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ABSTRACT
Recently, a new steganographic method was introduced that utilizes a universal distortion function called UNI-
WARD. The distortion between the cover and stego image is computed as a sum of relative changes of wavelet
coefficients representing both images. As already pointed out in the original publication, the selection channel of
the spatial version of UNIWARD (the version that hides messages in pixel values called S-UNIWARD) exhibits
unusual properties – in highly textured and noisy regions the embedding probabilities form interleaved streaks
of low and high embedding probability. While the authors of UNIWARD themselves hypothesized that such an
artifact in the embedding probabilities may jeopardize its security, experiments with state-of-the-art rich models
did not reveal any weaknesses. Using the fact that the cover embedding probabilities can be approximately
estimated from the stego image, we introduce the novel concept of content-selective residuals and successfully
attack S-UNIWARD. We also show that this attack, which is made possible by a faulty probabilistic selection
channel, can be prevented by properly adjusting the stabilizing constant in the UNIWARD distortion function.

Keywords: Steganalysis, steganography, S-UNIWARD, content-selective residual, adaptive selection channel,
distortion, security.

1. INTRODUCTION
Modern steganographic schemes for digital media constrain their embedding changes to regions, which are difficult
to describe using statistical models, such as complex textures or noisy areas, making it hard for the Warden
to detect the embedding. A practical way to implement content-adaptive steganography is to assign a cost of
changing each cover element (e.g., pixel or DCT coefficient) and then embed a given message while minimizing
the expected sum of costs over modified pixels. This can be achieved using syndrome-coding methods, such as the
Syndrome-Trellis Codes (STCs).1 Since STCs operate near the theoretical payload–distortion bound, advancing
the security of steganography has thus been reduced to the problem of identifying distortion functions that would
better capture the statistical impact of embedding changes. We note that for steganography in empirical covers,2
such as digital media files, the security is typically evaluated empirically using classifiers for a given cover source.

The first stego method that followed the above embedding paradigm was HUGO.3 Its distortion function was
designed to minimize the statistical discrepancy introduced into the higher-order statistics of differences between
adjacent pixels utilized by the SPAM feature vector.4 In Ref. [5], an attempt was made to assign the costs based
on a feedback received from a set of examples (images) from a particular cover source to minimize the margin
between the classes of cover and stego features. The authors of Uniform Embedding Distortion (UED)6 made the
embedding costs inversely proportional to the frequency with which the cover values occur. The embedding costs
of WOW7 were designed to be large in such regions of the image in which the content cannot be easily modeled in
any direction. This was achieved by employing a directional filterbank (wavelet basis) that assessed the content
in multiple directions by computing directional noise residuals (wavelet coefficients in multiple subbands). The
distortion function called UNIWARD (UNIversal WAvelet Relative Distortion) proposed in Ref. [8] was designed
to be a universal measure for constructing steganographic methods in an arbitrary domain. It uses the same
bank of directional filters as WOW but computes the cost of changing a given cover element simply as the sum
of relative changes of wavelet coefficients over all subbands. UNIWARD was invented to allow an easy extension
to other embedding domains and to give the distortion the proper non-additive form for the Gibbs construction9

to embed while considering the interactions among nearby embedding changes.
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Based on the results reported in the original publication, the spatial, JPEG, and side-informed JPEG versions
of UNIWARD exhibited the highest level of security when tested empirically with rich media models10, 11 on the
BOSSbase 1.01 source.12 The version of UNIWARD for embedding in the spatial (pixel) domain, however,
exhibited one unusual behavior. In regions with complex content, the embedding probabilities, as dictated by
the pixel costs, formed interleaved bands of high and low probabilities. While steganalysis with rich media
models was apparently unable to capitalize on this embedding artifact, it remained an open problem whether
such a probabilistic selection channel was a security weakness. The main contribution of this paper is to show
that the artifacts in embedding probabilities can indeed be used to mount a simple but very powerful attack on
S-UNIWARD that lowers the detection error below 2% for a wide range of payloads. The main idea is to divide
the statistics computed from noise residuals into several subsets obtained from groups of pixels with low and high
embedding probabilities estimated from the stego image. We further show that the artifacts in the embedding
probabilities are caused by an improperly chosen stabilizing constant in the UNIWARD distortion function. By
adjusting its value, not only the artifacts are suppressed but also the attack described in this paper becomes no
more effective while the security w.r.t. rich models stays unchanged restoring thus the high security of schemes
based on UNIWARD.

