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Abstract—This paper proposes a complete practical method-
ology for minimizing additive distortion in steganography with
general (non-binary) embedding operation. Let every possible
value of every stego element be assigned a scalar expressingthe
distortion of an embedding change done by replacing the cover
element by this value. The total distortion is assumed to be a
sum of per-element distortions. Both the payload-limited sender
(minimizing the total distortion while embedding a fixed payload)
and the distortion-limited sender (maximizing the payloadwhile
introducing a fixed total distortion) are considered. Without
any loss of performance, the non-binary case is decomposed
into several binary cases by replacing individual bits in cover
elements. The binary case is approached using a novel syndrome-
coding scheme based on dual convolutional codes equipped with
the Viterbi algorithm. This fast and very versatile solution
achieves state-of-the-art results in steganographic applications
while having linear time and space complexity w.r.t. the number
of cover elements. We report extensive experimental results for a
large set of relative payloads and for different distortionprofiles,
including the wet paper channel. Practical merit of this approach
is validated by constructing and testing adaptive embedding
schemes for digital images in raster and transform domains.
Most current coding schemes used in steganography (matrix
embedding, wet paper codes, etc.) and many new ones can be
implemented using this framework.

Index Terms—Steganography, embedding impact, matrix em-
bedding, wet paper codes, trellis-coded quantization, convolu-
tional codes, coding loss

I. I NTRODUCTION

T HERE exist two mainstream approaches to steganogra-
phy in empirical covers, such as digital media objects:

steganography designed to preserve a chosen cover model and
steganography minimizing a heuristically-defined embedding
distortion. The strong argument for the former strategy is
that provable undetectability can be achieved w.r.t. a specific
model. The disadvantage is that an adversary can usually rather
easily identify statistical quantities that go beyond the chosen
model that allow reliable detection of embedding changes. The
latter strategy is more pragmatic – it abandons modeling the
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cover source and instead tells the steganographer to embed
payload while minimizing a distortion function. In doing so, it
gives up any ambitions for perfect security. Although this may
seem as a costly sacrifice, it is not, as empirical covers have
been argued to be incognizable [1], which prevents model-
preserving approaches from being perfectly secure as well.

While we admit that the relationship between distortion and
steganographic security is far from clear, embedding while
minimizing a distortion function is an easier problem than
embedding with a steganographic constraint (preserving the
distribution of covers). It is also more flexible, allowing the
results obtained from experiments with blind steganalyzers to
drive the design of the distortion function. In fact, today’s least
detectable steganographic schemes for digital images [2],[3],
[4], [5] were designed using this principle. Moreover, when
the distortion is defined as a norm between feature vectors
extracted from cover and stego objects, minimizing distortion
becomes tightly connected with model preservation insofar
the features can be considered as a low-dimensional model
of covers. This line of reasoning already appeared in [6], [5]
and was further developed in [7].

With the exception of [7], steganographers work with
additive distortion functions obtained as a sum of single-
letter distortions. A well-known example is matrix embedding
where the sender minimizes the total number of embedding
changes. Near-optimal coding schemes for this problem ap-
peared in [8], [9], together with other clever constructions and
extensions [10], [11], [12], [13], [14], [15]. When the single-
letter distortions vary across the cover elements, reflecting
thus different costs of individual embedding changes, current
coding methods are highly suboptimal [2], [4].

This paper provides a general methodology for embedding
while minimizing an arbitrary additive distortion function with
a performance near the theoretical bound. We present a com-
plete methodology for solving both the payload-limited and
the distortion-limited sender. The implementation described in
this paper uses standard signal processing tools – convolutional
codes with a trellis quantizer – and adapts them to our problem
by working with their dual representation. These codes, which
we call the Syndrome–Trellis Codes (STCs), can directly
improve the security of many existing steganographic schemes,
allowing them to communicate larger payloads at the same
embedding distortion or to decrease the distortion for a given
payload. Additionally, this work allows an iterative design of
new embedding algorithms by making successive adjustments
to the distortion function to minimize detectability measured
using blind steganalyzers on real cover sources [16], [4], [5].

This paper is organized as follows. In the next section, we
introduce the central notion of a distortion function. The prob-



2

lem of embedding while minimizing distortion is formulated
in Section III, where we introduce theoretical performance
bounds as well as quantities for evaluating the performanceof
practical algorithms with respect to each other and the bounds.
The syndrome coding method for steganographic communica-
tion is reviewed in Section IV. By pointing out the limitations
of previous approaches, we motivate our contribution, which
starts in Section V, where we introduce a class of syndrome-
trellis codes for binary embedding operations. We describe
the construction and optimization of the codes and provide
extensive experimental results on different distortion profiles
including the wet paper channel. In Section VI, we show how
to decompose the problem of embedding using non-binary
embedding operations to a series of binary problems using
a multi-layered approach so that practical algorithms can be
realized using binary STCs. The application and merit of the
proposed coding construction is demonstrated experimentally
in Section VII on covers formed by digital images in raster
and transform (JPEG) domains. Both the binary and non-
binary versions of payload- and distortion-limited senders are
tested by blind steganalysis. Finally, the paper is concluded in
Section VIII.

This paper is a journal version of [17] and [18], where the
STCs and the multi-layered construction were introduced. This
paper unifies these methods into a complete and self-contained
framework. Novel performance results and comparisons are
included.

All logarithms in this paper are at the base of2. We
use the Iverson bracket[I] defined to be1 if the logical
expressionI is true and zero otherwise. The binary entropy
function h(x) = −x log x − (1 − x) log(1 − x) is expressed
in bits. The calligraphic font will be used solely for sets,
random variables will be typeset in capital letters, while their
corresponding realizations will be in lower-case. Vectorswill
be always typeset in boldface lower case, while we reserve the
blackboard style for matrices (e.g.,Ai,j is theijth element of
matrix A).

II. D ISTORTION FUNCTION

For concreteness, and without loss of generality, we will call
x image andxi its ith pixel, even though other interpretations
are certainly possible. For example,xi may represent an RGB
triple in a color image, a quantized DCT coefficient in a JPEG
file, etc. Letx = (x1, . . . , xn) ∈ X = {I}n be ann-pixel
cover image with the pixel dynamic rangeI. For example,
I = {0, . . . , 255} for 8-bit grayscale images.

The sender communicates a message to the receiver by
introducing modifications to the cover image and sending a
stego imagey = (y1, . . . , yn) ∈ Y = I1 × I2 × · · · × In,
whereIi ⊂ I are such thatxi ∈ Ii. We call the embedding
operationbinary if |Ii| = 2, or ternary if |Ii| = 3 for every
pixel i. For example,±1 embedding (sometimes called LSB
matching) can be represented byIi = {xi − 1, xi, xi + 1}
with appropriate modifications at the boundary of the dynamic
range.

The impact of embedding modifications will be measured
using a distortion functionD. The sender will strive to embed

payload while minimizingD. In this paper, we limit ourselves
to an additiveD in the form1

D(x,y) =

n
∑

i=1

ρi(x, yi), (1)

whereρi : X × Ii → [−K,K], 0 < K < ∞, are bounded
functions expressing the cost of replacing the cover pixelxi

with yi. Note thatρi may arbitrarily depend on the entire
cover imagex, allowing thus the sender to incorporate inter-
pixel dependencies [5]. The fact that the value ofρi(x, yi) is
independent of changes made at other pixels implies that the
embedding changes do not interact.

The boundedness ofD(x,y) is not limiting the sender in
practice since the case when a particular valueyi is forbid-
den (a requirement often found in practical steganographic
schemes [16]) can be resolved by excludingyi from Ii. In
practice, the setsIi, i ∈ {1, . . . , n}, may depend on cover
pixels and thus may not be available to the receiver. To handle
this case, we expand the domain ofρi to X × I and define
ρi(x, yi) = ∞ wheneveryi /∈ Ii.

We intentionally keep the definition of the distortion func-
tion rather general. In particular, we donot requireρi(x, xi) ≤
ρi(x, yi) for all yi ∈ Ii to allow for the case when it is actually
beneficial to make an embedding change instead of leaving the
pixel unchanged. An example of this situation appears in [7].

III. PROBLEM FORMULATION

This section contains a formal definition of the problem of
embedding while minimizing a distortion function. We state
the performance bounds and define some numerical quantities
that will be used to compare coding methods w.r.t. each other
and to the bounds.

We assume the sender obtains her payload in the form
of a pseudo-random bit stream, such as by compressing or
encrypting the original message. We further assume that the
embedding algorithm associates every cover imagex with
a pair {Y, π}, whereY is the set of all stego images into
whichx can be modified andπ is their probability distribution
characterizing the sender’s actions,π(y) , P (Y = y|x).
Since the choice of{Y, π} depends on the cover image, all
concepts derived from these quantities necessarily dependon
x as well. We think ofx as a constant parameter that isfixed
in the very beginningand thus we do not further denote the
dependency on it explicitly. For this reason, we simply write
D(y) , D(x,y).

