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ABSTRACT

This article presents an extension of the square root
law of imperfect steganography to consider the effects
of quantization on the steganographic Fisher informa-
tion. We make the assumption that the cover elements
are quantized i.i.d. samples drawn from an underly-
ing continuous-valued ’precover’ distribution. In the
fine quantization limit, the Fisher information exhibits
power scaling with an exponent determined jointly by the
smoothness of the precover distribution and the proper-
ties of the embedding function. This extension is rele-
vant for understanding the effects of pixel color depth
and JPEG quality factor on secure payload of imper-
fect steganography realized using a mutually indepen-
dent embedding operation.

1. INTRODUCTION

The square-root law (SRL) of steganography [2, 3, 6] is
an asymptotic scaling result concerning the size of the se-
cure payload for stegosystems that are imperfect, such as
all stegosystems designed for empirical (and thus funda-
mentally incognizable) cover sources, example of which
are digital media files. The law manifests when the War-
den is granted the full knowledge of the cover source and
the embedding method while the sender uses mutually
independent embedding.1 When the Warden needs to
learn the cover source, the law may manifest in a dif-
ferent form depending on the knowledge available to the
Warden [5]. The SRL becomes readily apparent when ex-
panding the KL divergence between the cover and stego
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1When both the sender and the Warden are fully informed,
the sender can communicate with perfect security with a positive
rate [8].

distributions at β = 0 (where β is the change rate) using
Taylor series – the leading quadratic term is 1

2 Nβ2I(0),
where N is the cover length and I(0) is the stegano-
graphic Fisher information [1, 4].

Digital media are typically obtained by quantizing an
analog (precover) signal, such as photon counts or trans-
form coefficients. The quantization affects the statisti-
cal properties of covers and thus the asymptotic scaling
laws through changes in I(0). In particular, this paper
shows that I(0) ∝ 4s, where 4 is the quantization step
and s ≥ 0 is an exponent determined jointly by the em-
bedding operation and the smoothness of the precover
distribution. This generalizes the SRL as one can state
that constant statistical detectability is obtained when
1
2 Nβ24s = const. Unlike the SRL, which is quite robust
and observable in practice even when the source is em-
pirical and the Warden uses classifiers instead or optimal
detectors, the scaling due to quantization sensitively de-
pends on the precover distribution. This limits the cur-
rent contribution to a theoretical treatment that cannot
readily quantify the scaling in empirical cover sources
with empirical measures of security (e.g., relating classi-
fier error to color bit depth or JPEG quality factor).

The paper starts in the next section with a formaliza-
tion of basic concepts. The main results are established
in Section 3 for smooth precover distributions as well as
distributions with a singularity. The theory is applied
to four common embedding operations and two precover
models in Section 4. Section 5 discusses the limitations
of observing the scaling in practice when using empirical
sources and detectors. A summary appears in Section 6.

An expanded journal version of this paper, that con-
tains additional results as well as the proofs of all theo-
rems, has been submitted to IEEE Transactions on In-
formation Forensic and Security in June 2012.

2. PRELIMINARIES

Throughout the paper, aij , i, j ∈ Z, denotes a (poten-
tially infinite) two-dimensional array with elements aij .
Calligraphic font is reserved for sets, while random vari-
ables are always represented with capital letters. For



real functions g, h, we define g(x) = Θ(h(x)) at x = a if
G1h(x) ≤ g(x) ≤ G2h(x) for G1, G2 > 0 on some neigh-
borhood of a ∈ {R, −∞, ∞}. We write g ≈ h whenever
limx→a g(x)/h(x) exists and is positive. We also use the
standard Landau big-O and little-o notation.

Given a countable set of scalar bin centroids, M =
(mj), mj < mj+1, a scalar quantizer is a mapping QM :
R → M, defined as QM(x) = arg minmj∈M |x − mj |.
Even though the main result of this paper could be es-
tablished for a more general class of quantizers, for sim-
plicity, we will assume that QM is uniform, mj = j4,
j ∈ Z, where 4 > 0 is the bin width. A uniform quan-
tizer with bin width 4 will be denoted Q4.