In the next section, we describe the UNIWARD distortion function, contrast its embedding probabilities with
those of HUGO and WOW, and point out the existence of “streaking artifacts.” In Section 3, we introduce
the novel concept of a content-selective residual based on estimating the embedding change probabilities from
the stego image. In Section 4, we first study the best settings for the parameters on which the newly proposed
steganalysis features depend and then report the detection accuracy of S-UNIWARD across a range of payloads.
The following Section 5 focuses on identifying the cause of the artifacts in the embedding probabilities and shows
that increasing the value of the stabilizing constant in UNIWARD suppresses the artifacts. To test the efficiency
of this fix, we subject the modified S-UNIWARD to the same tests as in Section 4.2 and conclude that the fixed
S-UNIWARD is not susceptible to the proposed attack while its security w.r.t. steganalysis using the spatial
rich model remains basically unchanged. The paper is concluded in Section 6, where we discuss the implications
of our study for design of adaptive steganographic schemes and debate future research directions.

2. UNIWARD DISTORTION FUNCTION
Given a pair of b-bit grayscale cover and stego images, X and Y, X,Y ∈ IM×N , I = {0, . . . , 2b − 1}, we let
W

(k)
uv (X) and W (k)

uv (Y), k = 1, 2, 3, (u, v) ∈ {1, . . . ,M} × {1, . . . , N} denote the uvth wavelet coefficient in the
first-level undecimated Daubechies 8-tap wavelet decomposition. The index k = 1, 2, 3 corresponds to the LH,
HL, and HH subbands, respectively. In UNIWARD, the distortion is computed as a sum of relative changes of
all wavelet coefficients w.r.t. their cover values:

D(X,Y) =
3∑

k=1

M∑
u=1

N∑
v=1

|W (k)
uv (X)−W (k)

uv (Y)|
σ + |W (k)

uv (X)|
, (1)

where σ > 0 is a stabilizing constant introduced to avoid dividing by zero. In Ref. [8], the authors proposed
σ = 10 × eps ≈ 2 × 10−15, where eps is defined in Matlab as the difference between 1.0 and the next larger
double-precision number.

Note that the ratio in (1) is smaller when a large cover wavelet coefficient is changed (where texture and
edges appear), while embedding changes are discouraged in regions where |W (k)

uv (X)| is small for at least one
k, which corresponds to a direction along which the content is modellable. Therefore, UNIWARD discourages
changes even at clean edges and instead forces the embedding to use textured regions whenever possible. Such
a selection channel adapts to the content more strongly than that of HUGO (see Figure 1).

The distortion function (1) is non-additive in the sense that the distortion introduced by changing a pair of
nearby pixels is not equal to the sum of distortions when changing each pixel individually (and not changing
the other pixel). All steganographic schemes proposed in Ref. [8] used the so-called additive approximation of
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Figure 1. Embedding probabilities for relative payload α = 0.4 bpp using HUGO (top right), WOW (bottom left), and
S-UNIWARD (bottom right) for a 128 × 128 grayscale cover image (top left).

D(X,Y), which allowed a straightforward implementation using STCs.1 The cost ρij of modifying pixel ij from
its cover value Xij to Yij , and leaving all other cover elements unchanged, is:

ρij(X, Yij) , D(X,X∼ijYij), (2)

where X∼ijYij is the cover image X with only its ijth element changed: Xij → Yij .∗ Note that since the support
of 8-tap Daubechies wavelets is 8× 8 pixels, computing each cost 2 involves summing up 3× 162 pixels because
there are three subbands. Due to the absolute values in (1), ρij(X, Xij + 1) = ρij(X, Xij − 1), which allows
S-UNIWARD to employ a ternary embedding operation and codes.

Since we describe an attack on the spatial version of UNIWARD called S-UNIWARD, we do not further
explain how this distortion function can be used for embedding in the JPEG and side-informed JPEG domains.
In fact, it seems that the attack described below is applicable only to S-UNIWARD and not its JPEG forms.
More on this issue appears in Section 5.