If the receiver knewx, the sender could send up to

H(π) = −
∑

y∈Y

π(y) log π(y) (2)

bits on average while introducing the average distortion

Eπ[D] =
∑

y∈Y

π(y)D(y) (3)

by choosing the stego image according toπ. By the Gel’fand–
Pinsker theorem [19], the knowledge ofx does not give

1The case of embedding with non-additive distortion functions is addressed
in [7] by converting it to a sequence of embeddings with an additive distortion.
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any fundamental advantage to the receiver and the same
performance can be achieved as long asx is known to the
sender. Indeed, none of the practical embedding algorithms
introduced in this paper requires the knowledge ofx or D for
reading the message.

The task of embedding while minimizing distortion can
assume two forms:

• Payload-limited sender (PLS):embed afixed average
payloadof m bits while minimizing the average distor-
tion,

minimize
π

Eπ[D] subject toH(π) = m. (4)

• Distortion-limited sender (DLS): maximize the average
payload while introducing afixed average distortionDǫ,

maximize
π

H(π) subject toEπ[D] = Dǫ. (5)

The problem of embedding a fixed-size message while min-
imizing the total distortionD (the PLS) is more commonly
used in steganography when compared to the DLS. When the
distortion function is content-driven, the sender may choose
to maximize the payload with a constraint on the overall
distortion. This DLS corresponds to a more intuitive use of
steganography since images with different level of noise and
texture can carry different amount of hidden payload and thus
the distortion should be fixed instead of the payload (as longas
the distortion corresponds to statistical detectability). The fact
that the payload is driven by the image content is essentially
a case of the batch-steganography paradigm [20].

A. Performance bounds and comparison metrics

Both embedding problems described above bear relationship
to the problem of source coding with a fidelity criterion as
described by Shannon [21] and the problem of source coding
with side information available at the transmitter, the so-called
Gel’fand-Pinsker problem [19]. Problems (4) and (5) are dual
to each other, meaning that the optimal distribution for the
first problem is, for some value ofDǫ, also optimal for the
second one. Following the maximum entropy principle [22,
Th. 12.1.1], the optimal solution has the form of a Gibbs
distribution (see Appendix A in [8] for derivation):

π(y) =
exp(−λD(y))

Z(λ)

(a)
=

n
∏

i=1

exp(−λρi(yi))

Zi(λ)
,

n
∏

i=1

πi(yi),

(6)
where the parameterλ ∈ [0,∞) is obtained from the
corresponding constraints (4) or (5) by solving an alge-
braic equation;2 Z(λ) =

∑

y∈Y exp(−λD(y)), Zi(λ) =
∑

yi∈Ii
exp(−λρi(yi)) are the corresponding partition func-

tions. Step (a) follows from the additivity ofD, which also
leads to mutual independence of individual stego pixelsyi
givenx.

By changing each pixeli with probability πi (6) one
can simulate embedding with optimalπ. This is important
for steganography developers who can test the security of a

2A simple binary search will do the job because bothH(π) andEπ[D]
are monotone w.r.t.λ.

scheme that uses the pair{Y, π} using blind steganalysis with-
out having to implement a practical embedding algorithm. The
simulator of optimal embedding can also be used to assess the
increase in statistical detectability of a practical (suboptimal)
algorithm w.r.t. to the optimal one. This separation princi-
ple [7] simplifies the search for better distortion measuressince
only the most promising approaches can be implemented. In
Section VII, we use the simulators to benchmark different
coding algorithms we develop in this paper by comparing the
security of practical schemes using blind steganalysis.

An established way of evaluating coding algorithms in
steganography is to compare theembedding efficiencye(α) =
αn/Eπ[D] (in bits per unit distortion) for a fixed expected
relative payloadα = m/n with the upper bound derived
from (6). When the number of changes is minimized,e is
the average number of bits hidden per embedding change. For
general functionsρi, the interpretation of this metric becomes
less clear. A different and more easily interpretable metric is
to compare the payload,m, of an embedding algorithm w.r.t.
the payload,mMAX, of the optimal DLS for a fixedDǫ,

l(Dǫ) =
mMAX −m

mMAX
, (7)

which we call thecoding loss.

B. Binary embedding operation

In this section, we show that for binary embedding opera-
tions, it is enough to consider a slightly narrower class of dis-
tortion functions without experiencing any loss of generality.
The binary case is very important as the embedding method
introduced in this paper is first developed for this special case
and then extended to non-binary operations.

For binary embedding withIi = {xi, xi}, xi 6= xi, we
define ρmin

i = min{ρi(x, xi), ρi(x, xi)}, ̺i = |ρi(x, xi) −
ρi(x, xi)| ≥ 0, and rewrite (1) as:

D(x,y) =
n
∑

i=1

ρmin
i +

n
∑

i=1

̺i · [ρ
min
i < ρi(x, yi)]. (8)

Because the first sum does not depend ony, when minimizing
D overy it is enough to consider only the second term. It now
becomes clear that embedding in coverx while minimizing (8)
is equivalent to embedding in coverz

zi =

{

xi whenρmin
i = ρi(x, xi)

xi whenρmin
i = ρi(x, xi).

(9)

while minimizing

D̃(z,y) =

n
∑

i=1

ρ̃i(z, yi) ,

n
∑

i=1

̺i · [yi 6= zi], (10)

with non-negative costs̃ρi(z, zi) = 0 ≤ ρ̃i(z, zi) = ̺i for all
i (when the cover pixelzi is changed tōzi, the distortionD̃
always increases). Thus, from now on for binary embedding
operations, we will always consider distortion functions of the
form:

D(x,y) =

n
∑

i=1

̺i · [yi 6= xi], (11)
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Figure 1. Lower bound on the average per-pixel distortion,Eπ[D]/n, as a
function of relative payloadα for different distortion profiles.

with ̺i ≥ 0.

For example, F5 [23] uses the distortion function (11) with
̺i = 1 (the number of embedding changes), while nsF5 [16]
employs wet paper codes, where̺i ∈ {1,∞}. In some embed-
ding algorithms [24], [2], [4], where the cover is preprocessed
and quantized before embedding,̺i is proportional to the
quantization error at pixelxi.

Additionally, for binary embedding operations we speak of
a distortion profile̺ if ̺i = ̺(i/n) for all i, where̺ is a
non-decreasing3 function ̺ : [0, 1] → [0,K]. The following
distortion profiles are of interest in steganography (this is not
an exhaustive list): theconstant profile, ̺(x) = 1, when all
pixels have the same impact on detectability when changed;
the linear profile, ̺(x) = 2x, when the distortion is related
to a quantization error uniformly distributed on[−Q/2, Q/2]
for some quantization stepQ > 0; and thesquare profile,
̺(x) = 3x2, which can be encountered when the distortion is
related to a quantization error that is not uniformly distributed.

In this paper, we normalize the profile̺so thatEπ[D]/n =
∑n

i=1 πi̺i/n = 0.5 when embedding a full payloadm = n.
With this convention, Figure 1 displays the lower bounds on
the average per-pixel distortion for three distortion profiles.

In practice, some cover pixels may requireIi = {xi} and
thus ̺i = ∞ (the so-calledwet pixels [24], [25], [16]) to
prevent the embedding algorithm from modifying them. Since
such pixels are essentially constant, in this case we measure the
relative payloadα with respect to the set ofdry pixels{xi|̺i <
∞}, i.e.,α = m/|{xi|̺i < ∞}|. The overall channel is called
the wet paper channel and it is characterized by the profile̺
of dry pixels andrelative wetnessτ = |{xi|̺i = ∞}|/n. The
wet paper channel is often required when working with images
in the JPEG domain [16].

3By reindexing the pixels, we can indeed assume that̺1 ≤ ̺2 ≤ · · · ≤
̺n ≤ K.

IV. SYNDROME CODING

The PLS and the DLS can be realized in practice using a
general methodology calledsyndrome coding. In this section,
we briefly review this approach and its history paving our way
to Section V and VI, where we explain the main contribution
of this paper – the syndrome-trellis codes.

Let us first assume a binary version of both embedding
problems. LetP : Ii → {0, 1} be a parity function shared
between the sender and the receiver satisfyingP(xi) 6= P(yi)
such asP(x) = x mod 2. The sender and the receiver need to
implement the embedding and extraction mappings defined as
Emb : X × {0, 1}m → Y andExt : Y → {0, 1}m satisfying

Ext(Emb(x,m)) = m ∀x ∈ X , ∀m ∈ {0, 1}m,

respectively. In particular, we do not assume the knowledge
of the distortion functionD at the receiver and thus the
embedding scheme can be seen as being universal in this sense.
A common information-theoretic strategy for solving the PLS
problem is known as binning [26], which we implement using
cosets of a linear code. Such a construction, better known as
syndrome coding, is capacity achieving for the PLS problem
if random linear codes are used.

In syndrome coding, the embedding and extraction map-
pings are realized using a binary linear codeC of length n
and dimensionn−m:

Emb(x,m) = arg min
P(y)∈C(m)

D(x,y), (12)

Ext(y) = HP(y), (13)

where P(y) = (P(y1), . . . ,P(yn)), H ∈ {0, 1}m×n is
a parity-check matrix of the codeC, C(m) = {z ∈
{0, 1}n|Hz = m} is the coset corresponding to syndrome
m, and all operations are in binary arithmetic.

Unfortunately, random linear codes are not practical due
to the exponential complexity of the optimal binary coset
quantizer (12), which is the most challenging part of the
problem. In this work, we describe a rich class of codes for
which the quantizer can be solved optimally with linear time
and space complexity w.r.t.n.