An n-element precover source will be represented us-
ing a random variable Z , (Z1, . . . , Zn) where Zk are
mutually independent and identically distributed (i.i.d.)
continuous-valued random variables Zk ∼ f(x), where
f(x) is a probability density function. For convenience,
we will assume that f is even and that its domain can
be continuously extended to R. A cover source X cor-
responding to a precover source Z is obtained by ap-
plying Q4 to each element of Z, X = (X1, . . . , Xn) =
(Q4(Z1), . . . , Q4(Zn)) with Xk ∼ p, a probability mass
function on M:

pj = Pr(Xk = mj) =

mj+4/2
ˆ

mj−4/2

f(x)dx. (1)

Since the specific details of the embedding (and ex-
traction) algorithms are not important for our study, we
only model the probabilistic impact of embedding. In
particular, we narrow our study to the so-called mutu-
ally independent embedding that modifies every cover
element Xk independently to a corresponding element of
the stego object Yk with probability

Pr(Yk = mj|Xk = mi) , bij(β) =

{

1 + βcii if i = j

βcij otherwise,

(2)
for some constants cij ≥ 0 for i 6= j. Since

∑

j bij = 1,
we must have cii = −

∑

j 6=i cij for each i. The scalar
parameter β ≥ 0 will typically be the change rate. We
restrict ourselves to embedding with changes from a lim-
ited range: cij = 0 whenever |i − j| > L for some
fixed positive integer L. This restriction is quite reason-
able since most practical steganographic schemes modify
cover elements to a few neighboring values, such as by
±1. Having said this, it is possible (and perhaps also
meaningful) to study embedding operations whose range
L increases with 4 → 0.

Given the embedding operation (2), the stego object is
an i.i.d. sequence of random variables Y , (Y1, . . . , Yn)
with Yk ∼ q(β). For example, ignoring the bound-
ary issues, for LSB matching (LSBM), LSB replacement

(LSBR), the F5 embedding operation [9] (F5), and sym-
metrized Jsteg [7] (symJsteg) with an embedding change
rate β, we respectively have:

qj(β) = (1 − β)pj +
1

2
β(pj+1 + pj−1) for all j, (3)

qj(β) = (1 − β)pj + βpj+(−1)j for all j, (4)

qj(β) =

{

(1 − β)pj + βpj+sign(j) for j 6= 0,

p0 + β(p1 + p−1) for j = 0,
(5)

qj(β) =











(1 − β)pj + βpj+sign(j) for j odd,

(1 − β)pj + βpj−sign(j) for j even,

pj for j = 0.

(6)

Assumption (2) leads to the following relationship be-
tween pj and qj(β):

qj(β) = Pr(Yk = mj) =
∑

i

bijpi = pj + β
∑

i

cijpi. (7)

By expanding the KL divergence between p and q(β)
at β = 0, the following standard result is obtained:

DKL(p||q) =
∑

j

pj log
pj

qj(β)
=

1

2
β2I4(0) + O(β3), (8)

where, using (7),

I4(0) =
∑

j

1

pj

(

dqj(β)

dβ

∣

∣

∣

∣

β=0

)2

=
∑

j

1

pj

(

∑

i

cijpi

)2

.

(9)
is the steganographic Fisher information (FI), which en-
capsulates the effect of embedding. Note that in our
framework I4(0) depends on both f and 4 through (1).
It is precisely this relationship that is of interest in this
paper.

We will illustrate the theoretical results on two contin-
uous densities commonly used for modeling the distribu-
tion of digital media elements: the generalized Gaussian
(GGD) and generalized Cauchy distribution (GCD):

fGG(x) =
α

2bΓ(1/α)
exp

(

−
|x − µ|α

b

)

, (10)

fGC(x) =
τ − 1

2b

(

1 +
|x − µ|

b

)−τ

, (11)

with b > 0, α > 0, τ > 1. Note that besides the case
when α ≥ 2, α ∈ Z, the GGD has a singularity at x = µ
as its derivatives become unbounded there, starting with
the dαeth derivative. In contrast, all one-sided deriva-
tives of the GCD are bounded but do not exist at x = µ.