To demonstrate the properties of the embedding function S-UNIWARD, in Figure 1 we show one cropped
BOSSbase 1.01 image (top left) together with the embedding probabilities for HUGO (top right), WOW (bottom
left), and S-UNIWARD (bottom right). While the directional costs of both WOW and S-UNIWARD force the
changes solely into the textured areas, the spatial distribution of embedding probabilities for WOW and S-
UNIWARD are quite different. Most notably, the embedding probabilities of S-UNIWARD exhibit interleaved
streaks of large and small values. This is caused by the properties of the distortion function – it is a sum of
relative wavelet coefficient changes, which makes the costs very (and perhaps overly) sensitive to content. It takes
only one wavelet coefficient (among 3× 162 coefficients affected by changing a single pixel Xij → Yij) to be close
to zero to have a very large embedding cost ρij . In contrast, since the embedding costs of WOW are obtained
by adding reciprocal values of merely three “embedding suitabilities,” which are themselves sums over many
wavelet coefficients, one encounters a high embedding cost in WOW much less likely than in S-UNIWARD. The
authors of UNIWARD acknowledged this and also pointed out: “While the streaks may increase the statistical
detectability, steganalysis with rich media models showed no evidence for this.”
∗This notation was used in Ref. [9] and is also standard in the literature on random fields.13



3. CONTENT-SELECTIVE RESIDUALS
In this section, we describe a new concept of a content-selective residual and introduce a new set of steganalysis
features to attack S-UNIWARD.

Since the embedding costs of changing a pixel by 1 or −1 are the same and equal to ρij , the probabilities of
changing a pixel by 1 or −1 are also the same and equal to:14

pij = exp(−λρij)
1 + exp(−λρij) , (3)

where λ > 0 is a constant determined by the payload constraint:

αMN =
∑

ij

h3(pij), (4)

where 0 ≤ α ≤ 1 is the relative payload expressed in bits per pixel (bpp) and h3(x) = −x log2 x− (1−x) log2(1−
x) + x is the ternary entropy function expressed in bits. Given image X and payload α, the probability of
changing pixel ij during embedding is thus 2pij(X, α). Even though in general, for a stego image Y embedded
with payload α, pij(X, α) 6= pij(Y, α), these probabilities are “largely similar.” This approximate knowledge of
the probabilistic selection channel, together with the “streak” artifacts can be used to construct an attack.

First, we separate the image into disjoint classes of pixels – those that are likely to be changed and those that
are less likely to be changed during embedding. Then, we compute noise residuals from each class – the so-called
content-selective residuals (CSRs). Finally, the feature vector is formed by first and second-order statistics of
CSRs. What is remarkable (as will be seen below) is that even though the proposed detection statistics would
be rather inefficient in detecting S-UNIWARD if computed from all pixels, when divided into the classes, their
detection power immensely increases as we draw strength from the faulty selection channel.

For our attack, we will use residuals of the first, second, and third order:

R
(1)
ij = Xi,j+1 −Xij , (5)

R
(2)
ij = Xi,j+1 − 2Xij +Xi,j−1, (6)

R
(3)
ij = −Xi,j+2 + 3Xi,j+1 − 3Xij +Xi,j−1. (7)

Note that these residuals are computed in the horizontal direction. To increase the robustness of the features
and make them better populated, we merge these residuals with those computed from the transposed image or,
alternatively, one can think of applying the “vertical versions” of these residuals to the original image.

3.1 Pixel classes
Let 0 < ts < tL < 1 be two fixed thresholds and 0 < α < 1 a fixed relative payload. We will say that pixel Xij

is of ’type s’ (small probability of embedding change) when pij(X, α) < ts and of ’type L’ (Large probability of
an embedding change) when pij(X, α) > tL, otherwise it has no type.

Note that each residual sample of order d, R(d)
ij , involves d + 1 adjacent pixels, Thus, we will collect the

first-order statistics (histograms) of residuals separately for 2d+1 classes of d + 1 neighboring pixels defined by
their type. For example, for d = 1, a horizontally adjacent pixel pair (Xij , Xi,j+1) can be of class [s s], [s L],
[L s], and [L L] depending on the corresponding pixel classes. In general, for the residual of order d, d + 1
neighboring pixels will be divided into 2d+1 classes, C(d)

c , c ∈ {1, . . . , 2d+1}. We denote the set of residual values
R

(d)
ij collected only from class C(d)

c , d ∈ {1, 2, 3}, c ∈ {1, . . . , 2d+1} as R(d)
ij (C(d)

c ).
When collecting the second-order statistics of residuals, we will work with classes consisting of d + 2 neigh-

boring pixels as a pair of adjacent residuals, (R(d)
ij , R

(d)
i,j+1), involves d+ 2 pixels.