Since the DLS is a dual problem to the PLS, it can be solved
by (12) and (13) once an appropriate message sizem is known.
This can be obtained in practice bym = mMAX(1−l′), where
mMAX = H(πλ) is the maximal average payload obtained
from the optimal distribution (6) achieving average distortion
Dǫ andl′ is an experimentally-obtained coding loss we expect
the algorithm will achieve.

One possible approach for solving a non-binary version of
both embedding problems is to increase the size of the alphabet
and use (12) and (13) with a non-binary codeC, such as
the ternary Hamming code. A more practical alternative with
lower complexity is the multi-layered construction proposed
in Section VI, which decomposes (12) and (13) into a series
of binary embedding subproblems. Such decomposition leads
to the optimal solution of PLS and DLS as long as each binary
subproblem is solved optimally. For this reason, in SectionV
we focus on the binary PLS problem for a large variety of
relative payloads and different distortion profiles including the
wet paper channel.
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A. Prior Art

The problem of minimizing the embedding impact in
steganography, introduced above as the PLS problem, has been
already conceptually described by Crandall [27] in his essay
posted on the steganography mailing list in1998. He suggested
that whenever the encoder embeds at most one bit per pixel,
it should make use of the embedding impact defined for every
pixel and minimize its total sum:

“Conceptually, the encoder examines an area of the
image and weights each of the options that allow
it to embed the desired bits in that area. It scores
each option for how conspicuous it is and chooses
the option with the best score.”

Later, Bierbrauer [28], [29] studied a special case of this
problem and described a connection between codes (not nec-
essarily linear) and the problem of minimizing the number of
changed pixels (the constant profile). This connection, which
has become known as matrix embedding (encoding), was
made famous among steganographers by Westfeld [23] who
incorporated it in his F5 algorithm. A binary Hamming code
was used to implement the syndrome-coding scheme for the
constant profile. Later on, different authors suggested other
linear codes, such as Golay [30], BCH [31], random codes
of small dimension [32], and non-linear codes based on the
idea of a blockwise direct sum [29]. Current state-of-the-art
methods use codes based on Low Density Generator Matrices
(LDGMs) [8] in combination with the ZZW construction [15].
The embedding efficiency of these codes stays rather close to
the bound for arbitrarily small relative payloads [33].

The versatile syndrome-coding approach can also be used
to communicate via the wet paper channel using the so-called
wet paper codes [24]. Wet paper codes minimizing the number
of changed dry pixels were described in [34], [31], [14], [13].

Even though other distortion profiles, such as the linear pro-
file, are of great interest to steganography, no general solution
with performance close to the bound is currently known. The
authors of [2] approached the PLS problem by minimizing the
distortion on a block-by-block basis utilizing a Hamming code
and a suboptimal quantizer implemented using a brute-force
search that allows up to three embedding changes. Such an
approach, however, provides highly suboptimal performance
far from the theoretical bound (see Figure 8). A similar
approach based on BCH codes and a brute-force quantizer
was described in [4] achieving a slightly better performance
than Hamming codes. Neither Hamming or BCH codes can
be used to deal with the wet paper channel without significant
performance loss. To the best of our knowledge, no solution
is known that could be used to solve the PLS problem with
arbitrary distortion profile containing wet pixels.

One promising direction towards replacing the random
linear codes while keeping the optimality of the construction
has recently been proposed by Arikan [35], who introduced
the so-called polar codes for the channel coding problem. One
advantage is that the complexity of encoding and decoding
algorithms for polar codes isn logn. Moreover, most of the
capacity-achieving properties of random linear codes are re-
tained even for other information-theoretic problems and thus

polar codes are known to be optimal for the PLS problem [36]
(at least for the uniform profile). Unfortunately, to apply such
codes, the number of pixels,n, must be very high, which
may not be always satisfied in practice. We believe that the
proposed syndrome-trellis codes offer better trade-offs when
used in practical embedding schemes.

V. SYNDROME-TRELLIS CODES

In this section, we focus on solving the binary PLS problem
with distortion function (10) and modify a standard trellis-
coding strategy for steganography. The resulting codes are
called the syndrome-trellis codes. These codes will serve as
a building block for non-binary PLS and DLS problems in
Section VI.

The construction behind STCs is not new from an
information-theoretic perspective, since the STCs are convolu-
tional codes represented in a dual domain. However, STCs are
very interesting for practical steganography since they allow
solving both embedding problems with a very small coding
loss over a wide range of distortion profiles even with wet
pixels. The same code can be used with all profiles making the
embedding algorithm practically universal. STCs offer general
and state-of-the-art solution for both embedding problemsin
steganography. Here, we give the description of the codes
along with their graphical representation, the syndrome trellis.
Such construction is prepared for the Viterbi algorithm, which
is optimal for solving (12). Important practical guidelines
for optimizing the codes and using them for the wet paper
channel are also covered. Finally, we study the performanceof
these codes by extensive numerical simulations using different
distortion profiles including the wet paper channel.

Syndrome-trellis codes targeted to applications in steganog-
raphy were described in [17], which was written for practi-
tioners. In this paper, we expect the reader to have a working
knowledge of convolutional codes which are often used in
data-hiding applications such as digital watermarking. Convo-
lutional codes are otherwise described in Chapters 25 and 48
in [37]. For a complete example of the Viterbi algorithm used
in the context of STCs, we refer the reader to [17].

Our main goal is to develop efficient syndrome-coding
schemes for anarbitrary relative payloadα with the main
focus on small relative payloads (think ofα ≤ 1/2 for
example). In steganography, the relative payload must decrease
with increasing size of the cover object in order to maintainthe
same level of security, which is a consequence of the square
root law [38]. Moreover, recent results from steganalysis in
both spatial [39] and DCT domains [40] suggest that the
secure payload for digital image steganography is always far
below 1/2. Another reason for targeting smaller payloads is
the fact that asα → 1, all binary embedding algorithms tend to
introduce changes with probability1/2, no matter how optimal
they are. Denoting withR = (n − m)/n the rate of the
linear codeC, thenα → 0 translates toR = 1 − α → 1,
which is characteristic for applications of syndrome coding in
steganography.
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A. From convolutional codes to syndrome-trellis codes

Since Shannon [21] introduced the problem of source cod-
ing with a fidelity criterion in 1959, convolutional codes were
probably the first “practical” codes used for this problem [41].
This is because the gap between the bound on the expected
per-pixel distortion and the distortion obtained using the
optimal encoding algorithm (the Viterbi algorithm) decreases
exponentially with the constraint length of the code [41], [42].
The complexity of the Viterbi algorithm is linear in the block
length of the code, but exponential in its constraint length(the
number of trellis states grows exponentially in the constraint
length).

When adapted to the PLS problem, convolutional codes can
be used for syndrome coding since the best stego image in
(12) can be found using the Viterbi algorithm. This makes
convolutional codes (of small constraint length) suitablefor
our application because the entire cover object can be used
and the speed can be traded for performance by adjusting
the constraint length. Note that the receiver does not need to
know D since only the Viterbi algorithm requires this knowl-
edge. By increasing the constraint length, we can achieve
the average per-pixel distortion that is arbitrarily closeto the
bounds and thus make the coding loss (7) approach zero.
Convolutional codes are often represented with shift-registers
(see Chapter 48 in [37]) that generate the codeword from
a set of information bits. In channel coding, codes of rates
R = 1/k for k = 2, 3, . . . are usually considered for their
simple implementation.

Convolutional codes in standard trellis representation are
commonly used in problems that are dual to the PLS prob-
lem, such as the distributed source coding [43]. The main
drawback of convolutional codes, when implemented using
shift-registers, comes from our requirement of small rela-
tive payloads (code rates close to one) which is specific to
steganography. A convolutional code of rateR = (k − 1)/k
requiresk − 1 shift registers in order to implement a scheme
for α = 1/k. Here, unfortunately, the complexity of the
Viterbi algorithm in this construction grows exponentially
with k. Instead of using puncturing (see Chapter 48 in [37]),
which is often used to construct high-rate convolutional codes,
we prefer to represent the convolutional code in the dual
domain using its parity-check matrix. In fact, Sidorenko and
Zyablov [44] showed that optimal decoding of convolutional
codes (our binary quantizer) with ratesR = (k− 1)/k can be

carried out in the dual domain on the syndrome trellis with a
much lower complexity and without any loss of performance.
This approach is more efficient asα → 0 and thus we choose
it for the construction of the codes presented in this paper.

In the dual domain, a code of lengthn is represented by a
parity-check matrix instead of a generator matrix as is more
common for convolutional codes. Working directly in the dual
domain allows the Viterbi algorithm to exactly implement the
coset quantizer required for the embedding function (12). The
message can be extracted in a straightforward manner by the
recipient using the shared parity-check matrix.

