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ABSTRACT

Blind steganalysis based on classifying feature vectors derived from images is becoming increasingly more
powerful. For steganalysis of JPEG images, features derived directly in the embedding domain from DCT
coefficients appear to achieve the best performance (e.g., the DCT features'® and Markov features?!). The
goal of this paper is to construct a new multi-class JPEG steganalyzer with markedly improved perfor-
mance. We do so first by extending the 23 DCT feature set,'® then applying calibration to the Markov
features described in?! and reducing their dimension. The resulting feature sets are merged, producing a
274-dimensional feature vector. The new feature set is then used to construct a Support Vector Machine
multi-classifier capable of assigning stego images to six popular steganographic algorithms—F5,22  Out-
Guess,'® Model Based Steganography without ,!? and with?° deblocking, JP Hide&Seek,! and Steghide.'*
Comparing to our previous work on multi-classification,!!' 2 the new feature set provides significantly more
reliable results.

1. INTRODUCTION

Steganography is the art of undetectable communication in which messages are embedded in innocuous
looking objects, such as digital images. In the process of embedding, the original (cover) object is slightly
modified to embed the data. The modified cover object is called the stego object. The embedding process
usually depends on a secret stego key shared between both communicating parties. The main requirement of
steganographic systems is statistical undetectability of the hidden data given the knowledge of the embedding
mechanism and the source of cover objects but not the stego key (so called Kerckhoffs’ principle).

Steganographic security was formalized by Cachin 7 who introduced the concept of e-security. Let X be
the set of all possible cover objects. A steganographic scheme is a pair of mappings Embyx : X — X and
Ezxty : X — M both parametrized by a secret key k such that Fxtx(Embk(x,m)) = mforallx € X, m € M,
and k € K, where M and K are spaces of all communicable messages m and secret keys k, respectively.
Assuming X can be endowed with a probability distribution function fc , the “natural” distribution of
covers, the stego objects will be distributed according to pdf fs. The Kullback-Leibler distance D(fc||fs)
is taken as the measure of statistical detectability. If D(fc||fs) < €, we say that the steganographic scheme
is e-secure.

Because the dimensionality of X is too large, in practice, the objects of X are represented using a
simplified model. One possibility is to project each object x € X onto a space of a much smaller dimension
formed by “features” that, in some sense, capture everything important about x. One could then attempt
to map out the distributions of features fo and fs from a large database of cover and stego objects. For
steganalysis, machine learning techniques are used to train a classifier capable of distinguishing cover and
stego feature sets in the feature space.*® 910 Such steganalytic methods are called blind. Their biggest
advantage is that there is no need to construct specific targeted steganalytic methods whenever a new
method appears. Blind methods can also classify objects to known steganographic schemes (so called multi-
class steganalysis) providing valuable feedback to forensic examiners towards the goal of extracting the secret
message.

The idea to use a trained classifier to detect data hiding was first introduced in a paper by Avcibas et
al.,* where image quality metrics were proposed as features and the method was tested on several robust
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watermarking algorithms as well as least significant bit embedding (LSB) in the spatial domain. Avcibas et
al.3® later proposed a different set of features based on binary similarity measures between the LSB plane
and the second LSB plane capitalizing on the fact that most steganographic schemes use the LSB of image
elements as the information-carrying entity. Farid® %16 constructed the features from higher-order moments
of distribution of coefficients obtained using quadrature mirror filters and the coefficient prediction errors
from several high-frequency sub-bands. Other authors have investigated the problem of blind steganalysis
using trained classifiers.'3:17:23

For best results, the features for steganalysis should react sensitively to embedding changes but be
otherwise insensitive to image content. Virtually all steganographic methods for the most common image
format—JPEG work by manipulating the quantized DCT coefficients. Since the embedding changes are
lumped in the DCT domain, constructing the features in the same domain will likely lead to a more sensitive
feature set. The first feature set targeted to JPEG images that also employed the concept of calibration was
proposed by Fridrich.'® The calibration is a procedure through which one can estimate the features of the
cover image from the stego image. In this paper, we will call this feature set “DCT features.” Recently,
Shi et al.?! proposed another feature set for JPEG images based on Markov models of DCT plane. This
feature set will be called “Markov features.” Previous comparisons of performance of blind steganalyzers'!
based on different feature sets indicated that feature sets targeted to JPEG images have remarkably better
performance than general purpose feature sets.