Residual order d 1 2 3
Histogram 3(2Th + 1) 6(2Th + 1) 10(2Th + 1)
Acronym 1st 1D 2nd 1D 3rd 1D

2D co-occurrence 6(2Tc + 1)2 10(2Tc + 1)2 -
Acronym 1st 2D 2nd 2D -

Table 1. The feature dimension and the acronym for each content-selective residual type and its representation.

3.2 Histograms
To curb the residuals’ range and allow a compact representation, the residuals of all orders d ∈ {1, 2, 3} are
truncated to the range [−Th, Th], R(d)

ij ← truncTh
(R(d)

ij ), where

truncT (x) =


x when − T ≤ x ≤ T
−T when x < −T
T when T ≤ x.

(8)

For a fixed residual order d and class C(d)
c , we denote with h

(d)
c (l), l ∈ {−Th, . . . , Th}, the histogram of

R
(d)
ij (C(d)

c ) over all ij. The histograms can be further compacted using the directional symmetries of natural
images. In particular, for a class C, let ←−C denote the mirror image of C. For example, [s L] =

←−−
[L s], [s L s L] =

←−−−−−
[L s L s], etc. By inspecting the definition of the residuals (5)–(7), it is easy to see that for d odd, R(d)

ij (C) =
−R(d)

ij (←−C ) and R
(d)
ij (C) = R

(d)
ij (←−C ) for d = 2. Given the fact that the residuals themselves are distributed

symmetrically around zero, we will add the histograms of classes that are mirror images of each other. This
reduces the number of classes we need to consider from 22 = 4 to 3 for the first-order residuals, from 23 = 8 to
6 for the second-order residuals, and from 24 = 16 to 10 for the third-order residuals.

To summarize, for residual order d = 1, 2, 3, the feature vector is formed by 3, 6, and 10 histograms, each
holding 2Th + 1 values. Thus, the first part of our feature vector formed by histograms has the dimensionality
of 19× (2Th + 1).

3.3 Co-occurrences
The steganalysis features formed by histograms of residuals will be further supplemented with two-dimensional
(2D) co-occurrence matrices (sample joint probability distributions). To keep the dimensionality of the co-
occurrences low, we truncate with a lower value of the truncation threshold, Tc, than for the residuals, Tc < Th.
We also use 2D co-occurrences only with residuals of the first and second order.

We can apply the same symmetrization to the 2D co-occurrences as we did with the histograms with one
small change. When merging the co-occurrences for two mirror-image classes, we need to transpose one of the
matrices. This can be easily seen on the example of a co-occurrence for two second-order residuals R(2)

ij and
R

(2)
i,j+1. For the class C = [s L s L], R(2)

ij is computed from a pixel triple [s L s] while R(2)
i,j+1 is computed from

[L s L]. For the mirror class, ←−C = [L s L s], the pixel triples for each residual exchange. Thus, the total number
of classes for residuals of order d = 1 is down from 23 = 8 to 6 and from 24 = 16 to 10 for d = 2. The total
feature dimensionality of co-occurrences from both residuals is thus 6× (2Tc + 1)2 + 10× (2Tc + 1)2.

To summarize, the feature vector is formed by 19 histograms of residuals with orders 1,2, and 3 and 16 2D
co-occurrence matrices for residuals of order 1 and 2. The dimensionality broken down per residual order and
representation type (histogram vs. co-occurrence) is shown in Table 1. In this table we also introduce acronyms
for each type of features for easier referencing.
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Figure 2. The value of tL (dashed line) that minimizes the detection error PE and its value (solid line) as a function of ts.
The chart was computed for the 1st 1D CSR with Th = 10 and α = α = 0.4 bpp. The optimal values of the parameters
are ts = 0.05, tL = 0.06.