B. Description of syndrome-trellis codes

Although syndrome-trellis codes form a class of convo-
lutional codes and thus can be described using a classical
approach with shift-registers, it is advantageous to stay in
the dual domain and describe the code directly by its parity-
check matrix. The parity-check matrixH ∈ {0, 1}m×n of a
binary syndrome-trellis code of lengthn and codimensionm
is obtained by placing a small submatrix̂H of size h × w
along the main diagonal as in Figure 2. The submatricesĤ are
placed next to each other and shifted down by one row leading
to a sparse and bandedH. The heighth of the submatrix
(called theconstraint height) is a design parameter that affects
the algorithm speed and efficiency (typically,6 ≤ h ≤ 15).
The width of Ĥ is dictated by the desired ratio ofm/n,
which coincides with the relative payloadα = m/n when
no wet pixels are present. Ifm/n equals to1/k for some
k ∈ N, selectw = k. For general ratios, findk such that
1/(k+1) < m/n < 1/k. The matrixH will contain a mix of
submatrices of widthk andk+1 so that the final matrixH is of
sizem×n. In this way, we can create a parity-check matrix for
an arbitrary message and code size. The submatrixĤ acts as
an input parameter shared between the sender and the receiver
and its choice is discussed in more detail in Section V-D. For
the sake of simplicity, in the following description we assume
m/n = 1/w and thus the matrixH is of the sizeb × (b · w),
whereb is the number of copies of̂H in H.

Similar to convolutional codes and their trellis representa-
tion, every codeword of an STCC = {z ∈ {0, 1}n|Hz =
0} can be represented as a unique path through a graph
called thesyndrome trellis. Moreover, the syndrome trellis
is parametrized bym and thus can represent members of
arbitrary cosetC(m) = {z ∈ {0, 1}n|Hz = m}. An example
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Forward part of the Viterbi algorithm

1 wght[0] = 0
2 wght[1,...,2^h-1] = infinity
3 indx = indm = 1
4 for i = 1,...,num of blocks (submatrices in H) {
5 for j = 1,...,w { // for each column
6 for k = 0,...,2^h-1 { // for each state
7 w0 = wght[k] + x[indx]*rho[indx]
8 w1 = wght[k XOR H_hat[j]] + (1-x[indx])*rho[indx]
9 path[indx][k] = w1 < w0 ? 1 : 0 // C notation

10 newwght[k] = min(w0, w1)
11 }
12 indx++
13 wght = newwght
14 }
15 // prune states
16 for j = 0,...,2^(h-1)-1
17 wght[j] = wght[2*j + message[indm]]
18 wght[2^(h-1),...,2^h-1] = infinity
19 indm++
20 }

Backward part of the Viterbi alg.

1 embedding_cost = wght[0]
2 state = 0, indx--, indm--
3 for i = num of blocks,...,1 (step -1) {
4 for j = w,...,1 (step -1) {
5 y[indx] = path[indx][state]
6 state = state XOR (y[indx]*H_hat[j])
7 indx--
8 }
9 state = 2*state + message[indm]

10 indm--
11 }

Legend

INPUT: x, message, H_hat
x = (x[1],...,x[n]) cover object
message = (message[1],...,message[m])
H_hat[j] = j th column in int notation

OUTPUT: y, embedding_cost
y = (y[1],...,y[n]) stego object

Figure 3. Pseudocode of the Viterbi algorithm modified for the syndrome trellis.

of the syndrome trellis is shown in Figure 2. More formally,
the syndrome trellis is a graph consisting ofb blocks, each
containing2h(w + 1) nodes organized in a grid ofw + 1
columns and2h rows. The nodes between two adjacent
columns form a bipartite graph, i.e., all edges only connect
nodes from two adjacent columns. Each block of the trellis
represents one submatrix̂H used to obtain the parity-check
matrix H. The nodes in every column are calledstates.

Eachz ∈ {0, 1}n satisfyingHz = m is represented as a
path through the syndrome trellis which represents the process
of calculating the syndrome as a linear combination of the
columns ofH with weights given byz. Each path starts in the
leftmost all-zero state in the trellis and extends to the right.
The path shows the step-by-step calculation of the (partial)
syndrome using more and more bits ofz. For example, the first
two edges in Figure 2, that connect the state00 from column
p0 with states11 and 00 in the next column, correspond to
adding (P(y1) = 1) or not adding (P(y1) = 0) the first column
of H to the syndrome, respectively.4 At the end of the first
block, we terminate all paths for which the first bit of the
partial syndrome does not matchm1. This way, we obtain
a new column of the trellis, which will serve as the starting
column of the next block. This column merely illustrates the
transition of the trellis from representing the partial syndrome
(s1, . . . , sh) to (s2, . . . , sh+1). This operation is repeated at
each block transition in the matrixH and guarantees that2h

states are sufficient to represent the calculation of the partial
syndrome throughout the whole syndrome trellis.

To find the closest stego object, we assign weights to all
trellis edges. The weights of the edges entering the column
with label l, l ∈ {1, . . . , n}, in the syndrome trellis depend on
the lth bit representation of the original cover objectx, P(xl).
If P(xl) = 0, then the horizontal edges (corresponding to not
adding thelth column ofH) have a weight of0 and the edges
corresponding to adding thelth column ofH have a weight of

4The state corresponds to the partial syndrome.

̺l. If P(xl) = 1, the roles of the edges are reversed. Finally,
all edges connecting the individual blocks of the trellis have
zero weight.

The embedding problem (12) for binary embedding can
now be optimally solved by theViterbi algorithm with time
and space complexityO(2hn). This algorithm consists of two
parts, theforward and thebackwardpart. The forward part of
the algorithm consists ofn + b steps. Upon finishing theith
step, we know the shortest path between the leftmost all-zero
state and every state in theith column of the trellis. Thus in
the final,n + bth step, we discover the shortest path through
the entire trellis. During the backward part, the shortest path
is traced back and the parities of the closest stego objectP(y)
are recovered from the edge labels. The Viterbi algorithm
modified for the syndrome trellis is described in Figure 3 using
a pseudocode.

C. Implementation details

The construction of STCs is not constrained to having to
repeat the same submatrix̂H along the diagonal. Any parity-
check matrixH containing at mosth nonzero entries along
the main diagonal will have an efficient representation by its
syndrome trellis and the Viterbi algorithm will have the same
complexityO(2hn). In practice, the trellis is built on the fly
because only the structure of the submatrixĤ is needed (see
the pseudocode in Figure 3). As can be seen from the last two
columns of the trellis in Figure 2, the connectivity between
trellis columns is highly regular which can be used to speed
up the implementation by “vectorizing” the calculations.

In the forward part of the algorithm, we need to store one
bit (the label of the incoming edge) to be able to reconstruct
the path in the backward run. This space complexity is linear
and should not cause any difficulty, since forh = 10,
n = 106, the total of 210 · 106/8 bytes (≈ 122MB) of
space is required. If less space is available, we can always
run the algorithm on smaller blocks, sayn = 104, without
any noticeable performance drop. If we are only interested in
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Figure 4. Embedding efficiency of300 random syndrome-trellis codes satisfying the design rulesfor relative payloadα = 1/2 and constraint heighth = 10.
All codes were evaluated by the Viterbi algorithm with a random cover object ofn = 106 pixels and a random message on the constant, linear, and square
profiles. Codes are shown in the order determined by their embedding efficiency evaluated on the constant profile. This experiment suggests that codes good
for the constant profile are good for other profiles. Codes designed for different relative payloads have a similar behavior.

the total distortionD(y) and not the stego object itself, this
information does not need to be stored at all and only the
forward run of the Viterbi algorithm is required.

D. Design of good syndrome-trellis codes

A natural question regarding practical applications of
syndrome-trellis codes is how to optimize the structure of
Ĥ for fixed parametersh and w and a given profile. IfĤ
depended on the distortion profile, the profile would have to
be somehow communicated to the receiver. Fortunately, this
is not the case and a submatrix̂H optimized for one profile
seems to be good for other profiles as well. In this section,
we study these issues experimentally and describe a practical
algorithm for obtaining good submatrices.

Let us suppose that we wish to design a submatrixĤ

of size h × w for a given constraint heighth and relative
payloadα = 1/w. In [45], authors describe several methods
for calculating the expected distortion of a given convolutional
code when used in the source-coding problem with Hamming
measure (uniform distortion profile). Unfortunately, the com-
putational complexity of these algorithms do not permit us to
use them for the code design. Instead, we rely on estimates
obtained from embedding a pseudo-random message into a
random cover object. The authors were unable to find a better
algorithm than an exhaustive search guided by some simple
design rules.

First, Ĥ should not have identical columns because the
syndrome trellis would contain two or more different paths
with exactly the same weight, which would lead to an overall
decrease in performance. By running an exhaustive search over
small matrices, we have observed that the best submatrices
Ĥ had ones in the first and last rows. For example, when
h = 7 andw = 4, more than97% of the best1000 codes ob-
tained from the exhaustive search satisfied this rule. Thus,we
searched for good matrices among those that did not contain
identical columns and with all bits in the first and last rows set
to 1 (the remaining bits were assigned at random). In practice,
we randomly generated10−1000 submatrices satisfying these
rules and estimated their performance (embedding efficiency)

experimentally by running the Viterbi algorithm with random
covers and messages. For a reliable estimate, cover objectsof
size at leastn = 106 are required.