The contribution of this paper is three fold. First, we compare the performance of classifiers employing
DCT features'® and Markov features.?! Second, by analyzing both classifiers, we propose a new merged
feature set, whose detection accuracy is remarkably better than the detection accuracy of both of its predeces-
sors. Third, we use the proposed feature set to construct a general blind multi-classifier for single-compressed
JPEG images with a wide range of quality factors. We report its performance by classifying images to 6
known JPEG steganographic techniques (F5, OutGuess, Steghide, JP Hide&Seek, Model based steganogra-
phy with and without deblocking) for 34 JPEG quality factors.

The paper is organized as follows. In the next section, we briefly review the construction of DCT
and Markov features, and describe the new merged feature set. In Section 3, we give the implementation
details of the SVMs used in this paper and describe the training and testing methodology. In the same
section, we compare the performance of all three features sets on binary and multi-classification problems.
In Section 4, we construct a seven-class multi-classifier for detecting steganographic algorithms for single-
compressed JPEG images embedded with six popular JPEG steganographic algorithms and various quality
factors. The paper is concluded in Section 5.

2. FEATURES

In this section, we describe the new feature set for steganalysis of JPEG images. We start with the description
of the original and extended DCT feature set and a short review of the recently proposed Markov features.?!
Then, we present the new Merged feature set created as a combination of the extended DCT and calibrated
Markov feature sets.

All features in the merged set will be calibrated. Calibration is a process used to estimate macroscopic
properties of the cover image from the stego image. We quickly review the inner workings here, since it
forms an essential part of the feature calculation. More detailed description of calibration can be found
in.1912 During calibration, the stego JPEG image J; is decompressed to the spatial domain, cropped by a
few pixels in both directions, and compressed again with the same quantization matrix as the stego image
Ji. The newly obtained JPEG image Jo has most macroscopic features similar to the original cover image.
This is because the cropped image is visually similar to the original image. Moreover, the cropping brings
the 8 x 8 DCT grid “out of sync” with the previous compression, which effectively suppresses the influence
of the previous JPEG compression and the embedding changes. The calibrated feature is obtained as the
difference between the features calculated for J; and J. This calibrated feature will be less sensitive to the
image content and more sensitive to embedding changes.



2.1. Extended DCT feature set

The original DCT features (originally published in!?) were constructed by use of 23 functionals F that
produce a scalar, vector, or a matrix when applied to the stego image. FEach functional F is evaluated for
the stego image Ji and its calibrated version Jo. The calibrated feature f is obtained as the difference
F(J1) — F(J2), if F is a scalar, or as an Ly norm ||F(J1) — F(J2)||z, if F is a vector or a matrix. The
functionals F are defined as follows.

Let the luminance of a stego JPEG file be represented with a DCT coefficient array d;;(k), 4,5 =1,...,8,
k=1,...,np, where d;;(k) denotes the (7, j)-th quantized DCT coefficient in the k-th block (there are total
of np blocks).

The first functional is the histogram H of all 64 x np luminance DCT coefficients
H=(H,...,Hg), (1)
where L = min; j i di;(k), R = max; ; , d;; (k).
The next 5 functionals are the histograms
h' = (hY,... %), (2)

of coefficients of 5 individual DCT modes (i, j) € {(1,2),(2,1),(3,1),(2,2),(1,3)} = L.

The next 11 functionals are dual histograms represented with 8 x 8 matrices gfj, i,j=1,...,8, d =
—5,...,5

gl = 6(d,dy(k)), 3)
k=1

where §(z,y) =1 if z = y and 0 otherwise.

The next 6 functionals capture inter-block dependency among DCT coefficients. The first functional is
the variation V'

8 |Iy]-1 8 ||l
2 2 diy(IL(k)) = dig(Le(k+ D))+ >0 >0 |dig(Te(k)) — dij(Te(k + 1))
N i,j=1 k=1 (@)
L] + L] ’
where I, and I. denote the vectors of block indices 1,...,np while scanning the image by rows and by

columns, respectively.

