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Abstract—This paper proposes a complete practical method- cover source and instead tells the steganographer to embed
ology for minimizing additive distortion in steganography with  payload while minimizing a distortion function. In doing,sb
general (non-binary) embedding operation. Let every posbie iy as yp any ambitions for perfect security. Although thisym

value of every stego element be assigned a scalar expressthg fl ii it i t irical h
distortion of an embedding change done by replacing the cove Seem as a costly sacrince, 111S not, as empirical Covers have

element by this value. The total distortion is assumed to be a been argued to be incognizable [1], which prevents model-
sum of per-element distortions. Both the payload-limited ender preserving approaches from being perfectly secure as well.

(minimizing the total distortion while embedding a fixed payload) While we admit that the relationship between distortion and
and the distortion-limited sender (maximizing the payloadwhile steganographic security is far from clear, embedding while

introducing a fixed total distortion) are considered. Without S distortion functi . . bl h
any loss of performance, the non-binary case is decomposedmInImIZIng a distortion function IS an easier probiem than

into several binary cases by replacing individual bits in cver €mbedding with a steganographic constraint (preservieg th
elements. The binary case is approached using a novel syndane- distribution of covers). It is also more flexible, allowiniget

coding scheme based on dual convolutional codes equippedtiwi results obtained from experiments with blind steganalyter
the Viterbi algorithm. This fast and very versatile solution 4.ve the design of the distortion function. In fact, todalgast

achieves state-of-the-art results in steganographic apightions . L
while having linear time and space complexity w.rt. the numper d€t€ctable steganographic schemes for digital image$3p],

of cover elements. We report extensive experimental ressitfor a  [4], [5] were designed using this principle. Moreover, when
large set of relative payloads and for different distortionprofiles, the distortion is defined as a norm between feature vectors

including the wet paper channel. Practical merit of this appoach  extracted from cover and stego objects, minimizing digtart
is validated by constructing and testing adaptive embeddig  jacomes tightly connected with model preservation insofar

schemes for digital images in raster and transform domains. the feat b idered low-di . | del
Most current coding schemes used in steganography (matrix € features can be considered as a low-dimensional mode

embedding, wet paper codes, etc.) and many new ones can bedf covers. This line of reasoning already appeared in [d], [5
implemented using this framework. and was further developed in [7].

Index Terms—Steganography, embedding impact, matrix em- W'Fh th? expeptlon c_)f [71, stgganographers work _W'th
bedding, wet paper codes, trellis-coded quantization, caolu- additive distortion functions obtained as a sum of single-
tional codes, coding loss letter distortions. A well-known example is matrix embetyli
where the sender minimizes the total humber of embedding
changes. Near-optimal coding schemes for this problem ap-
. _ peared in [8], [9], together with other clever constructi@md
T HERE exist two mainstream approaches to steganogextensions [10], [11], [12], [13], [14], [15]. When the sirg

phy in empirical covers, such as digital media objectgtter distortions vary across the cover elements, refigcti
steganography designed to preserve a chosen cover model#gd different costs of individual embedding changes, entrr
st_egaqography minimizing a heuristically-defined embegld|poding methods are highly suboptimal [2], [4].
distortion. The strong argument for the former strategy is This paper provides a general methodology for embedding
that provable undetectability can be achieved w.r.t. aiipecwhile minimizing an arbitrary additive distortion functiavith
model. The disadvantage is that an adversary can usudirraty performance near the theoretical bound. We present a com-
easily identify statistical quantities that go beyond thesen plete methodology for solving both the payload-limited and
model that allow reliable detection of embedding changts. Tihe distortion-limited sender. The implementation déxeliin
latter strategy is more pragmatic — it abandons modeling thfis paper uses standard signal processing tools — corméit

. . . codes with a trellis quantizer — and adapts them to our pnoble
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lem of embedding while minimizing distortion is formulatecpayload while minimizingD. In this paper, we limit ourselves
in Section Ill, where we introduce theoretical performande an additiveD in the fornt
bounds as well as quantities for evaluating the performaiice N
_?Lactmal algorlthm§ with respect to each other and the Usur_1 D(x,y) = Zpi (%, 9i), Q)

e syndrome coding method for steganographic communica- p
tion is reviewed in Section IV. By pointing out the limitatis
of previous approaches, we motivate our contribution, Wwhi
starts in Section V, where we introduce a class of syndro
trellis codes for binary embedding operations. We descri
the construction and optimization of the codes and provi
extensive experimental results on different distortionofies ' ) A
including the wet paper channel. In Section VI, we show howdependent of changes made at other pixels implies that the

to decompose the problem of embedding using non-bina‘?ﬁpbedding changes do not interact.

embedding operations to a series of binary problems usingThe boundedness dP(x,y) is not limiting the sender in

a multi-layered approach so that practical algorithms can actice sinc_e the case when a particula_r vajués forbid- .
realized using binary STCs. The application and merit of t n (a requirement often found in prachqal steganographic
proposed coding construction is demonstrated experirﬂlyentf(:hemes [16]) can be resolved by excludipgfrom Z;. In

in Section VII on covers formed by digital images in rastexp_ractme, the setd;, i € {1,...,n}, may depend on cover

and transform (JPEG) domains. Both the binary and noRixels and thus may not be available to the receiver. To leandl
binary versions of payload- and distortion-limited sersdarre this case, we expand the domaingfto X' x 7 and define

tested by blind steganalysis. Finally, the paper is coredid (X, ¥i) = oo whenevery; ¢ Z,. o
Section B\I/HII 9 ysis. Finaly papert We intentionally keep the definition of the distortion func-

This paper is a journal version of [17] and [18], where thgon rather general. In particular, we dot reqU|repi_(>_c7 i) <
(x,y,) for all y; € Z; to allow for the case when it is actually

STCs and the multi-layered construction were introducédis T pi

paper unifies these methods into a complete and seIf—camtairL-IJ.ene‘ciCial to make an embedding change in§tead of Ieav_ing the
framework. Novel performance results and comparisons apr'é(el unchanged. An example of this situation appears in [7]

included.
All logarithms in this paper are at the base 2f We
use the Iverson bracket] defined to bel if the logical This section contains a formal definition of the problem of

expression[ is true and zero otherwise. The binary entrop?mbedding while mInImIZII’lg a distortion function. We state
function h(z) = —zlogz — (1 — z)log(1 — z) is expressed the performance bounds and define some numerical quantities

in bits. The calligraphic font will be used solely for setsthat will be used to compare coding methods w.r.t. each other

random variables will be typeset in capital letters, whiteit and to the bounds. _ .
corresponding realizations will be in lower-case. Vectoit ~ We assume the sender obtains her payload in the form
be always typeset in boldface lower case, while we reserve @f & pseudo-random bit stream, such as by compressing or

blackboard style for matrices (e.gi; ; is theijth element of €ncrypting the original message. We further assume that the
matrix A). embedding algorithm associates every cover imageith

a pair {Y,n}, where) is the set of all stego images into
whichx can be modified and is their probability distribution
characterizing the sender’s actionsy) £ P(Y = y|x).
For concreteness, and without loss of generality, we will céSince the choice of),n} depends on the cover image, all
x image andz; its ith pixel, even though other interpretationsoncepts derived from these guantities necessarily depend
are certainly possible. For examplg, may represent an RGB x as well. We think ofx as a constant parameter thafiied
triple in a color image, a quantized DCT coefficient in a JPE® the very beginningnd thus we do not further denote the

herep;, : X xI; - [-K,K], 0 < K < oo, are bounded
g_nctions expressing the cost of replacing the cover pixel
Bvé'th y;. Note thatp; may arbitrarily depend on the entire
§aver imagex, allowing thus the sender to incorporate inter-
pixel dependencies [5]. The fact that the valueog(fx, y;) is