To investigate the stability of the design w.r.t. to the profile,
the following experiment was conducted. We fixedh = 10 and
w = 2, which correspond to a code withα = 1/2. The code
design procedure was simulated by randomly generating300
submatricesĤ1, . . . , Ĥ300 satisfying the above design rules.
The goodness of the code was evaluated using the embedding
efficiency (e = m/D(x,y)) by running the Viterbi algorithm
on a random cover object (of sizen = 106) and with a
random message. This was repeated independently for all three
profiles from Section III-B. Figure 4 shows the embedding
efficiency after ordering all300 codes by their performance on
the constant profile. Because the codes with a high embedding
efficiency on the constant profile exhibit high efficiency for
the other profiles, we consider the code design to be stable
w.r.t. the profile and use these matrices with other profiles
in practice. All further results are generated by using these
matrices.

E. Wet paper channel

In this section, we investigate how STCs can be used for
the wet paper channel described by relative wetnessτ =
|{i|̺i = ∞}|/n with a given distortion profile of dry pixels.
Although the STCs can be directly applied to this problem,
the probability of not being able to embed a message without
changing any wet pixel may be positive and depends on the
number of wet pixels, the payload, and the code. The goal is
to make this probability very small or to make sure that the
number of wet pixels that must be changed is small (e.g., one
or two). We now describe two different approaches to address
this problem.

Let us assume that the wet channel is iid with probability
of a pixel being wet0 ≤ τ < 1. This assumption is plausible
because the cover pixels can be permuted using a stego key
before embedding. For the wet paper channel, the relative pay-
load is defined w.r.t. the dry pixels asα = m/|{i|ρi < ∞}|.
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Figure 5. Average number of wet pixels out ofn = 106 that need to be
changed to find a solution to (12) using STCs withh = 11.

When designing the code for the wet paper channel withn-
pixel covers, relative wetnessτ , and desired relative payloadα,
the parity-check matrixH has to be of the size[(1− τ)αn]×n.

The random permutation makes the Viterbi algorithm less
likely to fail to embed a message without having to change
some wet pixels. The probability of failure,pw, decreases with
decreasingα andτ and it also depends on the constraint height
h. From practical experiments withn = 106 cover pixels,
τ = 0.8, andh = 10, we estimated from1000 independent
runspw

.
= 0.24 for α = 1/2, pw

.
= 0.009 for α = 1/4, and

pw
.
= 0 for α = 1/10. In practice, the message sizem can

be used as a seed for the pseudo-random number generator.
If the embedding process fails, embeddingm − 1 bits leads
to a different permutation while embedding roughly the same
amount of message. Ink trials, the probability of having to
modify a wet pixel is at mostpkw, which can be made arbitrarily
small.

Alternatively, the sender may allow a small number of wet
pixels to be modified, say one or two, without affecting the
statistical detectability in any significant manner. Making use
of this fact, one can set the distortion of all wet cover pixels
to ˆ̺i = C, C >

∑

̺i<∞ ̺i and ˆ̺i = ̺i for i dry. The weight
c of the best path through the syndrome trellis obtained by the
Viterbi algorithm with distortionˆ̺i can be written in the form
c = ncC + c′, wherenc is the smallest number of wet cover
pixels that had to be changed andc′ is the smallest weight of
the path over the pixels that are allowed to be changed.

Figure 5 shows the average number of wet pixels out ofn =
106 required to be changed in order to solve (12) for STCs with
h = 11. The exact value of̺ i is irrelevant in this experiment
as long as it is finite. This experiment suggests that STCs can
be used with arbitraryτ as long asα ≤ 0.7. As can be seen
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Figure 6. Effect of relative wetnessτ of the wet paper channel with a constant
profile on the embedding efficiency of STCs. The distortion was calculated
w.r.t. the changed dry pixels only andα = m/(n − τn). Each point was
obtained by quantizing a random vector ofn = 106 pixels.
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exponentd for different payloads and constraint heights of STCs. Eachpoint
was obtained by quantizing a random vector ofn = 106 pixels.

from Figure 6, increasing the amount of wet pixels does not
lead to any noticeable difference in embedding efficiency for
constant profile. Similar behavior has been observed for other
profiles and holds as long as the number of changed wet pixels
is small.

F. Experimental results

We have implemented the Viterbi algorithm in C++ and op-
timized its performance by using Streaming SIMD Extensions
instructions. Based on the distortion profile, the algorithm
chooses between the float and 1 byte unsigned integer data
type to represent the weight of the paths in the trellis. The
following results were obtained using an Intel Core2 X6800
2.93GHz CPU machine utilizing a single CPU core.

Using the search described in Section V-D, we found good
syndrome-trellis codes of constraint heighth ∈ {6, . . . , 12}
for relative payloadsα = 1/w, w ∈ {1, . . . , 20}. Some of
these codes can be found in [17, Table 1]. In practice, almost
every code satisfying the design rules is equally good. This
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Figure 8. Embedding efficiency and coding loss of syndrome-trellis codes for three distortion profiles. Each point was obtained by running the Viterbi
algorithm withn = 106 cover pixels. Hamming [2] and BCH [3] codes were applied on a block-by-block basis on cover objects withn = 105 pixels with a
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their block direct sum. For clarity, we present the coding loss results in rangeα ∈ [0.5, 1] only for constraint heighth = 10 of the syndrome-trellis codes.
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Figure 9. Results for the syndrome-trellis codes designed for relative payloadα = 1/2. Left: Average number of cover pixels (×106) quantized per second
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fact can also be seen from Figure 4, where300 random codes
are evaluated over different profiles.

The effect of the profile shape on the coding loss for̺(x) ≈
xd as a function ofd is shown in Figure 7. The coding loss
increases with decreasing relative payloadα. This effect can
be compensated by using a larger constraint heighth.

Figure 8 shows the comparison of syndrome-trellis codes for
three profiles with other codes which are known for a given
profile. The ZZW family [12] applies only to the constant
profile. For a given relative payloadα and constraint height
h, the same submatrix̂H was used for all profiles. This
demonstrates the versatility of the proposed construction, since
the information about the profile does not need to be shared,
or, perhaps more importantly, the profile does not need to be
known a priori for a good performance.

Figure 9 shows the average throughput (the number of
cover pixelsn quantized per second) based on the used data
type. In practice, 1–5 seconds were enough to process a
cover object withn = 106 pixels. In the same figure, we
show the embedding efficiency obtained from very short codes
for the constant profile. This result shows that the average
performance of syndrome-trellis codes quickly approachesits
maximum w.r.t.n. This is again an advantage, since some
applications may require short blocks.

G. STCs in context of other works

The concept of dividing a set of samples into differ-
ent bins (the so-called binning) is a common tool used
for solving many information-theoretic and also data-hiding
problems [26]. From this point of view, the steganographic
embedding problem is a pure source-coding problem, i.e.,
given coverx, what is the “closest” stego objecty in the
bin indexed by the message. In digital watermarking, the
same problem is extended by an attack channel between the
sender and the receiver, which calls for a combination of
good source and channel codes. This combination can be

implemented using nested convolutional (trellis) codes and is
better known as Dirty-paper codes [46]. Different practical
application of the binning concept is in the distributed source
coding problem [43]. Convolutional codes are attractive for
solving these problems mainly because of the existence of the
optimal quantizer – the Viterbi algorithm.

VI. M ULTI -LAYERED CONSTRUCTION

Although it is straightforward to extend STCs to non-binary
alphabets and thus apply them toq-ary embedding operations,
their complexity rapidly increases (the number of states in
the trellis increases from2h to qh for constraint heighth),
limiting thus their performance in practice. In this section, we
introduce a simple layered construction which has been largely
motivated by [10] and can be considered as a generalization
of this work. The main idea is to decompose the problems (4)
and (5) with a non-binary embedding operation into a sequence
of similar problems with a binary embedding operation. Any
solution to the binary PLS embedding problem, such as STCs,
can then be used. This decomposition turns out to be optimal
if each binary embedding problem is solved optimally. The
multi-layered construction was described in [18].

According to (11), the binary coding algorithm for (4) or
(5) is optimal if and only if it modifies each cover pixel with
probability

πi =
exp(−λ̺i)

1 + exp(−λ̺i)
. (14)

For a fixed value ofλ, the values̺i, i = 1, . . . , n, form
sufficient statistic forπ.

A solution to the PLS with a binary embedding operation
can be used to derive the following “Flipping lemma” that we
will heavily use later in this section.

Lemma 1 (Flipping lemma). Given a set of probabilities
{pi}

n
i=1, the sender wants to communicatem =

∑n

i=1 h(pi)
bits by sending bit stringsy = {yi}

n
i=1 such thatP (yi = 0) =
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pi. This can be achieved by a PLS with a binary embedding
operation onI = Ii = {0, 1} for all i by embedding the
payload in coverxi = [pi < 1/2] with non-negative per-pixel
costs̺i = ln(p̃i/(1− p̃i)), p̃i = max{pi, 1− pi}.

Proof: Without loss of generality, letλ = 1. Since the
inverse of f(z) = ln(z/(1 − z)) on [0, 1] is f−1(z) =
exp(z)/(1+ exp(z)), by (14) the cost̺ i causesxi to change
to yi = 1− xi with probabilityP (yi 6= xi|xi) = f−1(−̺i) =
1 − p̃i. Thus, P (yi = 0|xi = 1) = f−1(−̺i) = pi and
P (yi = 0|xi = 0) = 1− f−1(−̺i) = pi as required.