4. ATTACKING S-UNIWARD
All our experiments were run on the standard database BOSSbase 1.01.15 This source contains 10, 000 images
acquired by seven digital cameras in the RAW format (CR2 or DNG) and subsequently processed by converting
them to 8-bit grayscale, resizing, and central-cropping to 512× 512 pixels. The script for this processing is also
available from the BOSS competition web site.

We report the detection performance using the average detection error PE = (PFA + PMD)/2 estimated by
training on a random half of the BOSSbase database and testing on the remaining half and averaging over ten
database splits. The symbols PFA, PMD stand for the probability of false alarm and missed detection. The
classifier was the ensemble 2.0† with auto settings for the optimal subspace dimensionality and the number of
base learners.

4.1 Parameter setting
The attack on UNIWARD described in the previous section depends on several parameters that need to be
set. First, we determine the proper values of the thresholds ts and tL for the embedding change probabilities
controlling the pixel classes as well as the truncation thresholds Th and Tc for histograms and co-occurrences.
Additionally, because the steganalyst will in general not know the true payload α, we need to use a fixed value
of the relative payload, α, for which the embedding change probabilities pij will be computed. The purpose of
the first set of experiments in this subsection is to determine the values of ts, tL, Th, Tc, and α.

For the first experiment, we fixed Th = 10, α = 0.4 and computed the best values of ts and tL based only on
the 1st 1D CSR (see Figure 2). The optimal values of these thresholds necessarily depend on the cover source
and will need to be adjusted for a different source of images than the BOSSbase.

Next, with the thresholds ts and tL fixed at ts = 0.05 and tL = 0.06, we investigated the effect of the parameter
α. Figure 3 shows PE obtained using the 1st 1D CSR as a function of the payload α for three different values
of α. Note that, in general, when the real payload α is unknown, it is better to use a larger testing payload
α. Also notice the unusual non-monotone dependence of PE on payload. This is due to the fact that with
higher embedding payload, the differences between the interleaved streaks are smaller (as S-UNIWARD loses its
content adaptivity), which weakens the proposed attack for larger payloads. As expected, for small payloads, the
detection error eventually increases as it becomes more difficult to detect a small number of embedding changes.
†http://dde.binghamton.edu/download/ensemble/

http://dde.binghamton.edu/download/ensemble/
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Figure 3. Detection error PE as a function of α for three different values of α for the 1st 1D CSR with Th = 10.
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Figure 4. Detection error PE as a function of Th and Tc for the 1st 1D and 1st 2D CSR, respectively. The rest of the
parameters were set to α = α = 0.4, ts = 0.05, tL = 0.06.

To see the effect of the truncation thresholds Th and Tc, in Figure 4 we show the detection error as a function
of the thresholds for α and α fixed at 0.4. Based on this experiment, we fixed Th = 10 and Tc = 3 for all CSRs
in this paper. Notice that it is possible to achieve a low detection error with the nine-dimensional (!) 1st 1D
CSR with Th = 1 even for small payloads α. This indicates a serious security weakness of S-UNIWARD caused
by the strong artifacts in the selection channel.

The main reason why the proposed attack works so well for S-UNIWARD are the interleaved streaks of high
and low embedding probabilities in pij . They allowed us to split pixels, which have similar statistical properties,
into classes that do not change with embedding much (e.g., the class [s s]) and classes that do get affected by
embedding – the classes [s L], [L s], and [L L]. For example, for the 1st 1D CSR with Th = 10 and α = α = 0.4,
the detection performance of the class [s s] by itself is poor – PE = 0.4757. The union of classes [s L], [L s]
detects better at PE = 0.3405 because it is more affected by embedding. However, when adding the class [s s] to
the union of [s L] and [L s], the detection error suddenly drops to 0.0734. This is because the statistic collected
from pixel class [s s] serves as a powerful reference. Further adding the third class [L L], which by itself detects
at PE = 0.3376, makes the detection error drop to 0.0197 for the complete 63-dimensional 1st 1D CSR.



Dim Content-selective Dim Non-selective
1st 1D 63 0.01841 21 0.47645
1st 2D 294 0.00852 49 0.46403
2nd 1D 126 0.00943 21 0.46578
2nd 2D 490 0.00687 49 0.42767
3rd 1D 210 0.00740 21 0.43075

Combined 1183 0.00470 161 0.41380

Table 2. Detection error PE for all CSRs and their union in their content-selective and non-selective versions for α = 0.4
bpp.
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Figure 5. Detection error PE as a function of α for the CSR features.