Ill. PROBLEM FORMULATION

Il. DISTORTION FUNCTION

file, etc. Letx = (x1,...,2,) € X = {Z}" be ann-pixel dependency on it explicitly. For this reason, we simply evrit
cover image with the pixel dynamic range For example, D(y) £ D(x,y).
T =10,...,255} for 8-bit grayscale images. If the receiver knewx, the sender could send up to
The sender communicates a message to the receiver b
J y H(m) ==Y n(y)logn(y) ©)

introducing modifications to the cover image and sending a
stego imagey = (y1,...,yn) € Y =Ty XLy x --- X I, o _ _ )
whereZ; C T are such that; € Z;. We call the embedding bits on average while introducing the average distortion
0peraponbmary if |Z;| =2, or ternary if |L-|_: 3 for every E.[D] = Z 7(y)D(y) 3)
pixel i. For example4+1 embedding (sometimes called LSB vey
matching) can be represented By = {z; — 1,z;,2; + 1}

with appropriate modifications at the boundary of the dymampy €h00sing the stego image accordingrtdBy the Gel'fand-
range. Pinsker theorem [19], the knowledge &f does not give

The im_pact _Of embe_dding modificationg Wi”. be measureditpe case of embedding with non-additive distortion funetiés addressed
using a distortion functio. The sender will strive to embedin [7] by converting it to a sequence of embeddings with aritagiddistortion.

yey



any fundamental advantage to the receiver and the sastheme that uses the pdly, 7} using blind steganalysis with-
performance can be achieved as longxas known to the out having to implement a practical embedding algorithme Th
sender. Indeed, none of the practical embedding algorithsimulator of optimal embedding can also be used to assess the
introduced in this paper requires the knowledgexafr D for increase in statistical detectability of a practical (qotroal)

reading the message. algorithm w.r.t. to the optimal one. This separation prnci
The task of embedding while minimizing distortion carple [7] simplifies the search for better distortion meassiese
assume two forms: only the most promising approaches can be implemented. In

« Payload-limited sender (PLS):embed afixed average Section VII, we use the simulators to benchmark different

payloadof m bits while minimizing the average distor-coding algorithms we develop in this paper by comparing the
tion, security of practical schemes using blind steganalysis.

An established way of evaluating coding algorithms in
minimize E[ D) subject toH () = m. (4) steganography is to compare tmbedding efficiency(a) =
) T o an/E.[D] (in bits per unit distortion) for a fixed expected
. Dlstort|on—l|mlt§d send(_ar (D_LS): maX|m|ze_the average rejative payloade = m/n with the upper bound derived
payload while introducing éixed average distortiod., fom (6). When the number of changes is minimizedis
maximizeH () subject toE,[D] = D..  (5) the average number of _bits hidder? per em_beddin_g change. For
™ general functiong;, the interpretation of this metric becomes
The problem of embedding a fixed-size message while miless clear. A different and more easily interpretable régi
imizing the total distortionD (the PLS) is more commonly to compare the payload;, of an embedding algorithm w.r.t.
used in steganography when compared to the DLS. When the payloadjnnax, of the optimal DLS for a fixedD,,
distortion function is content-driven, the sender may c®oo MAMAX — M
to maximize the payload with a constraint on the overall (Do) = ————, (7)
distortion. This DLS corresponds to a more intuitive use of ) MAX
steganography since images with different level of noise a/Nich we call thecoding loss
texture can carry different amount of hidden payload and thu
the distortion should be fixed instead of the payload (as &ngB. Binary embedding operation
the distortion corresponds to statistical detectabilify)e fact
that the payload is driven by the image content is essenti
a case of the batch-steganography paradigm [20].

In this section, we show that for binary embedding opera-
6'”ons, it is enough to consider a slightly narrower classisf d
tortion functions without experiencing any loss of genigyal
The binary case is very important as the embedding method
A. Performance bounds and comparison metrics introduced in this paper is first developed for this speciaec

Both embedding problems described above bear relationsflff then extended to non-binary operations.
to the problem of source coding with a fidelity criterion as FOr binary embedding wittY; = {z;,7;}, z; # T;, we
described by Shannon [21] and the problem of source codifigfine /i = min{pi(x,2:), pi(x,Ti)}, 0 = |pi(x, @) —
with side information available at the transmitter, thecstied i(%: T:)| = 0, and rewrite (1) as:
Gel'fand-Pinsker problem [19]. Problems (4) and (5) areldua n _ n _
to each other, meaning that the optimal distribution for the ~ D(x,y) =Y _ o™+ oi - [p"™ < pi(x,5:)].  (8)
first problem is, for some value db., also optimal for the i=1 i=1
second one. Following the maximum entropy principle [2Because the first sum does not depeng-owhen minimizing
Th. 12.1.1], the optimal solution has the form of a Gibb® overy it is enough to consider only the second term. It now
distribution (see Appendix A in [8] for derivation): becomes clear that embedding in coxerhile minimizing (8)
is equivalent to embedding in cover

rly) = E2EADB)) @ ﬁ exp(=Api(yi)) & ﬁm(yi)

Z(N) Zi(\) Pl Lo when Pinfn = pi(x,7;) )
] ) (6) ’ T; when Pt = p; (x,T;).
where the parameten € [0,00) is obtained from the
corresponding constraints (4) or (5) by solving an alg&vhile minimizing
braic equatiorf;, Z(\) = > cyexp(=AD(y)), Zi(\) = ) n n
>z, exp(—Api(y;)) are the corresponding partition func- D(zy) =Y pi(zyi) £ oi-lyi # 2],  (10)
tions. Step (a) follows from the additivity ab, which also i=1 i=1

leads to mutual independence of individual stego pixgls

g with non-negative costg;(z, z;) = 0 < p;(z,%;) = o; for all
givenx. -

) o N i (when the cover pixet; is changed tcz;, the distortionD

By changing each pixel with probability 7; (6) one 4yays increases). Thus, from now on for binary embedding
can simulate embedding with optimalr. This is important onerations, we will always consider distortion functiorishe
for steganography developers who can test the security of g,

n

2A simple binary search will do the job because béfifr) and E.[D] D(x,y) = Z 0i - [yi # xil, (11)
are monotone w.r.tA. i—1



0.5ff

Emb: X x{0,1}" — Y andExt : Y — {0, 1} satisfying
0 b= L | | Ext(Emb(x,m)) =m Vxe€ X,Vm € {0,1}"™,

— — I I
0 0.2 0.4 0.6 0.8 respectively. In particular, we do not assume the knowledge
Relative payloady of the distortion functionD at the receiver and thus the

embedding scheme can be seen as being universal in this sense
A common information-theoretic strategy for solving thePL
problem is known as binning [26], which we implement using
cosets of a linear code. Such a construction, better known as
syndrome coding, is capacity achieving for the PLS problem
with ¢; > 0. if random linear codes are used.

For example, F5 [23] uses the distortion function (11) with In syndrome coding, the embedding and extraction map-
0; = 1 (the number of embedding changes), while nsF5 [18]ngs are realized using a binary linear cadlef lengthn
employs wet paper codes, wherec {1, c0}. In some embed- and dimensiom — m:

£ —— constant profil IV. SYNDROME CODING

) - - - linear profile The PLS and the DLS can be realized in practice using a
& 04 square profile a general methodology callesyndrome codingin this section,

o we briefly review this approach and its history paving our way
5 to Section V and VI, where we explain the main contribution
g 0.3 ’ of this paper — the syndrome-trellis codes.

< Let us first assume a binary version of both embedding
2 92l | problems. LetP : Z, — {0,1} be a parity function shared

= between the sender and the receiver satisffig;) # P(v;)

o such asP(x) = = mod 2. The sender and the receiver need to
% 0.1 i implement the embedding and extraction mappings defined as
g

<

—_

Figure 1. Lower bound on the average per-pixel distortibp|D]/n, as a
function of relative payload for different distortion profiles.

ding algorithms [24], [2], [4], where the cover is preproses Emb(x,m) =arg min D(x,y) (12)

and quantized before embedding, is proportional to the ’ P(y)eCm) 7

guantization error at pixet;. Ext(y) = HP(y), (13)
Additionally, for binary embedding operations we speak Qfnere Ply) = (PW1),....P(yn)), H € {0,1}™*" is

a distortion profileg !f 0; = o(i/n) for all i, wherep is_ & a parity-check matrix of the code, Cm) = {z €
non-decreasingfunction ¢ : [0,1] — [0, K]. The following {0,1}"|Hz = m) is the coset corresponding to syndrome
distortion profiles are of interest in steganography (teisot ||, 114 all operations are in binary arithmetic.

an exhaustive list): theonstant profile o(x) = 1, when all  ynfortunately, random linear codes are not practical due
pixels have the same impact on detectability when changgd; the exponential complexity of the optimal binary coset
the linear profile, o(xz) = 2z, when the distortion is relateo'quantizer (12), which is the most challenging part of the
to a quantization error uniformly distributed 0rQ/2,Q/2]  proplem. In this work, we describe a rich class of codes for

for some quantization ste@) > 0; and thesquare profile \\hich the quantizer can be solved optimally with linear time

o(x) = 322, which can be encountered when the distortion ig, space complexity w.r.

related to a quantization error that is not uniformly disited. Since the DLS is a dual problem to the PLS, it can be solved
In this paper, we normalize the profieso thatE,[D]/n = by (12) and (13) once an appropriate messagersiknown.