Now, let |Ii| = 2L for some integerL ≥ 0 and let
P1, . . . ,PL be parity functions uniquely describing all2L

elements inIi, i.e., (xi 6= yi) ⇒ ∃j,Pj(xi) 6= Pj(yi) for
all xi, yi ∈ Ii and alli ∈ {1, . . . , n}. For example,Pj(x) can
be defined as thejth LSB of x. The individual setsIi can be
enlarged to satisfy the size constraint by setting the costsof
added elements to∞.

The optimal algorithm for (4) and (5) sends the stego
symbols by sampling from the optimal distribution (6) with
some λ. Let Yi be the random variable defined overIi
representing theith stego symbol. Due to the assigned parities,
Yi can be represented asYi = (Y 1

i , . . . , Y
L
i ) with Y j

i

corresponding to thejth parity function. We construct the
embedding algorithm by induction overL, the number of
layers. By the chain rule, for eachi the entropyH(Yi) can
be decomposed into

H(Yi) = H(Y 1
i ) +H(Y 2

i , . . . , Y
L
i |Y 1

i ) (15)

This tells us thatH(Y 1
i ) bits should be embedded by changing

the first parity of theith pixel. In fact, the parities should
be distributed according to the marginal distributionP (Y 1

i ).
Using the Flipping lemma, this task is equivalent to a PLS,
which can be realized in practice using STCs as reviewed in
Section V. To summarize, in the first step we embedm1 =
∑n

i=1 H(Y 1
i ) bits on average.

After the first layer is embedded, we obtain the parities
P1(yi) for all stego pixels. This allows us to calculate the
conditional probabilityP (Y 2

i , . . . , Y
L
i |Y 1

i = P1(yi)) and use
the chain rule again, for example w.r.t.Y 2

i . In the second layer,
we embedm2 =

∑n

i=1 H(Y 2
i |Y

1
i = P1(yi)) bits on average.

In total, we haveL such steps fixing one parity value at a time
knowing the result of the previous parities. Finally, we send
the valuesyi corresponding to the obtained parities.

If all individual layers are implemented optimally, we send
m = m1 + · · ·+mL bits on average. By the chain rule, this
is exactlyH(Yi) in every pixel, which proves the optimality
of this construction. In theory, the order in which the parities
are being fixed can be arbitrary. As is shown in the following
example, the order is important for practical realizationswhen
STCs are used. In all our experiments, we start with themost
significant bits ending with the LSBs. Algorithm 1 describes
the necessary steps required to implement±1 embedding with
arbitrary costs using two layers of STCs.

In practice, the number of bits hidden in every layer,mj,
needs to be communicated to the receiver. The numbermj is
used as a seed for a pseudo-random permutation used to shuffle
all bits in thejth layer. If, due to large payload and wetness,

Algorithm 1 ±1 embedding implemented with 2-layers of
STCs and embedding the payload ofm bits

Require: x ∈ X = {I}n , {0, . . . , 255}n

ρi(x, z) ∈ [−K,+K], z ∈ Ii , {xi− 1, xi, xi+1}
1: defineP1(z) = z mod 2, P2(z) = [(z mod 4) > 1]
2: forbid other colors byρi(x, z) = C ≫ K, z 6∈ Ii ∩ I
3: find λ ≥ 0 such that distr.π overX satisfiesH(π) = m
4:

5: definep′′i = Prπ(P2(Yi) = 0), setm2 =
∑

i h(p
′′
i ), x

′′ ∈
{0, 1}n with x′′

i = [p′′i < 1/2], and̺′′i = | ln(p′′i /(1−p′′i ))|
6: embed m2 bits with binary STC intox′′ with costs̺′′i

and produce new vectory′′ = (y′′1 , . . . , y
′′
n) ∈ {0, 1}n

7:

8: definep′i = Prπ(P1(Yi) = 0|P2(Yi) = y′′i ), x
′ ∈ {0, 1}n

with x′
i = [p′i < 1/2], and̺′i = | ln(p′i/(1− p′i))|

9: embedm −m2 bits with binary STC intox′ with costs
̺′i and produce a new vectory′ = (y′1, . . . , y

′
n) ∈ {0, 1}n

10:

11: setyi ∈ Ii such thatP2(yi) = y′′i andP1(yi) = y′i
12: return stego imagey = (y1, . . . , yn)
13: message can be extracted using STCs from

(P2(y1), . . . ,P2(yn)) and (P1(y1), . . . ,P1(yn))

STCs cannot embed a given message, we try a different
permutation by embedding a slightly different number of bits.

Example 2 (±1 embedding). For simplicity, letxi = 2, Ii =
{1, 2, 3}, ρi(1) = ρi(3) = 1, andρi(2) = 0 for i ∈ {1, . . . , n}
and largen. For such ternary embedding, we use two LSBs as
their parities. Suppose we want to solve the problem (4) with
α = 0.9217, which leads toλ = 2.08, P (Yi = 1) = P (Yi =
3) = 0.1, andP (Yi = 2) = 0.8. To make|Ii| a power of
two, we also include the symbol0 and defineρi(0) = ∞
which impliesP (Yi = 0) = 0. Let yi = (y2i , y

1
i ) be a binary

representation ofyi ∈ {0, . . . , 3}, wherey1i is the LSB ofyi.

Starting from the LSBs as in [10], we obtainP (Y 1
i = 0) =

0.8. If the LSB needs to be changed, thenP (Y 2
i = 0|Y 1

i =
1) = 0.5 whereasP (Y 2

i = 0|Y 1
i = 0) = 0. In practice, the

first layer can be realized by any syndrome-coding scheme
minimizing the number of changes and embeddingm1 = n ·
h(0.2) bits. The second layer must be implemented with wet
paper codes [25], since we need to embed either one bit or
leave the pixel unchanged (the relative payload is1).

If the weights of symbols1 and 3 were slightly changed,
however, we would have to use STCs in the second layer,
which causes a problem due to the large relative payload (α =
1) combined with large wetness (τ = 0.8) (see Figure 5).
The opposite decomposition starting with the MSBy2i will
reveal thatP (Y 2

i = 0) = 0.1, P (Y 1
i = 0|Y 2

i = 0) = 0, and
P (Y 1

i = 0|Y 2
i = 1) = 0.8/0.9. Both layers can now be easily

implemented by STCs since here the wetness is not as severe
(τ = 0.1).

VII. PRACTICAL EMBEDDING CONSTRUCTIONS

In this section, we show some applications of the pro-
posed methodology for spatial and transform domain (JPEG)



13

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

coding loss

Relative payloadα (bits per non-zero AC coeff.)

A
ve

ra
g

e
er

ro
rP

E
S4 - simulated
S4 - STCh = 11

S4 - STCh = 8

S3 nsF5
S1 S2

Figure 10. Comparison of methods with four different weight-assignment
strategies S1–S4 and nsF5 as described in Section VII-A whensimulated as if
the best coding scheme was available. The performance of strategy S4 when
practically implemented using STCs withh = 8 andh = 11 is also shown.

steganography. In the past, most embedding schemes were
constrained by practical ways of how to encode the message
so that the receiver can read it. Problems such as “shrinkage”
in F5 [23], [16] or in MMx [2] arose from this practical
constraint. By being able to solve the PLS and DLS problems
close to the bound for an arbitrary additive distortion function,5

steganographers now have much more freedom in designing
new embedding algorithms. They only need to select the
distortion function and then apply the proposed framework.
The only task left to the steganographer is the choice of the
distortion functionD. It should be selected so that it correlates
with statistical detectability. Instead of delving into the difficult
problem of how to select the bestD, we provide a few
examples of additive distortion measures motivated by recent
developments in steganography and show their performance
when blind steganalysis is used.

In the examples below, we tested the embedding schemes
using blind feature-based steganalysis on a large databaseof
images. The image database was evenly divided into a training
and a testing set of cover and stego images, respectively.
A soft-margin support-vector machine was trained using the
Gaussian kernel. The kernel width and the penalty parameter
were determined using five-fold cross validation on the grid
(C, γ) ∈

{

(10k, 2j−d)|k ∈ {−3, . . . , 4}, j ∈ {−3, . . . , 3}
}

,
where d is the binary logarithm of the number of features.
We report the results using a measure frequently used in
steganalysis – the minimum average classification error

PE = min
PFA

(PFA + PMD(PFA))/2, (16)

wherePFA andPMD are the false-alarm and missed-detection
probabilities.

A. DCT domain steganography

To apply the proposed framework, we first need to design an
additive distortion function which can be tested by simulating
the embedding as if the best codes are available. Finally, the
the most promising approach is implemented using STCs. We
assume the cover to be a grayscale bitmap image which we
JPEG compress to obtain the cover image. LetA be a set of
indices corresponding to AC DCT coefficients after the block-
DCT transform and letci be theith AC coefficient before it
is quantized with the quantization stepqi for i ∈ A. We letX
represent the set of all vectors containing quantized AC DCT
coefficients divided by their corresponding quantization step.
In ordinary JPEG compression, the valuesci are quantized to
xi , [ci/qi].