Two next two blockiness functionals are scalars calculated from the decompressed JPEG image repre-
senting an integral measure of inter-block dependency over all DCT modes over the whole image:

[(M-1)/8] N [(N=1)/8] M
dolesig —csirigl*+ DD Y lcig; — cigjral®
i=1 j— j=1 i=1

=1
B = N1 —1)/8] + M (N ~1)/8] ' (%)

In (5), M and N are image height and width in pixels and c; ; are grayscale values of the decompressed
JPEG image, a = 1, 2.

The remaining three functionals are calculated from the co-occurrence matrix of neighboring DCT coef-
ficients

Noo =Co,0(J1) — Co,0(J2)

No1 =Co,1(J1) — Co,1(J2) + C1,0(J1) — C1,0(J2) + C_1,0(J1) — C_1,0(J2) + Co,-1(J1) — Co,—1(J2) (6)
N1 =C11(J1) = C11(J2) +C1—1(J1) = C1,-1(J2) + C_11(J1) = C_11(J2) + C_1,-1(J1) — C_1,_1(J2),



Functional Dimensionality

Global histogram H; 11
5 AC histograms hfj 5x11
11 Dual histograms gfj 11x9
Variation V. 1
2 Blockiness B,, 2
Co-occurrence matrix Cg; 25

Table 1. Extended DCT feature set with 193 features.

where
8 IIT‘_]‘ 8 ‘Ic‘_l
Dy kZ 6 (s, dij (L ())) 0 (¢, di (L (k + 1)) + 32 kZ 5 (s,dij (Ic(k))) 0 (¢, dij (Le(k + 1))
Cst :’L,jzl =1 7,j=1 =1 ) (7)
L] + [Tc|

The original motivation for using the L; norm to form the DCT features is the reduction of their di-
mensionality. It is apparent, however, that by using the L; norm, some information potentially useful for
steganalysis is lost. By replacing the L; norm with a higher-dimensional alternative, we will preserve more
information and obtain better classification results at the expense of increased dimensionality. Replacing the
L1 norm directly with the difference, however, is not feasible because the feature set dimensionality would
substantially increase and there would be too many features holding little information (e.g., histogram bins
for large values of DCT coefficients). This would eventually negatively affect the performance and increase
the complexity of the classifier. In order to alleviate the information loss due to using the L; norm and to
keep the dimensionality of features “reasonable,” we replaced the L; norm by the following differences.

For the global histogram functional H and for 5 histograms of individual DCT modes h¥, (i, j) € L, we
take the differences of elements in the range [—5,+5]. Thus, the histogram features are

Hl(Jl) — Hl(Jg), le {—5, . ..,5},

hy(J;1) —hy(Js), 1 € {-5,...,5}.
For the dual histogram functionals g¢,d € {—5,...,+5}, we take the difference of the 9 lowest AC modes

gg](‘]l) - gzdj(JQ)a (Za]) € {(27 1)5 (37 1)5 (47 1)5 (17 2)v (27 2)v (37 2)v (17 3)v (27 3)v (174)}

For the co-occurrence matrix functionals, we use the central elements in the range [—2, +2] x [—2,42]. This
yields 25 features

Cot(J1) — Car(Ja), (5,8) € [-2,+2] x [-2, +2].

The rationale behind restricting the range of the differences between functionals to a small interval around
zero is that DCT coeflicients follow a generalized Gaussian distribution centered around zero. Thus, the
central part of the functionals holds the most useful information for steganalysis.

After we replace the L; norm by the proposed differences, the dimensionality of the feature set (further
referred to as the extended DCT feature set) becomes 193 (see Table 1).



2.2. Original, calibrated, and reduced Markov features

The Markov feature set as proposed in?! models the differences between absolute values of neighboring DCT
coefficients as a Markov process. The feature calculation starts by forming the matrix F(u,v) of absolute
values of DCT coefficients in the image. The DCT coefficients in F'(u,v) are arranged in the same way as
pixels in the image by replacing each 8 x 8 block of pixels with the corresponding block of DCT coefficients.
Next, four difference arrays are calculated along four directions: horizontal, vertical, diagonal, and minor
diagonal (further denoted as Fj,(u,v), Fy(u,v), Fg(u,v), and Fp,(u,v) respectively)

Fr(u,v) = F(u,v)— Flu+1,v),
F,(u,v) = F(u,v)— F(u,v+1),
Fy(u,v) = F(u,v)—Flu+1l,v+1),
F,(u,v) = F(u+1,v)— F(u,v+1).