3. SCALING DUE TO QUANTIZATION

In this section, we analyze the effects of cover quantiza-
tion on the FI. First, we state a general result for smooth



Table 1. Leading order k? for common embedding op-
erations. For F5, the numbers in brackets are at j = 0.

Embedding k? wk?

LSBM 2 1
LSBR 1 1

F5 1 (0) 1 (2)
symJsteg 1 1

cj−m,j = cj+m,j 2 2
∑L

m=1 m2cj+m,j

precover densities and then for densities with singulari-
ties to cover the GGD as well as the GCD.

By introducing F4(x) =
´ x+4/2

x−4/2 f(t)dt, for 4 > 0

and x ∈ R, pj = F4(j4), and (9) becomes:

I4(0) =
∑

j

(
∑

i cijF4(i4))
2

F4(j4)
. (12)

The sum in the numerator is a discrete filter with (a
generally non stationary) kernel c.j applied to F4 sam-
pled at j4. It is shown below that the scaling w.r.t. 4
depends on the leading exponent of

∑

i cijF4(i4) ∝ 4k,
which in turn depends on the smoothness of f as well as
the embedding operation.

3.1. f differentiable

From the first mean value theorem for integration:

F4(j4) = 4f(uj) (13)

for some uj ∈ (j4 − 4
2 , j4 + 4

2 ). For i 6= j, |i − j| ≤ L,
we expand F4(i4) = F4(j4 + (i − j)4) at j4 using
Taylor series with Lagrange remainder. Assuming F4(x)
is k ≥ 0 times continuously differentiable

F4(i4) =

k−1
∑

l=0

F
(l)
4 (j4)

l!
4l(i − j)l +

F
(k)
4 (ξij)

k!
4k(i − j)k,

(14)

where ξij ∈ (j4, i4) or (i4, j4), depending on whether
i > j or j > i. Therefore,

∑

i

cijF4(i4) =

k−1
∑

l=0

F
(l)
4 (j4)

l!
4lwjl (15)

+
4k

k!

∑

i

cij(i − j)kF
(k)
4 (ξij) (16)

=

k−1
∑

l=0

f (l)(φjl)

l!
4l+1wjl (17)

+
4k+1

k!

∑

i

cij(i − j)kf (k)(φ̃ij). (18)

where φjl ∈ (j4 − 4
2 , j4 + 4

2 ), φ̃ij ∈ (ξij − 4
2 , ξij + 4

2 )
and the weights

wjl =
∑

i

cij(i − j)l, (19)

depend only on the embedding operation but not on

the density f . Equation (18) follows from F
(l)
4 (x) =

f (l−1)(x+ 4
2 )−f (l−1)(x− 4

2 ) = 4f (l)(φ) for 1 ≤ l ≤ k+1

and some φ ∈ (x − 4
2 , x + 4

2 ).
For LSB replacement and symmetrized Jsteg, wj0 =

∑

i cij = 0 for all j. The condition wj0 = 0 for all j
is equivalent with bij being doubly stochastic (the sum
of rows and columns is equal to 1). For LSB match-
ing, wj0 6= 0 only at the boundary of the dynamic
range of cover elements. Since the boundary is usu-
ally sparsely populated for typical digital media distri-
butions, the boundary bins cannot be used to make any
statistically reliable conclusions and thus should not af-
fect the asymptotic w.r.t. 4. This is why we made the
dynamic range unbounded when defining f in Section 2.
Under these circumstances, the only embedding opera-
tion with non-zero wj0 is F5 where w00 = 2 because
c−1,0 = c1,0 = 1, c00 = 0 (see (5)). As will be seen
below, bins j for which wj0 6= 0 have an effect on the
scaling of the FI w.r.t. 4.

Example 1. Hypothetically, one could construct em-
bedding operations with wj0 6= 0 for all j, such as
a scheme that does not embed in bins 3j and always
changes 3j − 1 and 3j + 1 into 3j.