> mei/n = 0.5 when embedding a full payloah = n.  This can be obtained in practice by = myax (1 1), where

With this convention, Figure 1 displays the lower bounds omyax = H(w,) is the maximal average payload obtained

the average per-pixel distortion for three distortion pgesfi  from the optimal distribution (6) achieving average dititor

In practice, some cover pixels may requife= {z;} and D, and!’ is an experimentally-obtained coding loss we expect

thus o; = oo (the so-calledwet pixels[24], [25], [16]) to the algorithm will achieve.

prevent the embedding algorithm from modifying them. Since One possible approach for solving a non-binary version of

such pixels are essentially constant, in this case we meésar Poth embedding problems is to increase the size of the agthab

relative payload: with respect to the set afry pixels{xz;|o; < and use (12) and (13) with a non-binary code such as

oo}, i.e.,a = m/|{zi|o; < co}|. The overall channel is called the ternary Hamming code. A more practical alternative with

the wet paper channel and it is characterized by the profildower complexity is the multi-layered construction propds

of dry pixels andrelative wetness = |{z;|o; = o0}|/n. The in Section VI, which decomposes (12) and (13) into a series

wet paper channel is often required when working with imag®&$ binary embedding subproblems. Such decomposition leads

in the JPEG domain [16]. to the optimal solution of PLS and DLS as long as each binary
subproblem is solved optimally. For this reason, in Section
we focus on the binary PLS problem for a large variety of

3By reindexing the pixels, we can indeed assume tha g2 < --- < relative payloads and different distortion profiles inchglthe
on < K. wet paper channel.



A. Prior Art polar codes are known to be optimal for the PLS problem [36]

The bproblem of minimizing the embedding impact -r{at least for the uniform profile). Unfortunately, to applych
P sl ng imp I des, the number of pixels, must be very high, which

steganography, introduced above as the PLS problem, has be¥ R . X
already conceptually described by Crandall [27] in his ysssg]ay hot be always sat|§f|ed in practice. We believe that the
posted on the steganography mailing list #98. He suggested propo_sed syr!drome-trellls., codes offer better trade-ofiemw
that whenever the encoder embeds at most one bit per pi)&ﬁ?d in practical embedding schemes.

it should make use of the embedding impact defined for every

pixel and minimize its total sum:

“Conceptually, the encoder examines an area of the V. SYNDROME-TRELLIS CODES

image and weights each of the options that allow

it to embed the desired bits in that area. It scores In this section, we focus on solving the binary PLS problem
each option for how conspicuous it is and chooses Wwith distortion function (10) and modify a standard trellis
the option with the best score.” coding strategy for steganography. The resulting codes are

Later, Bierbrauer [28], [29] studied a special case of m&a“ed t_he syndrome-trellls_ codes. These codes will sesve a
problem and described a connection between codes (not n@uilding block for non-binary PLS and DLS problems in
essarily linear) and the problem of minimizing the number ot€ction V1.

changed pixels (the constant profile). This connectioncivhi The construction behind STCs is not new from an
has become known as matrix embedding (encoding), wiaéormation-theoretic perspective, since the STCs areaon
made famous among steganographers by Westfeld [23] wi@nal codes represented in a dual domain. However, STCs are
incorporated it in his F5 algorithm. A binary Hamming codery interesting for practical steganography since thégwal
was used to implement the syndrome-coding scheme for &®ving both embedding problems with a very small coding
constant profile. Later on, different authors suggesteerotdoss over a wide range of distortion profiles even with wet
linear codes, such as Golay [30], BCH [31], random cod@ixels. The same code can be used with all profiles making the
of small dimension [32], and non-linear codes based on tR&bedding algorithm practically universal. STCs offer gyeih
idea of a blockwise direct sum [29]. Current state-of-the-a@nd state-of-the-art solution for both embedding probléms
methods use codes based on Low Density Generator Matri§é&ganography. Here, we give the description of the codes
(LDGMs) [8] in combination with the ZZW construction [15]. along with their graphical representation, the syndrorakisr

The embedding efficiency of these codes stays rather closeStéch construction is prepared for the Viterbi algorithmjckh

the bound for arbitrarily small relative payloads [33]. is optimal for solving (12). Important practical guidel:e

The versatile syndrome-coding approach can also be ud@t optimizing the codes and using them for the wet paper
to communicate via the wet paper channel using the so-calinnel are also covered. Finally, we study the performahce
wet paper codes [24]. Wet paper codes minimizing the numdbBese codes by extensive numerical simulations usingrdiffe
of changed dry pixels were described in [34], [31], [14],][13 distortion profiles including the wet paper channel.

Even though other distortion profiles, such as the linear pro Syndrome-trellis codes targeted to applications in stegan
file, are of great interest to steganography, no generatisnlu raphy were described in [17], which was written for practi-
with performance close to the bound is currently known. TH®ners. In this paper, we expect the reader to have a working
authors of [2] approached the PLS problem by minimizing tHehowledge of convolutional codes which are often used in
distortion on a block-by-block basis utilizing a Hammingleo data-hiding applications such as digital watermarkingn@e
and a suboptimal quantizer implemented using a brute-forééional codes are otherwise described in Chapters 25 and 48
search that allows up to three embedding changes. Suchiraf87]. For a complete example of the Viterbi algorithm used
approach, however, provides highly suboptimal perforreani the context of STCs, we refer the reader to [17].
far from the theoretical bound (see Figure 8). A similar Our main goal is to develop efficient syndrome-coding
approach based on BCH codes and a brute-force quantigehemes for ararbitrary relative payloada with the main
was described in [4] achieving a slightly better perform@andocus on small relative payloads (think ef < 1/2 for
than Hamming codes. Neither Hamming or BCH codes caxample). In steganography, the relative payload musedser
be used to deal with the wet paper channel without significanith increasing size of the cover object in order to mainthin
performance loss. To the best of our knowledge, no solutisame level of security, which is a consequence of the square
is known that could be used to solve the PLS problem witlvot law [38]. Moreover, recent results from steganalysis i
arbitrary distortion profile containing wet pixels. both spatial [39] and DCT domains [40] suggest that the

One promising direction towards replacing the randosecure payload for digital image steganography is always fa
linear codes while keeping the optimality of the construtti below 1/2. Another reason for targeting smaller payloads is
has recently been proposed by Arikan [35], who introducdHe fact that as« — 1, all binary embedding algorithms tend to
the so-called polar codes for the channel coding problene. Ointroduce changes with probability2, no matter how optimal
advantage is that the complexity of encoding and decoditigey are. Denoting withR = (n — m)/n the rate of the
algorithms for polar codes islogn. Moreover, most of the linear codeC, thena — 0 translates toR = 1 — o — 1,
capacity-achieving properties of random linear codes are which is characteristic for applications of syndrome caodim
tained even for other information-theoretic problems dnet steganography.
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Figure 2. Example of a parity-check matri% formed from the submatrifl (h = 2,w = 2) and its corresponding syndrome trellis. The last 1
submatrices irH are cropped to achieve the desired relative payleadhe syndrome trellis consists of repeating blocksuwof- 1 columns, where py”
and “p;”, i > 0, denote the starting and pruning columns, respectivelg ddiumn labeled € {1, 2, ...} corresponds to théth column in the parity-check
matrix H.

A. From convolutional codes to syndrome-trellis codes carried out in the dual domain on the syndrome trellis with a

much lower complexity and without any loss of performance.

