. It appears that
adopting a model for estimating steganographic security
may require model validation that is different from tradi-
tional approaches, such as those based on the least-square

or maximum likelihood fits.

VII. Practical issues

A. Scaling in practice

The original SRL is quite robust in the sense that
even though it has been established only for artificial
sources, such as Markov chains, it has been verified to
manifest quite robustly for empirical cover sources despite
the fact that practitioners build detectors using machine
learning rather than as likelihood ratio tests and that
pixels (transform coefficients) are quite heterogeneous and
non stationary.

The scaling of the FI w.r.t. the quantization step un-
doubtedly manifests in practice as well. However, the
specific scaling strongly depends on the precover distri-
bution (see Table III). Furthermore, relating the results of
experiments on real images with the theoretical results of
this paper derived for i.i.d. sources is likely not possible
for reasons listed in the previous section.

It is true, however, and our analysis of artificial sources
confirms this, that quantization must have an extremely
strong impact on statistical detectability because the
Fisher information appears in the error exponent that con-
trols detector errors through the Chernoff–Stein Lemma
as discussed in Section II-C. To assess this effect, the
following experiment was carried out on a database of
grayscale images represented with a varying bit depth.

A total of 5,000 images were taken with Canon EOS
550D equipped with an 18 megapixel sensor. The images
were stored in the CR2 format with 12-bit per pixel and
then converted from CR2 to the 48-bit TIFF color format
using dcraw with default parameters. Subsequently, the
images were converted to grayscale using the rgb2gray

command in Matlab and stored as 16-bit grayscale. To
speed up the experiments, all images were further down-
sampled by a factor of four by selecting every fourth pixel
to avoid introducing resampling artifacts.

The steganographic technique that was tested was
LSBM simulated at a given change rate β (changes per
pixel). Steganalysis was performed using the second-order
SPAM feature vector [22] with threshold T = 3 (dimension
686). The classifier was the ensemble [20] run with the
automatic choice of the subspace dimensionality and the
number of base learners.9 The database was randomly split
into two halves, one used for training and the other for
testing. This was repeated ten times and the minimal total
detection error under equal priors, PE = (PMD + PFA)/2,
was averaged over the ten database splits (denoted P E).

The experimental results are shown in Figure 2. The
curves were interpolated using cubic splines. Only the bit
depths at B ≤ 8 are shown as the detectability for all bit
depths larger than 8 was very close to random guessing.
The figure confirms that statistical detectability strongly
depends on the quantization. In fact, in this particular
source statistical undetectability is reached at any payload

9The ensemble code is available from
http://dde.binghamton.edu/download/ensemble/

http://dde.binghamton.edu/download/ensemble/
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Fig. 2. The average detection error, P E, as a function of change rate
β for LSBM and cover grayscale images represented using B bits.

(!) for images with 9 or more bits per pixel.10 The secure
change rate at detectability fixed to P E = 0.25 is β =
0.0044, 0.0152, 0.1038, and 0.4322 changes per pixel for
bit depths 5, 6, 7, and 8, respectively. This approximately
corresponds to scaling of the FI by 42 (the quantization
step 4 decreases by a factor of 2 with each bit level added).
Even though it is tempting to say that this indicates a GG
model with α = 1/2, one should stay away from such a
claim due to the reasons outlined above (and the effect of
finite samples discussed below).

B. Effect of over/undersampling

In practice, working with a finite number of samples
may prevent us to observe the correct scaling even when
observations do follow the model. Oversampling (too small
4) will produce a noisy estimate of the cover distribution,
pj , which will completely change the scaling. On the other
hand, 4 that is too large will not yet exhibit the limiting
behavior when 4 → 0.