Note that the CSRs will not work well for HUGO or WOW because their embedding change probabilities are
more correlated with the content. The differences of pixel pairs that change have a different distribution than
those of pairs that do not change. Thus, one cannot utilize a reference for detection.

4.2 Attacking S-UNIWARD
Based on the experiments in Section 4.1, we select for the attack the combination of three histograms and two
2D co-occurrences for three residuals listed in Table 1. The parameters are fixed to ts = 0.05, tL = 0.06, α = 0.4,
Th = 10, and Tc = 3.

The detection power of each individual CSR and their combination is shown in the third column of Table 2.
Notice that the detection error strongly correlates with feature dimensionality. Each content-selective residual
individually can detect S-UNIWARD quite reliably. While merging the features does help lower the error, the
improvement is not dramatic. To prove that the detection power resides in the faulty selection channel, we
supply in the fifth column of the table the detection errors when steganalyzing S-UNIWARD with histograms
and 2D co-occurrences computed from all residuals without dividing them into classes (non-selective residuals).
Since these features have no knowledge of the probability map, they do not exploit the faulty selection channel,
and their detection is poor. This motivates the fix of S-UNIWARD proposed in the next section. It focuses on
removing the artifacts from the embedding change probabilities.

As our final experiment, we computed the detection error of the 1183-dimensional combined CSR features
across different payloads. The results shown in Figure 5 confirm that the CSR features can reliably detect S-
UNIWARD for a wide range of stego payloads. The unusual increase of the detection error for large payloads is
due to two effects, both related to the fact that the algorithm has to change a larger amount of pixels. Because for
large payloads the embedding change probabilities will be generally larger, the thresholds ts and tL are no longer
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Figure 6. Embedding probabilities for relative payload α = 0.4 bpp for the image shown in the upper left corner of Figure 1
for S-UNIWARD with σ = 10 × eps ≈ 2 × 10−15 (left) and σ = 1 (right).

optimal. Second, the artifacts in the embedding change probabilities become less prominent as S-UNIWARD
loses its adaptivity.

5. FIXING S-UNIWARD
As discussed in Section 1, one of the reasons for the interleaved streaks in the embedding change probabilities
is the fact that the distortion is a sum of relative changes of wavelet coefficients. The stabilizing constant σ in
the definition of the UNIWARD embedding distortion is too small (σ = 10× eps, eps as in Matlab), causing an
unstable behavior and making UNIWARD “overly sensitive” to content. We observed that with increasing value
of σ, the interleaved streaks became much less pronounced (see Figure 6), which will likely diminish the strength
of the CSR features. Increasing the value of σ could, however, negatively impact the security of S-UNIWARD
w.r.t. rich models.

To investigate this issue, we carried out the following experiment. For a wide range of σ and fixed α = α = 0.4,
we computed the detection error when steganalyzing S-UNIWARD using the CSR features, the SRM, and their
merger. We note that for estimating the embedding change probabilities pij for the CSRs, we always used S-
UNIWARD with σ = 10× eps no matter what value of σ was used for creating the stego images. We did this for
two reasons. First, the original low value of σ allows us to better estimate the location of the streaks. Second,
by using a fixed value of σ, we could use the same thresholds ts and tL and avoided having to optimize them for
each σ.

Figure 7 shows that the faulty selection channel undermines the security of S-UNIWARD until σ ≈ 2−4, while
at σ ≈ 2−3 the CSR features cease to detect the embedding. At the same time, the security w.r.t. the SRM
remains essentially unchanged with increasing σ until σ ≈ 1, after which the error quickly drops. The merger
of the CSR features with the SRM exhibits the highest detection error at σ ≈ 1, which we recommend as the
proper value of the stabilizing constant for S-UNIWARD.

To show that the CSR features are no longer capable of utilizing the faulty selection channel, we repeat
the experiment from Section 4 and produce a analogue of Table 2. Table 3 shows detection error of CSR and
the residuals computed from all pixels (without dividing into classes). Although the individual CSRs do have
a small edge over their non-selective counterparts, when merged together the detection error of both becomes
quite similar. The CSRs no longer gain much from any leftover artifacts in the embedding change probabilities.