. Sin_ce Sh.anr_10n [_21]_intr9duced the probl_em of source Coﬁjhis approach is more efficient as— 0 and thus we choose
ing with a fidelity criterion in 1959, convolutional codes ree it for the construction of the codes presented in this paper.

probably the first “practical” codes used for this problert][4 In the dual domain, a code of lengthis represented by a

This IS bec_ause_ the gap betwe_en the bound_ on the_eXpe%gth—check matrix instead of a generator matrix as is more
per_-p|xel d|stqrt|0n an_d the dlstortlor_w obta_med using the,mmon for convolutional codes. Working directly in the Hua
optimal encoding algorithm (the Viterbi algorithm) decsea 45 4in aliows the Viterbi algorithm to exactly implemength
exponentially with the constraint length of the code [43R]] coset quantizer required for the embedding function (1Bg T

lThe clf]orr;p:]exny(;)f tge Viterbi algprllt_hr_n is linear in tlhe bI;)c message can be extracted in a straightforward manner by the
ength of the code, but exponentialin its constraint ef@' recipient using the shared parity-check matrix.
number of trellis states grows exponentially in the corstra

length).

When adapted to the PLS problem, convolutional codes c&n Description of syndrome-trellis codes
be used for syndrome coding since the best stego image irAlthough syndrome-trellis codes form a class of convo-
(12) can be found using the Viterbi algorithm. This makegtional codes and thus can be described using a classical
convolutional codes (of small constraint length) suitafde approach with shift-registers, it is advantageous to stay i
our application because the entire cover object can be uskd dual domain and describe the code directly by its parity-
and the speed can be traded for performance by adjustitgeck matrix. The parity-check matriX € {0,1}™*" of a
the constraint length. Note that the receiver does not needpinary syndrome-trellis code of lengthand codimensionn
know D since only the Viterbi algorithm requires this knowlis obtained by placing a small submatiik of size h x w
edge. By increasing the constraint length, we can achiex®ng the main diagonal as in Figure 2. The submatiitese
the average per-pixel distortion that is arbitrarily clasethe placed next to each other and shifted down by one row leading
bounds and thus make the coding loss (7) approach zew®.a sparse and bandéd. The heighth of the submatrix
Convolutional codes are often represented with shiftstegé (called theconstraint heightis a design parameter that affects
(see Chapter 48 in [37]) that generate the codeword fraile algorithm speed and efficiency (typically,< h < 15).
a set of information bits. In channel coding, codes of ratethe width of H is dictated by the desired ratio of./n,
R = 1/k for k = 2,3,... are usually considered for theirwhich coincides with the relative payload = m/n when
simple implementation. no wet pixels are present. i./n equals tol/k for some

Convolutional codes in standard trellis representatiom ak € N, selectw = k. For general ratios, find: such that
commonly used in problems that are dual to the PLS prob/(k+1) < m/n < 1/k. The matrixH will contain a mix of
lem, such as the distributed source coding [43]. The masubmatrices of widtlk andk+1 so that the final matri¥l is of
drawback of convolutional codes, when implemented usirsizem x n. In this way, we can create a parity-check matrix for
shift-registers, comes from our requirement of small relan arbitrary message and code size. The submitracts as
tive payloads (code rates close to one) which is specific &m input parameter shared between the sender and the receive
steganography. A convolutional code of rdte= (k — 1)/k and its choice is discussed in more detail in Section V-D. For
requiresk — 1 shift registers in order to implement a schem#he sake of simplicity, in the following description we ass
for « = 1/k. Here, unfortunately, the complexity of them/n = 1/w and thus the matril is of the sizeb x (b- w),
Viterbi algorithm in this construction grows exponentjall wherebd is the number of copies dfl in H.
with k. Instead of using puncturing (see Chapter 48 in [37]), Similar to convolutional codes and their trellis represent
which is often used to construct high-rate convolutionalexy tion, every codeword of an STC = {z € {0,1}"|Hz =
we prefer to represent the convolutional code in the du@} can be represented as a unique path through a graph
domain using its parity-check matrix. In fact, Sidorenka ancalled the syndrome trellis Moreover, the syndrome trellis
Zyablov [44] showed that optimal decoding of convolutionds parametrized bym and thus can represent members of
codes (our binary quantizer) with ratés= (k —1)/k can be arbitrary coseC(m) = {z € {0,1}"|Hz = m}. An example
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|Forward part of the Viterbi algorithm|
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__|Backward part of the Viterbi alg. |_

wght[0] =0 1 enbeddi ng_cost = wght [ 0]
wght[1,...,2*h-1] = infinity 2 state = 0, indx--, indm-
indx = indm=1 s for i = numof blocks,...,1 (step -1) {
for i = 1,...,numof blocks (submatrices in H) { « for j =w...,1 (step -1) {
for j =1,...,w{ /'l for each colum s y[indx] = path[indx]][state]

for k =0,...,2"h-1 { /1 for each state 6 state = state XOR (y[indx]*H hat[j])

w0 = wght [Kk] + x[indx]*rho[i ndx] 7 i ndx- -

wl = wght[k XOR H hat[j]] + (1-x[indx])=*rho[indx] s

path[indx][k] =wl <w) ? 1: O /1 C notation o state = 2xstate + nessage[indnj

newwght [ k] = m n(w0, wl) 10 i ndm -

11}

i ndx++

wght = newaght

}

I NPUT: x, message, H hat
/'l prune states ; oot .
for Jp =0,...,2°h-1)-1 X = (x[l],.(..,x[n]%lizover obj ect )
ht[j] = ht[2+j + message[ind message = (nmessage - - TESSage]
V\gmﬁt[[ZJ"](h-l\)A?..F,ZJ"h-l] - igfi[nit;/d] H hat[j] =j th colum in int notation
}Inde QUTPUT: vy, enbeddi ng_cost
y = (y[1],...,y[n]) stego object

Figure 3. Pseudocode of the Viterbi algorithm modified fa #yndrome trellis.

of the syndrome ftrellis is shown in Figure 2. More formallyg;. If P(x;) = 1, the roles of the edges are reversed. Finally,
the syndrome trellis is a graph consisting toblocks, each all edges connecting the individual blocks of the trellisvédna
containing 2" (w + 1) nodes organized in a grid ab + 1  zero weight.
columns and2” rows. The nodes between two adjacent The embedding problem (12) for binary embedding can
columns form a bipartite graph, i.e., all edges only connegbw be optimally solved by th¥iterbi algorithm with time
nodes from two adjacent columns. Each block of the trelland space complexit§?(2n). This algorithm consists of two
represents one submatriX used to obtain the parity-checkparts, theforward and thebackwardpart. The forward part of
matrix H. The nodes in every column are callsthtes. the algorithm consists of + b steps. Upon finishing thé&h
Eachz € {0,1}" satisfyingHz = m is represented as astep, we know the shortest path between the leftmost adl-zer
path through the syndrome trellis which represents thega®cstate and every state in thith column of the trellis. Thus in
of calculating the syndrome as a linear combination of ttibe final,n + bth step, we discover the shortest path through
columns ofH with weights given byz. Each path starts in thethe entire trellis. During the backward part, the shorteghp
leftmost all-zero state in the trellis and extends to thdtrig is traced back and the parities of the closest stego oBjég}
The path shows the step-by-step calculation of the (parti@re recovered from the edge labels. The Viterbi algorithm
syndrome using more and more bitszofFor example, the first modified for the syndrome trellis is described in Figure 31gsi
two edges in Figure 2, that connect the st3igfrom column a pseudocode.
po With states11 and 00 in the next column, correspond to
adding P(y1) = 1) or not addingP(y1) = 0) the first column C. Implementation details