From these difference arrays, four transition probability matrices My, M,,, M4, M,,, are constructed as

DDy zfa O (:v) = i, Fu(u+1.v) = j)
S S 8(Fn(u, ) = )
M'U(Z7]) _ Zu 12 ( (’LL U)_%Fvgu?v;_]‘) )

Mh(ivj) =

)

2511 SO (Fy(u,
) = T () =i Falu+ Lk 1) =)
My(i, = - |
" ZS Zv 1 (Fd(u v) =1)
M,,(i,j) = Z Z u_(l (U—i-l v) —Z,Fm(u',v—i—l) :j)7
Z Z ( m(u,v) =1)

where S, and S, denote the dimensions of the image and 6 = 1 if and only if its argument(s) are satisfied.
Since the range of differences between absolute values of neighboring DCT coefficients could be quite large,
if the matrices My, M,,, M4, M,,, were taken directly as features, the dimensionality of the feature set would
be too large. Thus, the authors proposed to only use the central [—4, +4] portion of the matrices with the
caveat that the values in the difference arrays Fj,(u,v), Fy(u,v), Fg(u,v), and Fp,(u,v) larger than 4 were
set to 4 and values smaller than —4 were set to —4 prior to calculating My, M,,, M4, M,,,. Thus, all four
matrices have the same dimensions 9 x 9 and the number of features is 4 x 81 = 324.

The Markov features as proposed in?! were uncalibrated. Because calibration is known to improve
features’ sensitivity to embedding while reducing image-to-image variations, we incorporated the calibration
into the process of calculating the features. As expected, this significantly improved the performance of
Markov features. Let M denote the transition probability matrix in a specific direction. The calibrated
Markov features are formed by differences M(¢) = M(.J;) — M(.J,), where .J; is the stego image and J, its

calibrated version. The dimension of the calibrated Markov feature set, Mgf), MS,C), Mff), Mgﬁ), remains the
same as its original version.

2.3. Merged feature set

Even though different DCT modes in one 8 x 8 block are orthogonal, neighboring DCT coefficients may
still exhibit mutual correlations. Markov features capture this residual intra-block dependency among DCT
coefficients of similar spatial frequencies within the same 8 x 8 block. Because the extended DCT features
model inter-block dependencies between DCT coefficients, it makes sense to merge them. Another incentive
for merging is our observation (see sections 3.1 and 3.2) that both feature sets complement each other in
performance. For example, the extended DCT feature set is better in detecting JpHide&Seek, while the
calibrated Markov feature set is better in detecting F5.

A direct combination of both feature sets would produce a 517-dimensional feature vector. To reduce

the resulting dimensionality, we used the average M = (M( °) 4 M(C) + M(C) + M ) /4 of all four calibrated
matrices, instead. This feature vector has dimensionality 81. We observed that the averaged features



M produced very similar performance as their full version M;lc), MS,C), Mff), Mgﬁ). After merging the 193

extended DCT features with the 81 averaged calibrated Markov features, the dimension of the resulting
merged feature set became 193 + 81 = 274.

3. COMPARISON OF FEATURES
3.1. Binary classifiers

In this section, we compare the performance of tree sets of binary classifiers employing the original 23
DCT features, the original 324 Markov features (without calibration), and 274 Merged features. We do
this on single-compressed JPEG images with quality factor 75 embedded by one of the following algorithm:
F5, JP Hide&Seek, Model Based Steganography without deblocking (MB1), Model Based Steganography
with deblocking (MB2), OutGuess, and Steghide. We chose quality factor 75, because it is the default
quality factor in OutGuess. For each feature set and embedding algorithm, we constructed a binary classifier
detecting cover and stego images, which yields the total of 3 x 6 = 18 binary classifiers.

For classification, we used soft-margin support vector machines (C-SVM) with Gaussian kernel.> The
training parameters of the C-SVMs were determined by grid-search performed on the following multiplicative
grid

(C,y) e {(20,20)])ie Z,j € Z}.