Finally, in Figure 8 we show the detection error of S-UNIWARD implemented with σ = 1 as a function of
relative payload, α, when steganalyzing with CSR features, SRM, and their union. The CSR features have a
rather weak performance, the error trend is no longer pathological (the detection error decreases with increasing
payload), and merging the CSR features with the SRM does not lead to any significant improvement in the
detection.
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Dim Content-selective Dim Non-selective
1st 1D 63 0.45030 21 0.46973
1st 2D 294 0.39877 49 0.45705
2nd 1D 126 0.42544 21 0.46079
2nd 2D 490 0.36998 49 0.38992
3rd 1D 210 0.40055 21 0.43796

Combined 1183 0.35310 161 0.37790

Table 3. Detection error PE for all five residual types and their union in their content-selective and non-selective versions
for relative payload α = 0.4 bpp and σ = 1.

The experiments in this section confirm that a proper adjustment of the parameter σ is an effective measure
against CSR features that utilize artifacts in the probabilistic selection channel without affecting the security of
S-UNIWARD w.r.t. SRM. This situation appears somewhat reminiscent of the flaw (and its quick fix) found in
HUGO by Gökhan Gül16 during the BOSS competition15 and later explained in Ref [17].

We acknowledge that more extensive experiments are needed to see the impact of changing σ on the security
of JPEG and side-informed JPEG versions of UNIWARD. However, the CSR features are unlikely to be effective
against JPEG implementations of UNIWARD because the distortion caused by a change in a DCT coefficient
affects a block of 8× 8 pixels and, consequently, any potential artifacts average out. Experiments with the SRM
only (not shown in this paper) indicate that the JPEG versions of UNIWARD exhibit the highest security when
selecting σ ≈ 2−6.18

6. CONCLUSIONS
The basic premise of content adaptive steganography is that a higher embedding security can be achieved by
restricting the embedding changes to regions in the image that contain complex content because the Warden
will be unable to detect the traces of embedding in such regions. A potential problem of adaptive schemes
lies in the fact that the selection channel is dictated by the content, which means that it is also approximately
available to the Warden, who can adjust her detector accordingly. During the BOSS competition, numerous
participants attempted to use the approximate knowledge of HUGO’s selection channel to improve their attack,
but, to the best knowledge of the authors of this article, no one succeeded. The first case when a knowledge
of the selection channel was exploited to improve the detection of steganography was described by Schöttle et
al. [19]. The authors showed that the performance of the weighted stego-image detector20 can be improved for a
crippled steganography method that follows the so-called naive content-adaptive embedding paradigm. Böhme et
al. [21] have proposed to capture the interaction between the Warden and the steganographer using an adaptive
embedding via the Game Theory. In particular, they showed on a toy example that it is more advantageous for
the sender to embed according to a strategy corresponding to the Nash equilibrium than to minimize the KL
divergence between cover and stego distributions under an omnipotent Warden.

In this paper, we show for the first time for a non-trivial steganographic method that an approximate
knowledge of the probabilistic selection channel can be exploited for detection. In particular, we utilize artifacts
in the selection channel caused by an improper value of a stabilizing constant in the spatial-domain steganographic
algorithm called S-UNIWARD as originally described in [8]. The embedding probabilities of S-UNIWARD exhibit
interleaved streaks of high and low embedding probabilities, which allowed us to compute the statistics of noise
residuals across groups of pixels that, with a high probability, do not change and those groups that do change –
the so-called content-adaptive residuals. The former serve as a reference for the latter, enabling a rather accurate
detection even for small embedding payloads with as few as nine features.

We also describe a way to correct for the faulty selection channel by properly adjusting the value of the
stabilizing constant of UNIWARD. Tests on the union of the content-adaptive residuals and the spatial rich
model show that once the artifacts in the embedding probabilities are suppressed the proposed attack is no
longer effective.



The lesson to be learned from this work is that one needs to be cautious when designing content-adaptive
steganography. The selection channel needs to be correlated with the content to prevent the attacker from
splitting pixels with similar statistical properties into those that are likely to be modified and those that are
unlikely to be modified during embedding.
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