of H to the syndrome, respectivelyAt the end of the first  The construction of STCs is not constrained to having to
bloc.k, we terminate all paths for Whlch the first bit of .therepeat the same submatiik along the diagonal. Any parity-
partial syndrome does not mateh,. This way, we obtain check matrixH containing at most nonzero entries along
a new column of the trellis, which will serve as the startingye main diagonal will have an efficient representation by it
column of the next block. This column merely illustrates thgyngrome trellis and the Viterbi algorithm will have the sam
transition of the trellis from repre_sentlng t_he p_artlal dsome complexity O(2n). In practice, the trellis is built on the fly
(s1,--.,5n) t0 (s2,...,sny1). This operation is repeated atpecause only the structure of the submafiisis needed (see
each block transition in the matriil and guarantees that' e pseudocode in Figure 3). As can be seen from the last two
states are sufficient to represent the calculation of théabar glumns of the trellis in Figure 2, the connectivity between
syndrome throughout the whole syndrome trellis. trellis columns is highly regular which can be used to speed
To find the closest stego object, we assign weights to @b the implementation by “vectorizing” the calculations.
trellis edges. The weights of the edges entering the columnp the forward part of the algorithm, we need to store one
with labell, I € {1,...,n}, in the syndrome trellis depend onpit (the label of the incoming edge) to be able to reconstruct
the/th bit representation of the original cover objectP(z;).  the path in the backward run. This space complexity is linear
If P(21) = 0, then the horizontal edges (corresponding to n@hd should not cause any difficulty, since far = 10,
adding thelth column ofH) have a weight of) and the edges 5, = 106, the total of 2'° - 10°/8 bytes & 122MB) of
corresponding to adding thiéh column ofH have a weight of space is required. If less space is available, we can always
run the algorithm on smaller blocks, say = 10%, without

4The state corresponds to the partial syndrome. any noticeable performance drop. If we are only interested i
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Figure 4. Embedding efficiency 800 random syndrome-trellis codes satisfying the design rdeselative payloadx = 1/2 and constraint height = 10.

All codes were evaluated by the Viterbi algorithm with a ramdcover object of: = 106 pixels and a random message on the constant, linear, andesqua
profiles. Codes are shown in the order determined by theireddibg efficiency evaluated on the constant profile. Thiserpent suggests that codes good
for the constant profile are good for other profiles. Codesgdes for different relative payloads have a similar bebavi

the total distortionD(y) and not the stego object itself, thisexperimentally by running the Viterbi algorithm with rando
information does not need to be stored at all and only tlevers and messages. For a reliable estimate, cover objfects

forward run of the Viterbi algorithm is required. size at leask = 10° are required.
To investigate the stability of the design w.r.t. to the gegfi
D. Design of good syndrome-trellis codes the following experiment was conducted. We fixed- 10 and

A natural question regarding practical applications df = 2, which correspond to a code with = 1/2. The code
syndrome-trellis codes is how to optimize the structure @fsign procedure was simulated by randomly generaiiig
H for fixed parameters: and w and a given profile. Iffl SubmatricesH, ... Hsqo satisfying the above design rules.
depended on the distortion profile, the profile would have tthe goodness of the code was evaluated using the embedding
be somehow communicated to the receiver. Fortunately, ti§iciency € = m/D(x,y)) by running the Viterbi algorithm
is not the case and a submatiik optimized for one profile On @ random cover object (of size = 10°) and with a
seems to be good for other profiles as well. In this sectiofndom message. This was repeated independently fored thr

we study these issues experimentally and describe a mhctRfofiles from Section II-B. Figure 4 shows the embedding
algorithm for obtaining good submatrices. efficiency after ordering aB00 codes by their performance on

Let us suppose that we wish to design a submaitix the constant profile. Because the codes with a high embedding

of size h x w for a given constraint height and relative €fficiency on the constant profile exhibit high efficiency for
payloada = 1/w. In [45], authors describe several methogthe other profiles, we consider the code design to be stable
for calculating the expected distortion of a given conviolnal ~ W-I.t. the profile and use these matrices with other profiles
code when used in the source-coding problem with Hammilfy Practice. All further results are generated by using ehes
measure (uniform distortion profile). Unfortunately, theme  matrices.
putational complexity of these algorithms do not permitas t
use them for the code design. Instead, we rely on estima[:.esw i h |
obtained from embedding a pseudo-random message int0 ‘a el paper channe
random cover object. The authors were unable to find a bettetn this section, we investigate how STCs can be used for
algorithm than an exhaustive search guided by some simple wet paper channel described by relative wetness:
design rules. [{ilo; = oo}|/n with a given distortion profile of dry pixels.
First, H should not have identical columns because thdthough the STCs can be directly applied to this problem,
syndrome trellis would contain two or more different paththe probability of not being able to embed a message without
with exactly the same weight, which would lead to an overathanging any wet pixel may be positive and depends on the
decrease in performance. By running an exhaustive seasth owumber of wet pixels, the payload, and the code. The goal is
small matrices, we have observed that the best submatrit@gnake this probability very small or to make sure that the
H had ones in the first and last rows. For example, whewmber of wet pixels that must be changed is small (e.g., one
h =7 andw = 4, more thar97% of the bestl000 codes ob- or two). We now describe two different approaches to address
tained from the exhaustive search satisfied this rule. Tias, this problem.
searched for good matrices among those that did not contaiet us assume that the wet channel is iid with probability
identical columns and with all bits in the first and last rows sof a pixel being wel) < 7 < 1. This assumption is plausible
to 1 (the remaining bits were assigned at random). In practidegcause the cover pixels can be permuted using a stego key
we randomly generatet) — 1000 submatrices satisfying thesebefore embedding. For the wet paper channel, the relatiye pa
rules and estimated their performance (embedding effig}endoad is defined w.r.t. the dry pixels as= m/|{i|p; < co}|.
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Figure 5. Average number of wet pixels out of= 10° that need to be G
changed to find a solution to (12) using STCs with= 11. 8 10
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When designing the code for the wet paper channel with S
. . ; . O 6
pixel covers, relative wetness and desired relative payload
the parity-check matrifl has to be of the sizg1 — 7)an|xn. 4
The random permutation makes the Viterbi algorithm less 5

likely to fail to embed a message without having to change

some wet pixels. The probability of failurg,,, decreases with

decreasingv andr and it also depends on the constraint height
. : s .

h. From praCt'Cal eXpe“mer?tS with = 10 Clover p|xels, Figure 7. Comparison of the coding loss of STCs as a functidheoprofile

7 = 0.8, andh = 10, we estimated from 000 independent exponentd for different payloads and constraint heights of STCs. Fzaint

runs py, = 0.24 for a = 1/2, Py = 0.009 for o = 1/4, and Was obtained by quantizing a random vectormof= 10% pixels.

pw = 0 for @« = 1/10. In practice, the message size can

be used as a seed for the pseudo-random number generator. ) _ )

If the embedding process fails, embeddimg— 1 bits leads from Figure 6, increasing the amount of wet pixels does not

to a different permutation while embedding roughly the sani@ad to any noticeable difference in embedding efficienay fo

amount of message. lh trials, the probability of having to constant profile. Similar behavior has been observed fagroth

modify a wet pixel is at most*., which can be made arbitrarily profiles and holds as long as the number of changed wet pixels
small. is small.

Alternatively, the sender may allow a small number of wet
pixels to be modified, say one or two, without affecting th
statistical detectability in any significant manner. Makinse
of this fact, one can set the distortion of all wet cover pixel We have implemented the Viterbi algorithm in C++ and op-
too; =C,C>>, 0 andp; = g; for i dry. The weight timized its performance by using Streaming SIMD Extensions
c of the best path through the syndrome trellis obtained by tistructions. Based on the distortion profile, the alganith
Viterbi algorithm with distortiong; can be written in the form chooses between the float and 1 byte unsigned integer data
c =n.C + ¢, wheren, is the smallest number of wet covertype to represent the weight of the paths in the trellis. The
pixels that had to be changed arids the smallest weight of following results were obtained using an Intel Core2 X6800
the path over the pixels that are allowed to be changed. 2.93GHz CPU machine utilizing a single CPU core.