To overcome the problem that this grid is unbounded, we exploit the fact that for most practical problems,
the error surface of SVMs estimated using cross-validation is convex. The grid-search for a particular SVM
started by evaluating all grid points common to all trained SVMs. After that, we checked if the best point
(determined by the smallest cross-validation error) was at the boundary of the grid. If so, we enlarged the
grid for this machine in the direction perpendicular to the boundary the best point laid on. We kept doing
this until the best point ended up within the explored grid (not on the boundary). This simple algorithm
ensured that the distance between the best point and the optimal point was small (within the size of the
grid) under the convexity assumption.

The training set for every classifier contained 3400 examples of cover images and 3400 examples of stego
images embedded with a random bitstream. With the exception of MB2, examples of three message lengths
100%, 50%, and 25% of embedding capacity of a given algorithm were equally included in the training set.
For MB2, we only embedded messages of one length equivalent to 30% of the embedding capacity of MB1 to
minimize cases when the deblocking algorithm fails. For JP Hide&Seek, in compliance with the directions
provided by its author, we calculated the embedding capacity as 10% of the JPEG file size.

The testing images were prepared in the same way (the same embedding algorithm and relative message
length) as the training images, but from a disjoint set of 2500 raw images. The testing set contained images
with completely different scenes, taken by different cameras, and by different photographers. As mentioned
earlier, all images in the testing and training sets were single-compressed JPEGs with quality factor 75.

Table 2 shows the performance of all 18 binary classifiers. Note that the performance of the 23 DCT
and original Markov features is complementary. The DCT features are better in detecting JP Hide&Seek
and OutGuess, while the Markov features can better detect Steghide. The comparison on Model based
steganography with and without deblocking, and F5 algorithms is less clear, since the DCT features have
a lower false positive rate. Also note that the original Markov features are almost unable to detect short
messages embedded using JP Hide& Seek.

Table 2 also shows us that the new Merged feature set outperforms both its predecessors. Its false
positive rate is below 0.5% on all algorithms, while the detection accuracy is higher than 99% except for JP
Hide&Seek (92.01%) and F5 (98.36%) with 25% message length.

3.2. Multi-classifier

The task of multi-classification is more difficult than the binary classification presented in the previous
section. In this section, we compare performance of multi-classifiers employing the original 23 DCT features,
the original Markov features, and the new Merged feature set. This comparison better demonstrates the
advantages and weaknesses of a particular feature set. Multi-classifiers were trained to classify into 7 classes:
cover, 5, OutGuess, JP Hide&Seek, MB1, MB2, and Steghide.



Message Detection accuracy
cover vs. length DCT Markov Merged
100% 99.49%  99.80%  99.92%
50% 98.80%  99.20%  99.84%
25% 84.54%  86.94%  98.36%
cover  99.80% 91.53%  99.64%
100% 99.88%  98.08% 99.52%

50% 98.56%  84.38%  99.60%
25% 86.46%  27.16%  92.01%
cover 99.32%  97.00%  99.56%
100% 99.64% 99.96%  99.96%
50% 98.92%  99.96%  99.92%

F5

JP Hide&Seek

MB1 25% 86.94% 99.72% 99.72%

cover 97.72% 97.20% 99.88%

MB?2 30% 92.29% 99.92%  100.00%

cover 98.92%  98.48%  99.92%

100% 99.92% 99.92% 100.00%

OutGuess 50% 99.64% 99.68% 99.96%

25% 98.36% 97.84% 99.48%

cover 99.48%  98.04%  99.76%

100% 99.84% 99.96% 100.00%

. 50% 99.48% 99.92% 99.92%
Steghide

25% 90.93% 98.88% 99.32%
cover 97.40%  98.00%  99.92%

Table 2. Comparison of detection accuracy of binary classifiers employing 23 DCT, original Markov, and new
Merged features. All classifiers were trained and tested on single-compressed JPEG images with quality factor 75.
The reported results were calculated for images from the testing set only.

To classify images into n = 7 classes, we chose the “max-wins” method which employs (g) binary SVM
classifiers for every pair of classes. During classification, the feature vector is presented to all binary classifiers
and the histogram of their answers is formed. The class corresponding to the highest peak in the histogram
is selected as the target class. According to,'® the “max-wins” is one of the best current approaches to
multiple class problems for practitioners.