1) Proposed distortion functions:We define binary embed-
ding operationIi , {xi, xi} by xi = xi + sign(ci/qi − xi),
where sign(x) is 1 if x > 0, −1 if x < 0 and sign(0) ∈
{−1, 1} uniformly at random. In simple words,xi is a
quantized AC DCT coefficient andxi is the same coefficient
when quantized in the opposite direction. Letei = |ci/qi−xi|
be the quantization error introduced by JPEG compression. By
replacingxi with xi the error becomes|ci/qi − xi| = 1− ei.
If ei = 0.5, then the direction whereci/qi is rounded depends
on the implementation of the JPEG compressor and only small
perturbation of the original image may lead to different results.
LetP(x) = x mod 2. By construction,P satisfies the property
of a parity function,P(xi) 6= P(xi). The distortion function
is assumed to be in the formD(x,y) =

∑n

i=1 ̺i · [xi 6= yi],
wheren = |A|.

The following four approaches utilizing values ofei andqi
were considered. All methods assign̺i = ∞ when ci/qi ∈
(−0.5, 0.5) and differ in the definition of the remaining values
̺i as follows:

• S1: ̺i = 1 − 2ei if ci/qi 6∈ (−0.5, 0.5) (as in perturbed
quantization [24]),

• S2: ̺i = qi(1− 2ei) if ci/qi 6∈ (−0.5, 0.5) (the same as
S1 but̺i is weighted by the quantization step),

• S3: ̺i = 1 if ci/qi ∈ (−1,−0.5] ∪ [0.5, 1) and ̺i =
1− 2ei otherwise, and

• S4: ̺i = qi if ci/qi ∈ (−1,−0.5] ∪ [0.5, 1) and ̺i =
qi(1−2ei) otherwise which is similar weight assignment
as proposed in [4].

To see the importance of the side-information in the form of
the uncompressed cover image, we also include in our tests
the nsF5 [16] algorithm, which can be represented in our
formalism asxi = [ci/qi], xi = xi − sign(xi), and̺i = ∞
if xi = 0 and ̺i = 1 otherwise. This way, we always have
|xi| < |xi|. The nsF5 embedding minimizes the number of
changes to non-zero AC DCT coefficients.

2) Steganalysis setup and experimental results:The pro-
posed strategies were tested on a database of 6, 500 digital
camera images prepared as described in [47, Sec. 4.1] so that
their smaller size was512 pixels. The JPEG quality factor
75 was used for compression. The steganalyzer employed the
548-dimensional CC-PEV feature set [40]. Figure 10 shows

5The additivity constraint can be relaxed and more general distortion
measures can be used with the PLS and DLS problems in practice[7].
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Figure 11. Set of4-pixel cliques used for calculating the distortion for digital
images represented in the spatial-domain. The final distortion ρi,j(yi,j) is
obtained as a sum of terms penalizing the change in pixelxi,j measured
w.r.t. each clique containingxi,j .

the minimum average classification errorPE achieved by sim-
ulating each strategy on the bound using the PLS formulation.
The strategies S1 and S2, which assign zero cost to coefficients
ci/qi = 0.5, were worse than the nsF5 algorithm that does
not use any side-information. On the other hand, strategy S4,
which also utilizes the knowledge about the quantization step,
was the best. By implementing this strategy, we have to deal
with a wet paper channel which can be well modeled by a
linear profile with relative wetnessτ ≈ 0.6 depending on
the image content. We have implemented strategy S4 using
STCs, where wet pixels were handled by setting̺i = C for
a sufficiently largeC. As seen from the results using STCs,
payloads below0.15 bits per non-zero AC DCT coefficient
were undetectable using our steganalyzer.

Note that our strategies utilized only the information ob-
tainable from a single AC DCT coefficient. In reality,̺i will
likely depend on the local image content, quantization errors,
and quantization steps. We leave the problem of optimizingD
w.r.t. statistical detectability for our future research.

B. Spatial domain steganography

To demonstrate the merit of the STC-based multi-layered
construction, we present a practical embedding scheme that
was largely motivated by [5] and [7]. Single per-pixel dis-
tortion functionρi,j(yi,j) should assign the cost of changing
i, jth pixel xi,j , first, from its neighborhood and then also
based on the new valueyi,j . Changes made in smooth regions
often tend to be highly detectable by blind steganalysis which
should lead to high distortion values. On the other hand, pixels
which are in busy and hard-to-model regions can be changed
more often.

1) Proposed distortion functions:We design our distortion
function based on a model build from a set of all straight4-
pixel lines in 4 different orientations containingi, jth pixel
which we call cliques (see Figure 11). Based on the set of all
such cliques, we decide on the valueρi,j(yi,j). Due to strong
inter-pixel dependencies, most cliques contain very similar
values and thus differences between neighboring pixels tend to
be very close to zero. It has been experimentaly observed [5],

that number of cliques with differences falls of quickly as the
differences gets larger. From this point of view, any clique
with small differences should lead to larger distortion because
there are more samples the warden can use for training her
steganalyzer and the better she can detect the change.

More formaly, letx ∈ {0, . . . , 255}n1×n2 be ann1 × n2

grayscale cover image,n = n1n2, represented in the spatial
domain. Define the co-occurrence matrix computed from hori-
zontal pixel differencesD→

i,j(x) = xi,j+1−xi,j , i = 1, . . . , n1,
j = 1, . . . , n2 − 1:

A→
p,q,r(x) =

n1
∑

i=1

n2−3
∑

j=1

[(D→
i,j , D

→
i,j+1, D

→
i,j+2)(x) = (p, q, r)]

n1(n2 − 3)
,

where [(D→
i,j , D

→
i,j+1, D

→
i,j+2)(x) = (p, q, r)] = [(D→

i,j(x) =
p)&(D→

i,j+1(x) = q)&(D→
i,j+2(x) = r)]. Clearly,A→

p,q,r(x) ∈
[0, 1] is the normalized count of neighboring quadruples of
pixels {xi,j , xi,j+1, xi,j+2, xi,j+3} with differencesxi,j+1 −
xi,j = p, xi,j+2 − xi,j+1 = q, and xi,j+3 − xi,j+2 = r
in the entire image. The superscript arrow “→” denotes the
fact that the differences are computed by subtracting the
left pixel from the right one. Similarly, we define matri-
ces Aր

p,q,r(x), A↑
p,q,r(x), and Aտ

p,q,r(x). Let yi,jx∼i,j be
an image obtained fromx by replacing the(i, j)th pixel
with value yi,j . Finally, we define the distortion measure
D(y) =

∑n1

i=1

∑n2

j=1 ρi,j(yi,j) by

ρi,j(yi,j) =
∑

p,q,r∈{−255,...,255}
s∈{→,ր,↑,տ}

wp,q,r|A
s
p,q,r(x)−As

p,q,r(yi,jx∼i,j)|,

(17)
where wp,q,r = 1/(1 +

√

p2 + q2 + r2) are heuristically
chosen weights.

2) Steganalysis setup and experimental results:All tests
were carried out on the BOWS2 database [48] containing
approximately10, 800 grayscale images with a fixed size of
512 × 512 pixels coming from rescaled and cropped natural
images of various sizes. Steganalysis was implemented using
the second-order SPAM feature set withT = 3 [39].

Figure 12 contains the comparison of embedding algorithms
implementing the PLS and DLS with the costs (17). All
algorithms are contrasted with LSB matching simulated on
the binary and ternary bounds. To compare the effect of
practical codes, we first simulated the embedding algorithm
as if the best codes were available and then compared these
results with algorithms implemented using STCs withh = 10.
Both types of senders are implemented with binary, ternary
(Ii = {xi − 1, . . . , xi + 1}), and pentary (Ii = {xi −
2, . . . , xi +2}) embedding operations. Before embedding, the
binary embedding operation was initialized toIi = {xi, yi}
with yi randomly chosen from{xi − 1, xi +1}. The reported
payload for the DLS with a fixedDǫ was calculated as an
average over the whole database after embedding.

The relative horizontal distance between the corresponding
dashed and solid lines in Figure 12 is bounded by the coding
loss. Most of the proposed algorithms are undetectable for
relative payloadsα ≤ 0.2 bits per pixel (bpp). For payloads
α ≤ 0.5, the DLS is more secure. For larger payloads,
the distortion measure seems to fail to capture the statistical
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Figure 12. Comparison of LSB matching with optimal binary and ternary coding with embedding algorithms based on the additive distortion measure (17)
using embedding operations of three different cardinalities.

detectability correctly and thus the algorithms are more de-
tectable than when implemented in the payload-limited regime.
Finally, the results suggest that larger embedding changesare
useful for steganography when placed adaptively.

VIII. C ONCLUSION

The concept of embedding in steganography that minimizes
a distortion function is connected to many basic principles
used for constructing embedding schemes for complex cover
sources today, including the principle of minimal-embedding-
impact [16], approximate model-preservation [5], or the Gibbs
construction [7]. The current work describes a complete
practical framework for constructing steganographic schemes
that embed by minimizing an additive distortion function.
Once the steganographer specifies the form of the distortion
function, the proposed framework provides all essential tools
for constructing practical embedding schemes working close to
their theoretical bounds. The methods are not limited to binary
embedding operations and allow the embedder to choose the
amplitude of embedding changes dynamically based on the
cover-image content. The distortion function or the embedding
operation do not need to be shared with the recipient. In fact,
they can even change from image to image. The framework
can be thought of as an off-the-shelf method that allows
practitioners to concentrate on the problem of designing the
distortion measure instead of the problem of how to construct
practical embedding schemes.