Figure 5 shows the average number of wet pixels out ef Using the search described in Section V-D, we found good
108 required to be changed in order to solve (12) for STCs wiyndrome-trellis codes of constraint heighte {6, ..., 12}
h = 11. The exact value op; is irrelevant in this experiment for relative payloadsx = 1/w, w € {1,...,20}. Some of
as long as it is finite. This experiment suggests that STCs dhese codes can be found in [17, Table 1]. In practice, almost
be used with arbitrary as long asy < 0.7. As can be seen every code satisfying the design rules is equally good. This

Profile exponent d

E Experimental results
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Figure 8. Embedding efficiency and coding loss of syndromakig codes for three distortion profiles. Each point wasamted by running the Viterbi

algorithm withn = 10% cover pixels. Hamming [2] and BCH [3] codes were applied orcakeby-block basis on cover objects with= 10° pixels with a
brute-force search making up to three and four changesectiggly. The line connecting a pair of Hamming or BCH codegresents the codes obtained by
their block direct sum. For clarity, we present the codingsloesults in range: € [0.5, 1] only for constraint height: = 10 of the syndrome-trellis codes.
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Figure 9. Results for the syndrome-trellis codes desigoedelative payloac = 1/2. Left: Average number of cover pixels<(0°) quantized per second
(throughput) shown for different constraint heights and thfferent implementations. Right: Average embeddingcifficy for different code lengths (the
number of cover pixels), constraint heighits and a constant distortion profile. Codes of length> 1000 have similar performance as far= 1000. Each
point was obtained as an average o800 samples.

fact can also be seen from Figure 4, whg®é random codes implemented using nested convolutional (trellis) codes ian
are evaluated over different profiles. better known as Dirty-paper codes [46]. Different pradtica
The effect of the profile shape on the coding lossdiar) ~ application of the binning concept is in the distributed reeu
z¢ as a function ofd is shown in Figure 7. The coding losscoding problem [43]. Convolutional codes are attractive fo
increases with decreasing relative payleadThis effect can solving these problems mainly because of the existenceeof th
be compensated by using a larger constraint height optimal quantizer — the Viterbi algorithm.
Figure 8 shows the comparison of syndrome-trellis codes for
three profiles with other codes which are known for a given VI. MULTI-LAYERED CONSTRUCTION

profile. The ZZW family [12] applies only to the constant Ajthough it is straightforward to extend STCs to non-binary

profile. For a given relative payload and constraint height 5iphabets and thus apply themg@ry embedding operations,

h, the same submatri¥l was used for all profiles. This their complexity rapidly increases (the number of states in

demonstrates the versatility of the proposed construcsioge the trellis increases fror” to ¢" for constraint heighty),

the information about the profile does not need to be shar@ghiting thus their performance in practice. In this sentive

or, perhaps more importantly, the profile does not need to Bgroduce a simple layered construction which has beerlarg

known a priori for a good performance. motivated by [10] and can be considered as a generalization
Figure 9 shows the average throughput (the number gfthis work. The main idea is to decompose the problems (4)

cover pixelsn quantized per second) based on the used dafgq (5) with a non-binary embedding operation into a seqaienc

type. In practice, 1-5 seconds were enough to procesgfasimilar problems with a binary embedding operation. Any

cover object withn = 10° pixels. In the same figure, we sojution to the binary PLS embedding problem, such as STCs,

show the embedding efficiency obtained from very short codggn then be used. This decomposition turns out to be optimal

for the constant profile. This result shows that the averagegach binary embedding problem is solved optimally. The

performance of syndrome-trellis codes quickly approadtses multi-layered construction was described in [18].

maximum w.r.t.n. This is again an advantage, since some According to (11), the binary coding algorithm for (4) or

applications may require short blocks. (5) is optimal if and only if it modifies each cover pixel with

probability
G. STCs in context of other works exp(—Ao;)
The concept of dividing a set of samples into differ- = 14 exp(—Xo;)’ (14)
ent bins (the so-called binning) is a common tool _use'gor a fixed value of\, the valuesg:, i = 1,....n, form

for solving many information-theoretic and also data-hidi sufficient statistic forr.

problems [26]. From this point of view, the steganographic A solution to the PLS with a binary embedding operation

embedding problem is a pure source-coding problem, i.e, . A i
given coverx, what is the “closest” stego objest in the ¢dn be used to derive the following “Flipping lemma” that we

bin indexed by the message. In digital watermarking, th\%III heavily use later in this section.

same problem is extended by an attack channel between ltleenma 1 (Flipping lemma) Given a set of probabilities
sender and the receiver, which calls for a combination ¢p;} ,, the sender wants to communicate= >, h(p;)
good source and channel codes. This combination can lits by sending bit stringg = {y;}, such thatP(y; = 0) =
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p:. This can be achieved by a PLS with a binary embeddifggorithm 1 +1 embedding implemented with 2-layers of
operation onZ = Z; = {0,1} for all i by embedding the STCs and embedding the payloadmfbits

payload in coverr; = [p; < 1/2] with non-negative per-pixel Require: x € X = {7}~ 2 {0,...,255}"

costsg; = In(pi/(1 — pi)), pi = max{p;, 1 — pi}. pi(x,2) € [-K,+K], z € T; & {x; — 1, w4, 7, + 1}
defineP;(z) = z mod 2, Pa(z) = [(2 mod 4) > 1]

forbid other colors by;(x,2) =C > K, 2¢Z,NT

find A > 0 such that distrr over X satisfiesH () = m

Proof: Without loss of generality, leh = 1. Since the
inverse of f(2) = In(z/(1 — 2)) on [0,1] is f~1(2) =
exp(z)/(1 +exp(z)), by (14) the cosp; causes:; to change
toy; =1—ua; with probabllltyP(yZ #+ 1‘1|1‘1) = f_l(—gi) =
1 — p;. Thus, P(yl = Olmi = 1) = fﬁl(—gi) = p; and
P(y; =0|z; =0) =1— f~1(—p;) = p; as required. [ ]

definep) = Pr.(P2(Y;) = 0), setma =Y. h(p}), x" €

{0, 1} with 27/ = [pi’ < 1/2], andg}’ = | In(p'/(1-p]))|
6: embed my bits with binary STC intox” with costs o

Now, let |Z;] = 2 for some integerL > 0 and let and produce new vecter’ = (y7,...,y,) € {0,1}"

P1,...,Pr be parity functions uniquely describing ai 7:

elements inZ;, i.e., (z; # y;) = 3j,Pj(x:) # Pj(yi) for & definep, = Pr.(P1(Y;) = 0|P2(Y;) = ¢), x' € {0,1}"

all z;,y; € Z, and alli € {1,...,n}. For exampleP,(x) can with =/ = [p} < 1/2], and g}, = | In(p}/(1 — p}))|

be defined as thgth LSB of z. The individual setd; can be 9. embedm — m, bits with binary STC intox’ with costs

enlarged to satisfy the size constraint by setting the cokts  / and produce a new vectsf = (i, ...,y.) € {0,1}"

added elements teo. 10:
The optimal algorithm for (4) and (5) sends the steg@i: sety; € Z; such thatPs(y;) = v/ andP1(y;) = v,
symbols by sampling from the optimal distribution (6) with12: return stego imagey = (y1,. .., yn)

some \. Let Y; be the random variable defined ov€f 13 message can be extracted using STCs from
representing théth stego symbol. Due to the assigned parities, (P, (y,), ..., P2(yn)) and (P1(y1), .-, Pi(yn))

Y, can be represented a¥; = (V;!,...,Y;F) with Y/
corresponding to theth parity function. We construct the
embedding algorithm by induction ovel, the number of
layers. By the chain rule, for eachthe entropyH (Y;) can

be decomposed into
1 9 Lol Example 2 (+1 embedding) For simplicity, letx; = 2, Z; =
H(Y;) = HY;7) + HY?,.. VY5 (A8) (9 31 ) (1) = pu(3) = 1, andps(2) = 0 for i € {1,...,n}
This tells us that{ (Y;!) bits should be embedded by changingnd largen. For such ternary embedding, we use two LSBs as
the first parity of theith pixel. In fact, the parities should their parities. Suppose we want to solve the problem (4) with
be distributed according to the marginal distributi&y;'). o« = 0.9217, which leads to\ = 2.08, P(Y; = 1) = P(Y; =
Using the Flipping lemma, this task is equivalent to a PLS) = 0.1, and P(Y; = 2) = 0.8. To make|Z;| a power of
which can be realized in practice using STCs as reviewedtiio, we also include the symbdl and definep;(0) = oo
Section V. To summarize, in the first step we embed = Which implies P(Y; = 0) = 0. Lety; = (y?,y;) be a binary
S H(Y;') bits on average. representation of; € {0,...,3}, wherey} is the LSB ofy;.
After the first layer is embedded, we obtain the parities Starting from the LSBs as in [10], we obta(Y;! — 0) =
P1(y;) for all stego pixels. This allows us to calculate th% 3. If the LSB needs to be changied thexy? . oY} =
conditional probapilityP(Yf, N "YiL|Y§1 = P1(y:)) and use li ~ 05 whereasP(Y? = 0|Y;}! = 0) Zo. Inlpracticel, the
w: gx;g(;:;: igglzgijolr{?;(gﬁn}fllezwgf'@l; tgifssgﬁog\?e%irf fir_st_ Ia_y_er can be realized by any syndrome-co_ding scheme
= it v .~ minimizing the number of changes and embedding= n -
In total, we havel, such steps fixing one parity value at a t'm%(o.2) bits. The second layer must be implemented with wet

knowing the result of the previous parities. Finally, we d;enpaper codes [25], since we need to embed either one bit or

the valqesz_;i_corresponding t.o the obtained pgrities. leave the pixel unchanged (the relative payload)is