Thus, each multi-classifier consists of (;) = 21 binary classifiers. The training and testing sets were
prepared in exactly the same way, as in Section 3.1. Also, the grid-searches used to find the training
parameters of individual binary classifiers were performed in the same fashion.

Tables 3-5 show the confusion matrices of all three classifiers. We again observe the complementary
performance of 23 DCT features and the Markov features. The Markov features perform poorly in detecting
JP Hide&Seek, F5, and OutGuess, while their detection accuracy of Model Based Steganography is very
good.

The multi-classifier employing the new Merged feature set (Table 5) significantly outperformed the other
two. Its false positive rate (cover image classified as stego) is 0.84%. The detection of steganographic
algorithms on images with longer messages (messages at least 50% long) is highly accurate with the error
rate less than 3%. As can be expected, with decreasing message length, the detection accuracy decreases
but stays above 90%.

4. MULTI-CLASSIFIER FOR SINGLE-COMPRESSED IMAGES

In the previous sections, we showed that the new Merged feature set enables markedly better blind steganal-
ysis and classification of JPEG images. In this section, we use this feature set to construct a multi-classifier
for single-compressed JPEG images for a broad range of 34 quality factors from the set



Classified as
Embedding algorithm  Cover F5 JP Hide&Seek  MBI1 MB2  OutGuess Steghide

F5 100% 0.32%  97.40% 1.04% 0.60%  0.00% 0.12% 0.52%

JP Hide&Seek 100%  0.00%  0.52% 98.32% 0.56%  0.00% 0.12% 0.48%
MB1 100% 0.08%  0.16% 0.72% 94.44%  0.32% 1.56% 2.72%
OutGuess 100% 0.00%  0.04% 0.52% 0.08%  0.04% 99.08% 0.24%
Steghide 100% 0.04%  0.04% 1.68% 2.96%  0.24% 1.52% 93.53%
F5 50% 0.96%  91.65% 0.92% 4.12%  0.28% 0.76% 1.32%

JP Hide&Seek 50% 0.32%  0.88% 90.46% 5.23%  0.04% 0.40% 2.68%
MB1 50% 0.80%  0.52% 0.16% 87.57%  2.20% 1.92% 6.83%
OutGuess 50% 0.08%  0.16% 0.20% 0.48%  0.08% 98.64% 0.36%
Steghide 50% 0.28%  0.44% 0.16% 3.99%  3.47% 2.84% 88.82%
MB2 30% 6.75%  0.40% 0.36% 1.76%  88.46% 0.56% 1.72%

F5 25% 10.99%  63.60% 1.04% 16.98%  2.56% 0.68% 4.16%

JP Hide&Seek 25% 6.15% 1.28% 74.96% 12.74%  0.92% 0.24% 3.711%
MB1 25% 11.02%  1.68% 0.56% 69.17%  6.63% 1.12% 9.82%
OutGuess 25% 1.32%  0.76% 0.24% 2.80%  3.23% 89.14% 2.52%
Steghide 25% 7.07%  1.36% 0.24% 12.42% 11.14% 1.96% 65.81%
Cover 96.45%  0.12% 0.20% 1.44%  0.40% 0.08% 1.32%

Table 3. Confusion matrix of the multi-classifier employing the original DCT feature set (23 features).

Classified as
Embedding algorithm  Cover F5 JP Hide&Seek  MBI1 MB2  OutGuess Steghide

F5 100% 0.16%  98.08% 0.08% 0.92%  0.00% 0.48% 0.28%

JP Hide&Seek 100%  1.32%  2.84% 95.41% 0.08%  0.00% 0.32% 0.04%
MB1 100% 0.00%  0.08% 0.04% 98.48%  0.24% 0.80% 0.36%
OutGuess 100% 0.00%  0.08% 0.04% 0.72%  0.16% 98.04% 0.96%
Steghide 100% 0.00%  0.12% 0.04% 0.76%  0.12% 2.40% 96.57%
F5 50% 2.04%  95.29% 0.32% 1.12%  0.04% 0.68% 0.52%

JP Hide&Seek 50%  12.50% 4.51% 81.71% 0.40%  0.04% 0.44% 0.40%
MB1 50% 0.00%  0.44% 0.04% 97.28%  0.68% 0.76% 0.80%
OutGuess 50% 0.12%  0.68% 0.08% 0.68%  0.16% 95.17% 3.12%
Steghide 50% 0.04%  0.76% 0.00% 1.56%  0.40% 6.47% 90.77%
MB2 30% 0.04%  0.32% 0.08% 1.92%  96.96% 0.12% 0.56%