Next, we provide a crude qualitative analysis of the
impact of over-sampling. Given a cover object with N
elements from a finite range R, the number of samples
in the jth bin, Pj , is a random variable whose binomial
distribution will be approximated with a Gaussian:

Pj ∼ N (pj , pj(1 − pj)/N) . (48)

If Pj were independent, the expected value of

(
∑

i

cijPi

)2

=

(
∑

i

cijpi +
∑

i

cij(Pi − pi)

)2

, (49)

10We note that the detectability for this particular source was
markedly worse than what has been reported elsewhere for images
of approximately the same size or smaller [10]. We attribute this
difference to the subsampling, which in our case did not introduce
any artifacts that could aid the steganalysis.
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Fig. 3. Fisher information for LSBM vs. the quantization step 4
for N = 108, 106, 104 samples from a GGD with α = 1.5, b = 1, and
µ = 0. Note the region of over-sampling for small 4, where I4(0) ∝
4−1, and under-sampling for large 4. The range of 4 where s

.
=

max{4, 1+2α} = 4, as predicted by the theory, becomes smaller with
decreasing N . The dotted lines are linear fits in their corresponding
ranges of 4.

would be

µ2
j =

(
∑

i

cijpi

)2

+
∑

i

c2
ijpi(1 − pi)/N. (50)

Since in practice, there will be finitely many bins, j4 ∈
R ⊂ [−R, R], where R is the dynamic range of X ,

E




∑

j∈R

(
∑

i cijPi)
2

Pj




.
=
∑

j∈R

µ2
j

pj
(51)

= I4(0) +
1

N

∑

j∈R

∑

i c2
ijpi(1 − pi)

pj

(52)

∝ 1

N4 . (53)

because I4(0) ∝ 4s with s ≥ 0 and |R| is inversely
proportional to the quantization step 4.

To assess the effects of over/undersampling in practice,
we generated N = 104 − 108 i.i.d. samples from a GGD
with α = 1.5 and b = 1 and computed I4(0) for a range
of 4 with LSBM as the stego algorithm. The result shown
in Figure 3 confirms the crude analysis of over-sampling
with the scaling exponent s

.
= −1 for small 4. The

scaling matches the theoretical result, s
.
= 1 + 2α = 4, for

midrange values and breaks up when 4 becomes too large.
The range of proper scaling gets smaller with decreasing
N .

VIII. Conclusion

The square root law of imperfect steganography con-
nects statistical detectability with the cover size and the
change rate in the asymptotic limit of large covers and
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small change rates. The current paper extends this law to
the case when the cover object is obtained by quantizing
a precover that follows a continuous-valued distribution.
In this case, constant statistical detectability is obtained
when Nβ24s = const., where N is the cover size, β the
change rate, and s the scaling exponent w.r.t. the quan-
tization step 4 that tends to zero. The scaling exponent
is determined jointly by the embedding operation and the
precover distribution. In general, s is larger for smoother
distributions and for embedding operations that act as
low-pass filters of the first-order statistic of cover samples.
Numerous qualitative consequences and other implications
of the scaling for practitioners are discussed in Section VI.

The scaling has been worked out in detail for two
precover distributions commonly used in signal modeling –
the generalized Gaussian and Cauchy distributions. While
both distributions apparently lead to comparable results,
for example, in source coding [21], the scaling of secure
payload in steganography depends rather sensitively on
the precover model. The singularity of the generalized
Gaussian is “sharper,” which has the effect of decreasing
the scaling exponent and thus the secure payload length.
This decrease is larger for smoother images with a smaller
shape parameter. Thus, the scaling w.r.t. the quantization
step may be a more relevant criterion for model fitting
for steganography instead of the more traditional fitting
approaches.

This work is relevant for understanding the effect of
color bit depth on security of schemes that embed in the
spatial domain and the effect of the quality factor on
security for stegosystems that embed data in the JPEG
domain. Experiments on real images confirm the strong
effect of quantization on statistical detectability due to
the fact that the factor 4s multiplies the error exponent.
However, unlike the original square root law, which is
quite robust, the scaling w.r.t. 4 strongly depends on
the precover distribution, which makes its interpretation
in practice rather hard due to the necessity to find a
sufficiently accurate model. When the number of cover
samples, N , is small, the theoretical scaling is observable
only in a rather small midrange of quantization steps due
to negative effect of under- and over-sampling.