If all individual Iayers are implemented optlmal_ly, we ser_1de If the weights of symbols and 3 were slightly changed,
m= m%l +ﬁ ';' mz, bits on a\llerarge.hBy the ctzam rE[J_Ie, f:" owever, we would have to use STCs in the second layer,
IS exactly ( i).m every pixel, which proves th€ opimaity i causes a problem due to the large relative paylaad (
of this construction. In theory, the order in which the gast 1) combined with large wetness (= 0.8) (see Figure 5)

are be||ngtfr|]xed ((j:an-b(.a arb|ttrar%/.fAs IS Sthomlm |n|.thet_followm he opposite decomposition starting with the M$B will
example, the order is important for practical realizatiomen reveal thatP(Y2 = 0) = 0.1, P(Y,! = 0]Y2 = 0) = 0, and

ciifoant bits ending with e LS8s. Algoritm 1 deseripel (2 — 01V = 1) =0:8/0.. Both layers can now be easly
) . ' . ! ﬁnplemented by STCs since here the wetness is not as severe
the necessary steps required to implemehiembedding with
arbitrary costs using two layers of STCs.
In practice, the number of bits hidden in every layer;,
needs to be communicated to the receiver. The numbeis
used as a seed for a pseudo-random permutation used to shuffla this section, we show some applications of the pro-

all bits in thejth layer. If, due to large payload and wetnesqosed methodology for spatial and transform domain (JPEG)

STCs cannot embed a given message, we try a different
permutation by embedding a slightly different number o$bit

VIlI. PRACTICAL EMBEDDING CONSTRUCTIONS
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0.5/ e S4 - simulated || A. DCT domain steganography
—3S4-STCh =11 To apply the proposed framework, we first need to design an
04 ---S54-STCh=28 | additive distortion function which can be tested by simialat
Qéﬂ ¢ S3 anskF5 the embedding as if the best codes are available. Finably, th
S 03l S1 «S2 | the most promising approach is implemented using STCs. We
o ' assume the cover to be a grayscale bitmap image which we
> JPEG compress to obtain the cover image. Metbe a set of
g 0.2 coding loss | indices corresponding to AC DCT coefficients after the block
z ! 9 DCT transform and let; be theith AC coefficient before it
010 " i is quantized with the quantization stepfor i € A. We letX
+ represent the set of all vectors containing quantized AC DCT
2 A 4 coefficients divided by their corresponding quantizatiteps
00 0%1 0f2 073 0?4 0.15 In (Zrdinary JPEG compression, the valugsre quantized to
. . z; = [¢i/qil.
Relative payloady (bits per non-zero AC coeff.) 1) Proposed distortion functionsiVe define binary embed-

: ; P e e

Figure 10. Comparison of methods with four different weighsignment ding OE),eratlon.Iz - .{x“ i} by Ti =T - mgn(c%ql zi),
strategies S1-S4 and nsF5 as described in Section VII-A winenlated as it Where mgn(_:c) is1if z >0, —1if T < 0 and mgn(Q) €
the best coding scheme was available. The performanceatégyr S4 when {—1,1} uniformly at random. In simple wordsg; is a

practically implemented using STCs with= 8 andh = 11 is also shown. quantized AC DCT coefficient ang; is the same coefficient
when quantized in the opposite direction. ket= |¢;/q; — ;]
be the quantization error introduced by JPEG compressipn. B
replacingz; with T; the error becomeg:; /q; — ;| = 1 — e;.
steganography. In the past, most embedding schemes were — o 5, then the direction where /¢; is rounded depends
constrained by practical ways of how to encode the messagethe implementation of the JPEG compressor and only small
so that the receiver can read it. Problems such as “Shriﬁka%%rturbation of the original image may lead to differentitts
in F5 [23], [16] or in MMx [2] arose from this practical | et P(z) = 2 mod 2. By constructionp satisfies the property
constraint. By being able to solve the PLS and DLS problerg$ a parity function,P(z;) # P(z;). The distortion function
close to the bound for an arbitrary additive distortion fimt,®  is assumed to be in the ford(x,y) = S0, 0i - [vi # vil,
steganographers now have much more freedom in designjggeren = | A|. B
new embedding algorithms. They only need to select theThe following four approaches utilizing values @fandg;
distortion function and then apply the proposed frameworlere considered. All methods assigh= oo whenc;/q; €

The only task left to the steganographer is the choice of theq 5 (.5) and differ in the definition of the remaining values
distortion functionD. It should be selected so that it correlateg; as follows:

with statistical detectability. Instead of delving intqettiifficult e Slig;=1—2¢ if ci/q; & (—0.5,0.5) (as in perturbed
problem of how to select the bedd, we provide a few quantization [24]),

examples of ao_ldltlve distortion measures motwgted byrmece | S2: 0; = q;(1 — 2¢;) if ¢i/qi & (—0.5,0.5) (the same as
develop_ments in stege}nqgraphy and show their performance S1 butg; is weighted by the quantization step),

when blind steganalysis is used. e S30i = 11f ¢;/qi € (—1,-0.5] U [0.5,1) and 0; =

In the examples below, we tested the embedding schemes 1 — 2¢; otherwise, and
using blind feature-based steganalysis on a large dataifase ¢ S4: o, = ¢; if ¢;/q; € (—1,-0.5]U[0.5,1) and ¢; =
images. The image database was evenly divided into a tgainin ~ ¢:(1 — 2e;) otherwise which is similar weight assignment
and a testing set of cover and stego images, respectively. as proposed in [4].

A soft-margin support-vector machine was trained using th® see the importance of the side-information in the form of
Gaussian kernel. The kernel width and the penalty parametie# uncompressed cover image, we also include in our tests
were determined using five-fold cross validation on the grithe nsF5 [16] algorithm, which can be represented in our
(C,v) € {(10’“,2j*d)|k e{-3,...,4},j € {-3,. ..,3}}, formalism asx; = [¢;/q;], T; = x; — sign(x;), andg; = oo
where d is the binary logarithm of the number of featuresf z; = 0 and o; = 1 otherwise. This way, we always have
We report the results using a measure frequently used [if)| < |z;|. The nsF5 embedding minimizes the number of
steganalysis — the minimum average classification error  changes to non-zero AC DCT coefficients.