Note that wj1 = 0 for embedding operations that are
“symmetrical” in the sense that they modify each value
of the cover by ±(i − j) with equal probabilities, e.g.,
for LSBM. For LSBR, symJsteg, and F5 (at j 6= 0),
|wj1| = 1. Finally, in general wj2 > 0 for all embedding
operations except when the embedding does not embed
in bin j (cij = 0 whenever i 6= j). In particular, for all
four embedding operations wj2 = 1 for all j with the
exception of F5, where w02 = 2, and symJsteg where
w0k = 0 for all k ≥ 0.

Definition 1. We define the leading order k? of the
sum (15) at x = j4 as the largest k for which wjl = 0
for all l < k. Furthermore, if |wjk? | = wk? for all j, such
that j4 ∈ I ⊂ R, we say that the embedding operation
is bin-invariant on I. If wjl = 0 for all l ≥ 0, we set
k? = ∞ (as is the case of symJsteg for j = 0). Note that
in general k? ∈ {0, 1, 2, ∞}.

Table 1 summarizes the leading order for the most
common embedding operations used in steganography.
The leading order for F5 is 1 for j 6= 0 and it is equal
to 0 for j = 0. LSBR and LSBM are bin-invariant on R

while F5 and symJsteg are bin-invariant on R − {0} as
they both apply a different embedding rule at j = 0.



The leading order determines the scaling of the FI
through the following theorem.

Theorem 1. Let the embedding operation be bin-
invariant with leading order k? everywhere and f(x) k?+
1 times continuously differentiable. Assuming ∃M > 0,
such that 1) |f (k)(x)| is monotone decreasing for x > M

and 0 ≤ k ≤ k?, 2) ∃δ0 > 0 such that
´∞

M
(f(k?)(x))2

f(x+δ) dx is

convergent in Riemann sense ∀δ ∈ (0, δ0],

lim
4→0+

I4(0)

42k? =
w2

k?

k?!2

∞̂

−∞

(f (k?)(x))2

f(x)
dx. (20)

Discussion: The theorem assumptions are easily es-
tablished for both the GGD and GCD for all k ≥ 0,
k ∈ Z. Assumption 2 essentially requests that f(x) does
not fall to zero too quickly. An example of a p.d.f. that
satisfies 2) for δ = 0 but not for any δ > 0 is the double
exponential, exp(− exp(x2)).

The theorem is proved by writing I4(0) as a sum of
three partial sums, I4(0) = s−∞,−M + s−M,M + sM,∞,
where

sm1,m2 (4) =
∑

m1≤j4≤m2

(
∑

i cijF4(i4))
2

F4(j4)
. (21)

After substituting (18) and (13) into the numerator and
denominator, respectively, the infinite partial sums are
shown to be 42k?

× o(M) due to the restrictions at ∞
imposed on f .

The result can be easily extended to non-even densi-
ties by imposing assumptions 1) and 2) at both ±∞. It
can also be generalized to embedding operations that are
not bin-invariant. Quite often, special embedding rules
are adopted at j = 0. For example, the F5 embedding
operation has w00 6= 0 in which case, I4(0) ∝ 41 since
at most 2L + 1 bins (a number which does not depend
on 4) are affected. In general, modifying the embedding
rule so that the leading order is k′ < k? for finitely many
bins j changes the scaling from 42k?

to 42k′+1. Finally,
note that I4(0) ∝ 40 for the operation from Example 1
since k? = 0 for all j.

3.2. f with singularity

We restrict our study to precover densities with a sole
singularity at x = 0. Since the analysis of partial sums
on unbounded intervals and on closed intervals not con-
taining x = 0 is covered by Theorem 1, we divide the
treatment to 1) an immediate neighborhood of the singu-

larity (partial sums on [(L + 2)4, ε] for a fixed ε > 0)
and 2) at singularity (the remaining 2L + 3 terms j for
|j| ≤ L + 1). If the singularity is such that f is not dif-
ferentiable at x = 0 but the one-sided derivatives exist

Table 2. Scaling of the sum s(L+2)4,ε near the singu-
larity for the GGD.

k? s(L+2)4,ε α

1 41+2α α ≤ 1/2

42 α > 1/2

2 41+2α α ≤ 3/2
44 α > 3/2

Table 3. Scaling of Fisher information I4(0) w.r.t. the
quantization step 4 for four embedding operations for
the GGD and GCD; α > 0 is the shape parameter of
GGD. The scaling is invariant to the shape parameter τ
of the GCD.