The value of this work is primarily in shedding light on
the fundamental connection between statistical detectabil-
ity and the complex interplay between the precover distri-
bution and the embedding after quantizing the precover.
Although the main result has been derived for artificial
(i.i.d.) covers, an extension has been presented to the case
when the cover is modeled as an i.i.d. sequence of pixel
groups (pairs of pixels). This is relevant because many
modern steganalytic methods represent images with his-
tograms of groups of neighboring pixels/DCT coefficients
or noise residuals [9], [19].

Appendix A

Proof of Theorem 1

We write the FI (13) as a sum of three partial sums,
I4(0) = s−∞,−M + s−M,M + sM,∞, and study their

behavior when 4 → 0. Since f(x) is even, it is sufficient
to consider only one unbounded interval and the closed
interval.

A.1 Unbounded interval [M, ∞)

Using k = k? in (19),

(
∑

i

cijF4(i4)

)2

≤ 42k?+2

k?!2
w̃2

jk? max
x∈Ij

(f (k?)(x))2, (54)

where w̃jk? =
∑

i cij |i − j|k? ≤ C(2L + 1)Lk?

, C′. The
continuity of f (k?)(x) implies that the maximum is reached
at some θj ∈ Ij . Since F4(j4) = 4f(uj),

sM,∞(4) ≤ 42k?

k?!2
C′2

∑

j4≥M

(
f (k?)(θj)

)2

f(uj)
4

︸ ︷︷ ︸

rM

. (55)

For j4 − (L + 1)4 ≥ M , from the monotonicity of
|f (k)(x)| at ∞ and the range of θj and uj,

(
f (k?)(θj)

)2

f(uj)
≤
(
f (k?)(j4 − (L + 1)4)

)2

f(j4 + 4/2)
. (56)

Thus, for (L + 3/2)4 ≤ δ0, rM can be bounded with a
Riemann sum:

rM ≤
∑

j4≥M−(L+1)4

(
f (k?)(j4)

)2

f(j4 + (L + 3/2)4)
4

→
∞̂

M

(f (k?)(x))2

f(x + δ)
dx (57)

as 4 → 0. Assumption R2 finally implies that rM → 0
with M → ∞.

A.2 Closed interval [−M, M ]

The continuity of derivatives up to order k? + 1 guaran-
tees their boundedness on [−M, M ]. Thus, using k = k?+1
in (19):

(
∑

i

cijF4(i4)

)2

=
(f (k?)(φjk? ))2

k?!2
42k?+2w2

k?

+ O(42k?+3). (58)

The continuity of f implies the existence of f0 > 0 such
that f(x) ≥ f0 > 0 on [−M, M ]. Furthermore, f(φjk? ) −
D14 ≤ f(uj) ≤ f(φjk? ) + D14, where D1 > 0 bounds
the first derivative on [−M, M ]. Therefore,

1

4f(uj)
=

κ(4)

4f(φjk? )
, (59)

where, for 4 < f0/D1,

1

1 + D14/f0
≤ κ(4) ≤ 1

1 − D14/f0
. (60)
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Riemann integrability of (f (k?)(x))2/f(x) on [−M, M ]
together with (58), (59), and (60) imply:

s−M,M

42k? =
w2

k? κ(4)

k?!2

[
∑

−M≤j4≤M

(

(f (k?)(φjk? ))2

f(φjk? )
4

+ O(42)

)]

→ w2
k?

k?!2

M̂

−M

(f (k?)(x))2

f(x)
dx, (61)

as 4 → 0. Combining (57) and (61) proves the theorem.
Q.E.D.

Appendix B

Proof of Theorem 2

We first carry out the proof for k? even and then deal
with the case of k? odd.

B.1 Even k? = 2

We will use the fact that for f continuous and γi all of
the same sign,

∑

i

γif(xi) = f(x̄)
∑

i

γi, x̄ ∈ [min
i

xi, max
i

xi]. (62)

Using (19) with k = k?, by (62):

∑

i

cijF4(i4) =
4k?+1

k?!