2) Steganalysis setup and experimental resulfse pro-
posed strategies were tested on a database of 6, 500 digital
camera images prepared as described in [47, Sec. 4.1] so that
their smaller size wa$12 pixels. The JPEG quality factor
75 was used for compression. The steganalyzer employed the
548-dimensional CC-PEV feature set [40]. Figure 10 shows

Wheref_)lfé and Pyp are the false-alarm and missed'(:letE(:ti(m5The additivity constraint can be relaxed and more genersiodion
probabilities. measures can be used with the PLS and DLS problems in prd@ice

Py = I}gliil(PFA + Pup (Pra))/2, (16)
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Ti—3,;5

that number of cliques with differences falls of quickly agt
differences gets larger. From this point of view, any clique
with small differences should lead to larger distortiondese
there are more samples the warden can use for training her
steganalyzer and the better she can detect the change.
@) More formaly, letx € {0,...,255}"1*"2 be ann; X n
@) grayscale cover image, = nins, represented in the spatial
0O domain. Define the co-occurrence matrix computed from hori-

Zit3,j Tit3,j zontal pixel diﬁerence@jj (xX) =i j41—xij,i=1,...,n1,
Li,j Ti,j+3 p p j=1,...,n9—1:

= d1 = T4i,5 — Tij+1 2 = Tij+1 — Tij+2 ne Te—3
ds = @i jio — Tijis A:q (%) = Zl 22 [(D;}, Di_:j-ﬁ-l? D?j+2)(x) = (p,q, 7')]
o ni (712 — 3)

)

. . . . ) . - i=1 j=1
Figure 11. Set ofi-pixel cliques used for calculating the distortion for dgi ¢ J

images represented in the spatial-domain. The final distow; ;(v; ;) is where[(D=.. D D x) = ) = (D7 (x) =

obtained as a sum of terms penalizing the change in pixgl ‘measured & D[_(’ ng’ 27"'1(’& 57_";2)( ) . (p’q’CI)] | [1(4_5’3( )

w.r.t. each clique containing; ;. p) ( _i-,j+1(x) - Q)_ ( 4,5+2 (x) - 7“)] ea_r Y; p7q7r(x) €
[0,1] is the normalized count of neighboring quadruples of

piXElS {Ii,jaIi,j+17xi,j+27xi,j+3} with diﬁerencewi7j+1 —

the minimum average classification eri@s achieved by sim- %i.j = Pr Tij+2 = Tij+1 = @ an.d Tij+3 — LTij+2 = T
ulating each strategy on the bound using the PLS formulatidh the entire image. The superscript arrow,™ denotes the
The strategies S1 and S2, which assign zero cost to coeféicidfCt that the differences are computed by subtracting the
¢i/g; = 0.5, were worse than the nsF5 algorithm that dodeft pixel from the right one. Similarly, we define matri-
not use any side-information. On the other hand, strategy §$S_Ap/,q,r(x)' Ag,q,r(x)' and Ap\,q,r(’f)- Let yijx.i; be
which also utilizes the knowledge about the quantizatiep,st 20 image obtained fronx by replacing the(i, j)th pixel
was the best. By implementing this strategy, we have to de4f value y;;. Finally, we define the distortion measure
with a wet paper channel which can be well modeled by Ry) =>4 Zjil pii (Yi,j) by

linear profile with relative wetness ~ 0.6 depending on s s

the image content. We have implemented strategy S4 usir‘f@j(yi’j) - Z Wp.q.r | Ap g (%) = Ap g (Wi %i 5],
STCs, where wet pixels were handled by setting= C for p"’;ﬁtﬁjﬁ’;ﬁff”}

a sufficiently largeC. As seen from the results using STCs, a7
payloads below0.15 bits per non-zero AC DCT coefficientwhere w,,, = 1/(1 + \/p?+ ¢% +1r2) are heuristically
were undetectable using our steganalyzer. chosen weights.

Note that our strategies utilized only the information ob- 2) Steganalysis setup and experimental resuldl: tests
tainable from a single AC DCT coefficient. In reality; will were carried out on the BOWS2 database [48] containing
likely depend on the local image content, quantizationrsrroapproximately10, 800 grayscale images with a fixed size of
and quantization steps. We leave the problem of optimiZing 512 x 512 pixels coming from rescaled and cropped natural
w.r.t. statistical detectability for our future research. images of various sizes. Steganalysis was implemented usin
the second-order SPAM feature set with= 3 [39].

Figure 12 contains the comparison of embedding algorithms
implementing the PLS and DLS with the costs (17). All

To demonstrate the merit of the STC-based multi-layeredgorithms are contrasted with LSB matching simulated on
construction, we present a practical embedding scheme ttia binary and ternary bounds. To compare the effect of
was largely motivated by [5] and [7]. Single per-pixel dispractical codes, we first simulated the embedding algorithm
tortion functionp; ;(y; ;) should assign the cost of changings if the best codes were available and then compared these
i, jth pixel z; ;, first, from its neighborhood and then alsaesults with algorithms implemented using STCs with- 10.
based on the new valug ;. Changes made in smooth region8oth types of senders are implemented with binary, ternary
often tend to be highly detectable by blind steganalysiciwhi(Z, = {z; — 1,...,2z; + 1}), and pentary L; = {z; —
should lead to high distortion values. On the other hanclpix 2, ..., z; +2}) embedding operations. Before embedding, the
which are in busy and hard-to-model regions can be changdsidary embedding operation was initialized Ip = {x;, y;}
more often. with y; randomly chosen fromiz; — 1,z; + 1}. The reported

1) Proposed distortion functionsiVe design our distortion payload for the DLS with a fixed), was calculated as an
function based on a model build from a set of all straight average over the whole database after embedding.
pixel lines in 4 different orientations containing jth pixel The relative horizontal distance between the correspgndin
which we call cliques (see Figure 11). Based on the set of diished and solid lines in Figure 12 is bounded by the coding
such cliques, we decide on the valpg;(y; ;). Due to strong loss. Most of the proposed algorithms are undetectable for
inter-pixel dependencies, most cliques contain very similrelative payloadsx < 0.2 bits per pixel (bpp). For payloads
values and thus differences between neighboring pixetsten a« < 0.5, the DLS is more secure. For larger payloads,
be very close to zero. It has been experimentaly observed [fble distortion measure seems to fail to capture the statlsti

B. Spatial domain steganography
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0.5 17 BOWS?2 database | 0.5 17 BOWS?2 database
Payload-limited sender Distortion-limited sender
0411 — simulated emb| 041 — simulated emp
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E 03} - £ 031 .
o pentary -2) | © pentary (2)
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Figure 12. Comparison of LSB matching with optimal binaryddarnary coding with embedding algorithms based on thetigddiistortion measure (17)
using embedding operations of three different cardiraliti

detectability correctly and thus the algorithms are more de The implicit premise of this paper is the direct relatiopshi
tectable than when implemented in the payload-limitednegi between the distortion functiob and statistical detectability.
Finally, the results suggest that larger embedding chaages Designing (and possibly learning) the distortion measuore f
useful for steganography when placed adaptively. a given cover source is an interesting problem by itself and i
left for our future research. We reiterate that our focusris o
VIII. CONCLUSION constructing practical coding schemes for a giverExamples
The concept of embedding in steganography that minimizes distortion measures presented in this work are unlikely t

a distortion function is connected to many basic principlase optimal and we include them here mainly to illustrate the
used for constructing embedding schemes for complex concepts.

sources today, including the principle of minimal-embegdi ~ C++ implementation with Matlab wra}gjaers of STCs and

impact [16], approximate model-preservation [5], or thelei (rjnoltvltri{llggg/rggn%'rrgrﬁea}re available at http://dde.binghanedu/
construction [7]. The current work describes a complete '

practical framework for constructing steganographic sude
that embed by minimizing an additive distortion function.
Once the steganographer specifies the form of the distortion
function, the proposed framework provides all essentialsto
for constructing practical embedding schemes workingectos
their theoretical bounds. The methods are not limited tautyin
embedding operations and allow the embedder to choose
amplitude of embedding changes dynamically based on 1
cover-image content. The distortion function or the emliregld
operation do not need to be shared with the recipient. In fa
they can even change from image to image. The framewq information and coding theory.

can be thought of as an off-the-shelf method that allow Mr. Filler received Graduate Student Award for
practitioners to concentrate on the problem of designirey thxcellence in Research from Binghamton University in 2008 Best Paper
distortion measure instead of the problem of how to contstru'%:warGIS from Digital Watermarking Alliance in 2009 and 2010.
practical embedding schemes.

The merit of the proposed algorithms is demonstrated
experimentally by implementing them for the JPEG and spatia
domains and showing an improvement in statistical detdetab
ity as measured by state-of-the-art blind steganalyzess. \
have demonstrated that larger embedding changes provid
significant gain in security when placed adaptively. Fipall
the construction is not limited to embedding with large
amplitudes but can be used, e.g., for embedding in col
images, where the LSBs of all three colors can be se@&nbéts
symbols on which the cost functions are defined. Applicatiol
outside the scope of digital images are possible as long as ‘vw.c
know how to define the costs.
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