The merit of the proposed algorithms is demonstrated
experimentally by implementing them for the JPEG and spatial
domains and showing an improvement in statistical detectabil-
ity as measured by state-of-the-art blind steganalyzers. We
have demonstrated that larger embedding changes provide a
significant gain in security when placed adaptively. Finally,
the construction is not limited to embedding with larger
amplitudes but can be used, e.g., for embedding in color
images, where the LSBs of all three colors can be seen as3-bit
symbols on which the cost functions are defined. Applications
outside the scope of digital images are possible as long as we
know how to define the costs.

The implicit premise of this paper is the direct relationship
between the distortion functionD and statistical detectability.
Designing (and possibly learning) the distortion measure for
a given cover source is an interesting problem by itself and is
left for our future research. We reiterate that our focus is on
constructing practical coding schemes for a givenD. Examples
of distortion measures presented in this work are unlikely to
be optimal and we include them here mainly to illustrate the
concepts.

C++ implementation with Matlab wrappers of STCs and
multi-layered STCs are available at http://dde.binghamton.edu/
download/syndrome/.

Tomáš Filler received the M.S. degree (summa cum
laude) in computer science from the Czech Technical
University, Prague, Czech Republic, in 2007. He
is currently pursuing the Ph.D. degree under the
supervision of Prof. Jessica Fridrich. He is a Re-
search Assistant at the Department of Electrical and
Computer, Binghamton University, State University
of New York.

His research interest fall in the area of data hiding,
information and coding theory.

Mr. Filler received Graduate Student Award for
Excellence in Research from Binghamton University in 2010 and Best Paper
Awards from Digital Watermarking Alliance in 2009 and 2010.

Jan Judas received the M.S. degree (summa cum
laude) in computer science from the Czech Technical
University, Prague, Czech Republic, in 2010. He
worked on the paper while he was a visiting scholar
at Binghamton University in 2009 and 2010. He now
works as a software developer in Prague.



16

Jessica Fridrich holds the position of Professor
of Electrical and Computer Engineering at Bing-
hamton University (SUNY). She received her Ph.D.
in Systems Science from Binghamton University in
1995 and MS in Applied Mathematics from Czech
Technical University in Prague in 1987.

Her main interests are in steganography, steganal-
ysis, and digital image forensic.

Dr. Fridrich received the IEEE Signal Processing
Society Best Paper Award for her work on sensor
fingerprints. She authored over 120 papers on data

embedding and steganalysis and holds seven US patents. Dr. Fridrich is a
member of IEEE and ACM.

REFERENCES

[1] R. Böhme,Improved Statistical Steganalysis Using Models of Hetero-
geneous Cover Signals. PhD thesis, Faculty of Computer Science,
Technische Universität Dresden, Germany, 2008.

[2] Y. Kim, Z. Duric, and D. Richards, “Modified matrix encoding tech-
nique for minimal distortion steganography,” inInformation Hiding, 8th
International Workshop(J. L. Camenisch, C. S. Collberg, N. F. Johnson,
and P. Sallee, eds.), vol. 4437 of Lecture Notes in Computer Science,
(Alexandria, VA), pp. 314–327, Springer-Verlag, New York,July 10–12,
2006.

[3] R. Zhang, V. Sachnev, and H. J. Kim, “Fast BCH syndrome coding
for steganography,” inInformation Hiding, 11th International Workshop
(S. Katzenbeisser and A.-R. Sadeghi, eds.), vol. 5806 of Lecture Notes in
Computer Science, (Darmstadt, Germany), pp. 31–47, Springer-Verlag,
New York, June 7–10, 2009.

[4] V. Sachnev, H. J. Kim, and R. Zhang, “Less detectable JPEGsteganogra-
phy method based on heuristic optimization and BCH syndromecoding,”
in Proceedings of the 11th ACM Multimedia & Security Workshop
(J. Dittmann, S. Craver, and J. Fridrich, eds.), (Princeton, NJ), pp. 131–
140, September 7–8, 2009.

[5] T. Pevný, T. Filler, and P. Bas, “Using high-dimensionalimage models
to perform highly undetectable steganography,” inInformation Hiding,
12th International Workshop(P. W. L. Fong, R. Böhme, and R. Safavi-
Naini, eds.), vol. 6387 of Lecture Notes in Computer Science, (Calgary,
Canada), pp. 161–177, June 28–30, 2010.

[6] J. Kodovský and J. Fridrich, “On completeness of featurespaces in blind
steganalysis,” inProceedings of the 10th ACM Multimedia & Security
Workshop(A. D. Ker, J. Dittmann, and J. Fridrich, eds.), (Oxford, UK),
pp. 123–132, September 22–23, 2008.

[7] T. Filler and J. Fridrich, “Gibbs construction in steganography,” IEEE
Transactions on Information Forensics and Security, vol. 5, pp. 705–720,
September 2010.

[8] J. Fridrich and T. Filler, “Practical methods for minimizing embedding
impact in steganography,” inProceedings SPIE, Electronic Imaging,
Security, Steganography, and Watermarking of Multimedia Contents IX
(E. J. Delp and P. W. Wong, eds.), vol. 6505, (San Jose, CA), pp. 02–03,
January 29–February 1, 2007.

[9] T. Filler and J. Fridrich, “Binary quantization using belief propagation
over factor graphs of LDGM codes,” in45th Annual Allerton Conference
on Communication, Control, and Computing, (Allerton, IL), September
26–28, 2007.

[10] X. Zhang, W. Zhang, and S. Wang, “Efficient double-layered stegano-
graphic embedding,”Electronics Letters, vol. 43, pp. 482–483, April
2007.

[11] W. Zhang, S. Wang, and X. Zhang, “Improving embedding efficiency
of covering codes for applications in steganography,”IEEE Communi-
cations Letters, vol. 11, pp. 680–682, August 2007.

[12] W. Zhang, X. Zhang, and S. Wang, “Maximizing steganographic
embedding efficiency by combining Hamming codes and wet paper
codes,” inInformation Hiding, 10th International Workshop(K. Solanki,
K. Sullivan, and U. Madhow, eds.), vol. 5284 of Lecture Notesin
Computer Science, (Santa Barbara, CA), pp. 60–71, Springer-Verlag,
New York, June 19–21, 2008.

[13] T. Filler and J. Fridrich, “Wet ZZW construction for steganography,”
in First IEEE International Workshop on Information Forensics and
Security, (London, UK), December 6–9 2009.

[14] W. Zhang and X. Zhu, “Improving the embedding efficiencyof wet
paper codes by paper folding,”IEEE Signal Processing Letters, vol. 16,
pp. 794–797, September 2009.

[15] W. Zhang and X. Wang, “Generalization of the ZZW embedding
construction for steganography,”IEEE Transactions on Information
Forensics and Security, vol. 4, pp. 564–569, September 2009.

[16] J. Fridrich, T. Pevný, and J. Kodovský, “Statisticallyundetectable JPEG
steganography: Dead ends, challenges, and opportunities,” in Proceed-
ings of the 9th ACM Multimedia & Security Workshop(J. Dittmann and
J. Fridrich, eds.), (Dallas, TX), pp. 3–14, September 20–21, 2007.

[17] T. Filler, J. Judas, and J. Fridrich, “Minimizing embedding impact in
steganography using trellis-coded quantization,” inProceedings SPIE,
Electronic Imaging, Security and Forensics of Multimedia XII (N. D.
Memon, E. J. Delp, P. W. Wong, and J. Dittmann, eds.), vol. 7541, (San
Jose, CA), January 17–21, 2010.

[18] T. Filler and J. Fridrich, “Using non-binary embeddingoperation to
minimize additive distortion functions in steganography,” in Second
IEEE International Workshop on Information Forensics and Security,
(Seattle, WA), 2010. Accepted.

[19] S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random
parameters,”Problems of Control and Information Theory, vol. 9, no. 1,
pp. 19–31, 1980.

[20] A. D. Ker, “Batch steganography and pooled steganalysis,” in Infor-
mation Hiding, 8th International Workshop(J. L. Camenisch, C. S.
Collberg, N. F. Johnson, and P. Sallee, eds.), vol. 4437 of Lecture Notes
in Computer Science, (Alexandria, VA), pp. 265–281, Springer-Verlag,
New York, July 10–12, 2006.

[21] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE Nat. Conv. Rec., vol. 4, pp. 142–163, 1959.

[22] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: John Wiley & Sons, Inc., 2006.

[23] A. Westfeld, “High capacity despite better steganalysis (F5 – a stegano-
graphic algorithm),” inInformation Hiding, 4th International Workshop
(I. S. Moskowitz, ed.), vol. 2137 of Lecture Notes in Computer Science,
(Pittsburgh, PA), pp. 289–302, Springer-Verlag, New York,April 25–27,
2001.

[24] J. Fridrich, M. Goljan, and D. Soukal, “Perturbed quantization steganog-
raphy,” ACM Multimedia System Journal, vol. 11, no. 2, pp. 98–107,
2005.

[25] J. Fridrich, M. Goljan, D. Soukal, and P. Lisoněk, “Writing on wet
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