∑

i

cij(i − j)k?

f (k?)(φ̃ij) (63)

=
4k?+1

k?!
wk? f (k?)(φj), (64)

φ̃ij ∈ (j4 − 4/2, i4 + 4/2), when i > j, and φ̃ij ∈
(i4 − 4/2, j4 + 4/2), when j > i,

φj ∈ Ij ⊂
[

34
2

, ε +

(

L +
1

2

)

4
]

, IL,ε. (65)

Note that (64) is valid as long as cij(i − j)k? ≥ 0 for all
i, which holds for k? even. Combining (16) and (64) with
Assumption S1 leads to:

s(L+2)4,εk
?!2

w2
k? 42k?+1

=
∑

(L+2)4≤j4≤ε

(
f (k?)(φj)

)2

f(uj)
(66)

=
∑

(L+2)4≤j4≤ε

g2(φj)φj
−2n

f(uj)
. (67)

Since φj ∈ IL,ε (65) for all j,

minx∈IL,ε g2(x)

maxx∈IL,ε f(x)
≤ g2(φj)

f(uj)
≤ maxx∈IL,ε g2(x)

minx∈IL,ε f(x)
. (68)

The continuity of both f and g at zero, together with
the fact that g(0) 6= 0 and f(0) > 0, imply that for ε > 0
sufficiently small the scaling of (67) when 4 → 0 (in the
sense of Θ(x) symbolics) depends solely on

∑
φ−2n

j . Since
φj ∈ Ij (22), this sum can be bounded from below and
above by

ε/4
∑

j=L+2

(
1

(j + L + 1/2)4

)2n

≥ 4−2n

ε/4+L+1/2
ˆ

2L+5/2

x−2ndx

=
4−2n

−2n + 1

[(
ε

4 + L +
1

2

)−2n+1

−
(

2L +
5

2

)−2n+1
]

(69)
and

ε/4
∑

j=L+2

(
1

(j − L − 1/2)4

)2n

≤ 4−2n

ε/4−L−3/2
ˆ

1/2

x−2ndx

=
4−2n

−2n + 1

[(
ε

4 − L − 3/2

)−2n+1

−
(

1

2

)−2n+1
]

,

(70)
respectively. Both bounds scale as 4−2n when −2n+1 ≤ 0
and as 4−1 when −2n + 1 > 0.

In summary:

s(L+2)4,ε =

{

Θ(42k?+1−2n) when n ≥ 1/2

Θ(42k?

) when n < 1/2.
(71)

B.2 Odd k? = 1

Here, we first obtain an upper bound using (62)

∣
∣
∣

∑

i

cijF4(i4)
∣
∣
∣ ≤ 4k?+1

k?!

∑

i

cij |i − j|k?

f (k?)(φ̃
(1)
ij ) (72)

≤ 4k?+1

k?!
C(2L + 1)Lk?

f (k?)(φ
(1)
j ), (73)

where φ
(1)
j ∈ Ij , leading to

s(L+2)4,εk
?!2

42k?+1C2(2L + 1)2L2k? ≤
∑

(L+2)4≤j4≤ε

(
f (k?)(φ̃j)

)2

f(uj)
.

(74)

Getting the lower bound is a little more involved. We
first introduce

γ−
j =

4k?+1

k?!

∑

i>j

cij(i − j)k? ≥ 0, (75)

γ+
j =

4k?+1

k?!

∑

i<j

cij(j − i)k? ≥ 0, (76)

and split (63) into a sum over i > j and over i < j. Both
sums can be simplified using (62) to:

∣
∣
∑

i

cijF4(i4)
∣
∣ =

∣
∣γ+

j f (k?)(φ+
j ) − γ−

j f (k?)(φ−
j )
∣
∣, (77)

for some φ+
j , φ−

j ∈ Ij . If either γ−
j = 0 or γ+

j = 0, we
could continue exactly the same way as for k? even. Thus,
we will assume that γ+

j > 0 and γ−
j > 0. Note that both

γ−
j , γ+

j are bounded independently of j:

γ±
j ≤ 4k?+1

k?!
CLk?+1. (78)

Since |γ−
j − γ+

j | = |wk? | 4k?+1

k?! > 0, we have γ−
j 6= γ+

j .