F5 25% 16.26%  80.42% 0.76% 1.16%  0.12% 0.76% 0.52%

JP Hide&Seek 25%  68.17%  5.15% 25.16% 0.40%  0.12% 0.48% 0.52%
MB1 25% 0.16%  1.40% 0.04% 88.74%  3.00% 2.20% 4.47%
OutGuess 25% 0.84%  2.56% 0.36% 2.00%  0.40% 84.90% 8.95%
Steghide 25% 0.60%  1.72% 0.24% 5.43%  1.36% 14.06% 76.60%
Cover 91.61% 5.51% 1.40% 0.48%  0.12% 0.44% 0.44%

Table 4. Confusion matrix of the multi-classifier employing the original Markov feature set (324 features).

Q31 = {63,...,94,96,98}.

This multi-classifier can be constructed in two fundamentally different ways. We can either add the
quality factor as an additional feature or we can prepare a dedicated multi-classifier for each quality factor
from the set Q34. Because of the following reasons, we opted for the latter design.

1. Since the statistics of DCT coefficients varies greatly with the quality factor, the influence of the
additional feature (the quality factor), whose purpose is to “shift” the classification hyperplane in the



Classified as
Embedding algorithm  Cover F5 JP Hide&Seek  MBI1 MB2  OutGuess Steghide

F5 100% 0.00% 99.52% 0.04% 0.08%  0.04% 0.08% 0.24%

JP Hide&Seek 100%  0.32%  0.00% 99.64% 0.00%  0.00% 0.04% 0.00%
MB1 100% 0.00%  0.00% 0.04% 98.76%  0.44% 0.04% 0.72%
OutGuess 100% 0.00%  0.04% 0.04% 0.08%  0.00% 99.64% 0.20%
Steghide 100% 0.00%  0.00% 0.04% 0.12%  0.08% 0.44% 99.32%
F5 50% 0.16%  99.36% 0.00% 0.00%  0.04% 0.24% 0.20%

JP Hide&Seek 50% 0.28%  0.04% 99.60% 0.00%  0.00% 0.08% 0.00%
MB1 50% 0.00%  0.00% 0.04% 97.04%  1.36% 0.08% 1.48%
OutGuess 50% 0.04%  0.08% 0.00% 0.20%  0.12% 99.28% 0.28%
Steghide 50% 0.04%  0.00% 0.00% 0.36%  0.12% 0.76% 98.72%
MB2 30% 0.00%  0.04% 0.04% 1.08%  98.48% 0.00% 0.36%

F5 25% 1.84%  97.12% 0.20% 0.00%  0.16% 0.36% 0.32%

JP Hide&Seek 25% 8.23%  0.32% 91.45% 0.00%  0.00% 0.00% 0.00%
MB1 25% 0.12%  0.12% 0.04% 90.10%  1.92% 0.36% 7.35%
OutGuess 25% 0.52%  0.28% 0.04% 0.20%  0.08% 98.08% 0.80%
Steghide 25% 0.60%  0.04% 0.00% 0.76%  0.20% 1.44% 96.96%
Cover 99.16%  0.24% 0.44% 0.00%  0.08% 0.08% 0.00%

Table 5. Confusion matrix of the multi-classifier employing the new Merged feature set (274 features).

feature space, might fade out among the other 274 features. Consequently, the features for images
with different quality factors might get mixed up, which will confuse the detector. The collection of
dedicated multi-classifiers will perform better because this mixing is prevented by design.

2. The complexity of training of binary C—SVMs is O(n?, ), where njy, is the number of training examples.
Thus, training the collection of multi-classifiers is faster, which allows us to use more examples for
training. For the same number of examples for training, the ratio between the training complexity
for one classifier and for separate 34 classifiers is proportional to the square of the number of quality
factors 342 = 1156.

For each quality factor, the training and testing sets as well as the multi-classifiers were prepared in exactly
the same way as in Section 3.2. We had to modify the implementation of OutGuess ver. 0.22 to produce
JPEGs with quality factor lower than 75, since the original version was only able to produce JPEG images
with quality factor 75 or higher.