Embedding GGD GCD

LSBM 4min{4,1+2α} 43

LSBR 4min{2,1+2α} 42

F5 4 4
symJsteg 4min{2,1+2α} 42

and are bounded, the scaling of s(L+2)4,ε is again given
by Theorem 1 (e.g., for the GCD). The case when the
derivatives are unbounded at zero is covered by the fol-
lowing theorem.

Theorem 2. Assuming the embedding operation is bin-
invariant on R− {0} with leading order k? ≥ 1 and f(x)
has a singularity at x = 0 such that on some neighbor-
hood of zero, f (k?)(x) = g(x)|x|−n, n > 0 for a continu-
ous g(x) with g(0) 6= 0, for all sufficiently small ε > 0,

s(L+2)4,ε =

{

Θ(42k?+1−2n) when n ≥ 1/2,

Θ(42k?

) when n < 1/2.
(22)

Discussion: The proof starts with rewriting (18)
using the fact that

∑

i γif(xi) = f(x)
∑

i γi, x ∈
[mini xi, maxi xi], for any f continuous when all γi are of
the same sign. Then, thanks to the assumption on the
k?th derivative, the sum over j can be squeezed between
two integrals that are shown to exhibit the same scaling.

Since for the GGD (10), f ′(x) ≈ |x|α−1 and f ′′(x) ≈
|x|α−2 at x = 0, Theorem 2 gives the scaling of the par-
tial sum summarized in Table (2).

Instead of providing a general result at the singular-
ity, we show how the scaling of the remaining 2L + 3
terms of the partial sum for |j| ≤ L + 1 can be obtained
for a specific embedding algorithm. The assumptions of
Theorem 2 imply the following form of the density

f(x) = a0 − a1|x|λ + o(|x|λ) at x = 0, (23)

for some λ > 0, a0 > 0, and |a1| > 0. Thus, the scal-

ing of the terms 1
pj

(
∑

i cijpi)
2

in (9), |j| ≤ L + 1, can



be obtained simply by determining λ and evaluating the
integrals (1). Carrying out these steps allows us to ob-
tain in the next section a complete scaling result for the
four embedding operations listed in Section (2) and two
precover distributions.

4. GG AND GC PRECOVERS

GGD: By combining the scaling in the immediate neigh-
borhood of the singularity (Table 2) with the fact that
fGG(x) ≈ exp(−|x|α/b) = 1−|x|α/b+o(|x|α) =⇒ λ = α
in (23), we obtain the result shown in the second col-
umn of Table 3 graphically rendered in Figure 1. The
results are verified using simulations obtained by evalu-
ating pj (1) in the sum (9) by numerical integration.

GCD: The derivative does not exist at zero but the
one-sided ones do and are bounded. The scaling will
thus be determined solely by the 2L + 3 terms at the
singularity. The expansion of (11) at zero is

fGC(x) =
τ − 1

b

(

1 −
τ

b
|x| +

τ(τ + 1)

b2
a2x2 + · · ·

)

,

(24)
which means that λ = 1 independently of the shape pa-
rameter τ . Since for LSBM all bins with the exception
of −1, 0, 1 scale as 44 (k? = 2, see Section 3), the re-
sulting scaling for the GCD is 41+2λ = 43. For LSBR
and symJsteg, the scaling at smooth points is 42 (since
k? = 1) while the scaling at bin 0 is 43, giving the final
scaling 42 for both algorithms for all τ > 0. Finally, for
the F5 operation, the scaling is determined by the zero
bin, which scales as 41 for all τ . The scaling for the
GCD is summarized in the third column of Table 3.

5. SCALING IN PRACTICE

The original SRL is quite robust in the sense that
even though it has been established only for artificial
cover sources, such as Markov chains, it manifests quite
robustly for empirical cover sources despite the fact
that practitioners build detectors using machine learn-
ing rather than as likelihood ratio tests and that pixels
(transform coefficients) are quite heterogeneous and non
stationary.