Assuming, for example, that γ−
j < γ+

j (the other case is
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analogical):

γ−
j

γ+
j

=
γ−

j

γ−
j + |γ−

j − γ+
j |

(79)

=
1

1 + |wk? |

γ−

j

4k?+1

k?!

(80)

≤ 1

1 + |wk? |

CLk?+1

, ρ < 1, (81)

and

γ+
j ≥ γ+

j − γ−
j = |wk? |4

k?+1

k?!
> 0. (82)

Since φ−
j , φ+

j ∈ IL,ε and g(x) is continuous at zero with

g(0) 6= 0, we can choose ε > 0 such that rj = g(φ−
j )/g(φ+

j )
is arbitrarily close to 1 whenever j4 < ε. In particular, we
can choose it such that

(
1 + ρ

2ρrj

)1/n

≥ η > 1, (83)

for some η and all j with j4 < ε.
If j additionally satisfies

j ≥ η + 1

η − 1
(L + 1/2) , L′, (84)

which is equivalent with η ≥ j+L+1/2
j−L−1/2 , we obtain us-

ing (83):

1 − ρrj

∣
∣
∣
∣

j + L + 1/2

j − L − 1/2

∣
∣
∣
∣

n

≥1 − ρrjηn (85)

≥1 − ρ
1 + ρ

2ρrj
rj (86)

=
1 − ρ

2
. (87)

Using (77),(81), and (87), we can write whenever j4 ∈
(jL′, ε):

∣
∣
∑

i cijF4(i4)
∣
∣

|γ+
j f (k?)(φ+

j )| ≥ 1 − ρ
f (k?)(φ−

j )

f (k?)(φ+
j )

(88)

= 1 − ρ
|φ+

j |n

|φ−
j |n

g(φ−
j )

g(φ+
j )

(89)

≥ 1 − ρrj

∣
∣
∣
∣

j + L + 1/2

j − L − 1/2

∣
∣
∣
∣

n

(90)

=
1 − ρ

2
, (91)

which gives us a lower bound:

s(L+2)4,ε =
∑

(L+2)4≤j4≤ε

∣
∣
∑

i cijF4(i4)
∣
∣
2

4f(uj)
(92)

≥
∑

L′4≤j4≤ε

(
γ+

j
1−ρ

2 f (k?)(φ+
j )
)2

4f(uj)
(93)

≥ |wk? |2 42k?+1

k?!2
(1 − ρ)2

4

×
∑

L′4≤j4≤ε

(
f (k?)(φ+

j )
)2

f(uj)
. (94)

Combining (74) and (94), the scaling is established using
the same arguments as for the case k? even. Q.E.D.

Appendix C

Form of f(x) at singularity

Here, we show that Assumptions S1–S2 guarantee the
following form for the density f : f(x) = a0 − a1|x|λ +
o(|x|λ) at x = 0, for λ > 0, a0 > 0, and |a1| > 0. The
arguments are carried out for k? = 1 as the extension to
the case of k? = 2 can be obtained simply by applying one
more integration.

We remind that for k? = 1, from S2, f ′(x) = g(x)/|x|n
on some neighborhood of zero. Let δ0 > 0 be such
that, WLOG, g(x) > 0 on [0, δ0]. Furthermore, let
g(z) , mint∈[0,z] g(t), g(z) , maxt∈[0,z] g(t), and L(u, v) ,
´ v

u
f ′(t)dt = f(v) − f(u). Since for 0 < x < δ0

g(δ0)
δ1−n

0 − x1−n

1 − n
≤ L(x, δ0) ≤ g(δ0)

δ1−n
0 − x1−n

1 − n
, (95)

if 1 − n < 0, f(x) would not be continuous at zero. Thus,
1 − n ≥ 0 and we have

g(x)
x1−n

1 − n
≤ L(0, x) ≤ g(x)

x1−n

1 − n
, (96)

which implies

lim
x→0+

f(x) − f(0)

x1−n
=

g(0)

1 − n
. (97)

With a similar argument for the left neighborhood of
zero, we can write

f(x) = f(0) +
g(0)

1 − n
|x|1−n + o(|x|1−n). (98)
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