The total number of images used for training was 34 x 17 x 3400 = 1,965, 200 and for testing 24 x 17 x
3400 = 1, 445, 000.

4.1. Discussion of results

One of the benefits of the analysis reported in the previous section is mutual comparison of statistical de-
tectability of the steganographic algorithms. Which algorithm offers the best security? This comparison
cannot be done directly, however, because we embedded a fixed percentage of embedding capacity for each
algorithm and these capacities vary significantly across algorithms. Figure 3 shows the absolute embedding
capacity (in bits per non-zero DCT coefficient) for each steganographic algorithm averaged over 6000 images.
We can see that F5, JP Hide&Seek, and MBI are high-capacity algorithms when compared to OutGuess,
Steghide, or MB2. Interpreting the detection results of Figure 1 while taking into account the absolute em-
bedding capacity of each algorithm, we can conclude that OutGuess is by far the most detectable algorithm,
while MBI is the least detectable.

Also, with the exception of JP Hide&Seek, the detection is slightly more reliable for larger quality factors
than for lower quality factors. We do not know the reason for the dip in detectability of 25% messages for
JP Hide&Seek around the quality factor 90.
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Figure 1. Detection accuracy in percents for the multi-classifiers trained for each JPEG quality factor for all 6 tested
steganographic methods. The false positive rate is shown in Figure 2.
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Figure 2. False positive rate in percents for the multi-classifiers trained for each JPEG quality factor.
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Figure 3. Capacities of five popular steganographic algorithms as a function of JPEG quality factor averaged over
6000 images. We consider the capacity of MB2 as 30% of capacity of MB1.

Note that the detection accuracy on MB2 embedded images containing 30% messages (30% capacity of
MB1) is better than the detection accuracy on MB1 images containing 50% messages. To better see the
difference in detectability, we plot the detection rate for both algorithms in Figure 4. This means that the
steganalyzer is more successful in detecting shorter messages embedded by MB2 than in detecting longer
messages in images embedded by MB1. Thus, based on this steganalysis engine, MB1 is less detectable
than its more advanced version, MB2. MB2 introduces more embedding changes into the JPEG file with
the goal to preserve a selected higher-order inter-block statistics, the blockiness. As a result, however, it
disturbs other statistics and eventually becomes more detectable. In other words, MB2 has lower embedding
efficiency’ than MB1. This finding is consistent with what was recently reported in?' and is in contrast with
older experiments using the original 23 dimensional DCT feature set and a simple linear classifier.1?

5. CONCLUSIONS

In this paper, we present and test a new set of features for steganalysis of JPEG images with a wide range of
quality factors. The feature set was obtained by merging and modifying two previously proposed feature sets
with complementary performance (the 23 DCT feature set'® that captures inter-block dependencies among
DCT coefficients and Markov features?! which capture intra-block dependencies). In particular, we expanded
the DCT features by replacing the L; norm in their calibration by differences and we added calibration to
Markov features and reduced their dimensionality by a factor of 4. According to our experiments on multi-
classification of single-compressed JPEG images, the new merged feature set provides significantly better
results than previous art.

fThe average number of bits embedded per one embedding change.
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Figure 4. Detection accuracy of the multi-classifier described in Section 3.2 on images embedded by MB1 with 50%
message length and MB2 embedded with 30% message length.

We have determined that the more advanced version of Model Based Steganography with deblocking is
more detectable than the version without deblocking. This indicates that embedding efficiency is a more
influential attribute for steganographic security than was previously thought. This finding also puts a new
perspective on the design principle that strives to preserve selected statistics by introducing more embedding
changes (e.g., the mechanism of embedding in OutGuess and in MB2).

Right now, images that underwent double compression will be with high probability misclassified by our
steganalyzer. This is because double JPEG compression drastically changes the statistics of DCT coefficients.
We intend to extend our work to correctly handle double compressed JPEG images by first analyzing each
image for signs of double compression and estimating the previous quality factor. This will be a pre-processing
step applied before blind steganalysis. Double-compressed images will then be handled separately through a
different SVM multi-classifier that will only classify to algorithms capable of producing double compressed
images (F5 and OutGuess) and to the cover class. Single compressed images will be sent to the classifier
constructed in Section 3.2.
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