The scaling of the FI w.r.t. the quantization step un-
doubtedly manifests in practice as well. However, the
specific scaling strongly depends on the precover distri-
bution. For example, while both the GGD and GCD
are commonly used for modeling transform coefficients,
both models lead to quite different scaling (see Table 3).
Even though one could conceivably conduct an experi-
ment with a database of images compressed with a range
of JPEG quality factors and perform steganalysis using
classifiers implemented using machine learning in some

feature space, relating the results of these experiments
with the theoretical results of this paper derived for i.i.d.
sources is likely not possible. This is mainly because
DCT coefficients form a rather complicated mixture –
each DCT mode has a different distribution that addi-
tionally depends on each image.

There is an additional trouble posed by the limited
number of samples typically available in practice. When
sampling the cover distribution, one must avoid under-
as well as over-sampling. Oversampling (too small 4)
will produce a noisy estimate of the cover distribution,
pj , which will completely change the scaling. On the
contrary, 4 that is too large will not yet exhibit the
limiting behavior when 4 → 0.

Next, we provide a crude qualitative analysis of
the impact of over-sampling. Given a cover object
with N elements from a finite range R, the nor-
malized population of the jth bin, Pj , is a ran-
dom variable whose binomial distribution will be ap-
proximated with a Gaussian Pj ∼ N(pj , pj(1 −
pj)/N). If Pj were independent, the expected value

of (
∑

i cijPi)
2

= (
∑

i cijpi +
∑

i cij(Pi − pi))
2

would be

µ2
j = (

∑

i cijpi)
2

+
∑

i c2
ijpi(1 − pi)/N . Since in prac-

tice, there will be finitely many bins, j4 ∈ R ⊂ [−R, R],
where R is the dynamic range of X ,

E





∑

j∈R

(
∑

i cijPi)
2

Pj





.
=
∑

j∈R

µ2
j

pj
= I4(0) (25)

+
∑

j∈R

∑

i c2
ijpi(1 − pi)

Npj
∝

1

N4
. (26)

because I(0) ∝ 4s with s ≥ 0 and |R| is inversely pro-
portional to the quantization step 4.

To assess how the scaling might manifest in practice,
we generated N = 104 − 108 i.i.d. samples from a GGD
with α = 1.5 and b = 1 and computed I4(0) for a range
of 4. The result shown in Figure 2 confirms the crude
analysis of over-sampling with the scaling exponent s

.
=

−1 for small 4. The scaling matches the theoretical
result, s

.
= 1+2α = 4, for midrange values and breaks up

when 4 becomes too large. The range of proper scaling
gets smaller with decreasing N .

6. CONCLUSION

The square root law of imperfect steganography con-
nects statistical detectability with the cover size and the
change rate in the asymptotic limit of large covers and
small change rates. The current paper extends this law
to the case when the cover object is obtained by quan-
tizing a precover that follows a continuous-valued distri-
bution. In particular, constant statistical detectability is
obtained when Nβ24s = const., where N is the cover
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Fig. 1. Scaling exponent s versus the parameter α for
the generalized Gaussian precover model and four em-
bedding operations. Solid lines show the theoretical re-
sult; the markers are from numerical simulations.

size, β the change rate, and s the scaling exponent w.r.t.
the quantization step 4 that tends to zero. The scaling
exponent is determined jointly by the embedding oper-
ation and the smoothness of the precover distribution.
In general, s is larger for smoother distributions and for
embedding operations that act as low-pass filters of the
first-order statistic of cover samples.

This work reveals a connection between statistical de-
tectability and the complex interplay between the pre-
cover distribution and the embedding operation. This is
relevant for understanding the effect of color bit depth
and/or the JPEG quality factor on security. However,
unlike the original square root law, which is quite robust,
the scaling w.r.t. 4 strongly depends on the precover
distribution, which prevents theoretical quantification of
scaling in empirical sources analyzed with empirical de-
tectors.
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