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Abstract

In this paper, a method for introducing active damping
for a diaphragm in a micromachined directional micro-
phone is considered. The sigma-delta modulation is
used to circumvent the nonlinearity of the capacitive
transducers of the microphone. The principle of op-
eration of the damping scheme is explained, and the
simulation results of a lumped diaphragm model are
presented.

1 Introduction

The system under consideration in this paper is a di-

rectional microphone consisting of a hinged conductive

diaphragm (about 1mm×2mm in area, and 4 ∼ 5µm

in thickness) that moves in response to sound pressure,

and two electrically mutually isolated backplates act-

ing as electrodes that lie side by side and are separated

from the diaphragm by a small gap (about 5µm)[11,15].

Figure 1 shows the cross-section view of the lumped-

mass mechanical model of the microphone that con-

tains only its lowest resonance mode. This mode con-

sists of pure rocking of the diaphragm about its cen-

tral pivot and is excited by the difference in sound

pressure acting on either side of the central pivot.

The acoustic response of this pressure-difference mi-

crophone diaphragm has the figure-eight shaped direc-

tivity pattern of a first-order pressure gradient micro-

phone. Fabricated devices have been shown to have this

resonance somewhere between 2.5KHz and 3.5KHz, de-

pending on the thickness of the diaphragm, and the

next lowest resonance always occurs beyond the high-

est frequency (24KHz) of our interest. The microphone

configuration forms two parallel plate capacitors. The

microphone is therefore classified as a capacitive micro-

phone. This microphone will be called the microphone

or the plant to distinguish it from any other micro-

phones.

In a conventional capacitive microphone, a single back-

plate serves to sense the motion of the diaphragm

so that the sensed voltage can be further processed

electronically. In addition, due to the small air-filled

gap between the diaphragm and the backplate, vis-

cous damping can have a significant influence on the

response. In this configuration, electronic noise associ-

ated with the capacitive sensing and Brownian motion

associated with the passive damping both degrade the

achievable acoustic performance of the microphone in

terms of SNR (Signal to Noise Ratio)[5]. In our micro-

phone design, the two backplates are specially designed

to produce little passive damping effect in order to re-

duce the Brownian motion, while an optical sensing

scheme replaces the capacitive sensing to provide di-

aphragm motion readout with less thermal noise. The

capacitive couplings between the diaphragm and the

backplates remain to play the role of voltage-to-force

transducers through which feedback control voltages

could be applied to possibly damp out the resonance

peak of the rocking mode. Our premise is that by

careful design of the active damping system, one can

achieve the desired amount of damping with less over-

all system noise than when passive damping is used.

The rest of the paper reports our pursuit of such a

possibility.
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Figure 1 A lumped-mass model of a rocking diaphragm

The paper is organized as follows. Section 2 formu-

lates the damping problem as a digital feedback control

problem where the digital signal is pulse density mod-

ulated. Section 3 discusses the control design and the



demodulator design. Section 4 presents the design and

simulation performed for a lumped diaphragm model.

Section 5 concludes the paper.

2 Sigma-delta control loop

Figure 2 shows the schematic we propose to achieve the

damping of the diaphragm rocking mode. It is antici-

pated that two optical diffraction grating sensors[7] will

be used to measure the displacement of the diaphragm

on either side of the diaphragm hinge. The difference of

the two measured signals is integrated, compensated,

and sampled at a very high rate. The sampled sig-

nal is fed into a one-bit quantizer (signum) followed

by a one-bit digital-to-analog converter to produce a

pulse-width-modulated voltage feedback. The feedback

signal energizes alternately the two backplates, one at

a time through one of the two nonlinear switches, to

generate two force feedback signals, each of which then

pulls on the corresponding side of the diaphragm to

affect the damping.
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Figure 2 A directional microphone embedded in a

sigma-delta modulator loop

In Figure 2, fs and fe are the forces exerted onto the di-

aphragm due to the sound pressure and the voltage ap-

plied to the capacitive transducers, respectively. Note

that at the optical sensor output is the difference of

the two sensor signals. nB , ne, and nq are noise sig-

nals associated with the Brownian motion, the sensor

noise, and the quantization error of the quantizer, re-

spectively. yd is the output of the control loop in the

form of a pulse density modulated bit stream. y is the

demodulated version of yd which is put through low-

pass filtering and down-sampling to the Nyquist rate

of signal fs. On the other hand, the DAC output is

bipolar and pulse width modulated, which then passes

through the two switches to become two unipolar out-

puts with complementary polarities. (The switches can

be implemented using a pair of cascaded complemen-

tary CMOS inverters.)

2/q

2/q−−−−
A Quantizer input

Quantizer output

A−−−−

One-bit
Quantizer qG

qn

Slope = q/A = Gq

Figure 3 Linear representation of a non-overloading

quantizer and quantization noise

nB and ne will be ignored in the following develop-

ment because of their significant reduction due to our

modification in backplate design and in sensing. It is

well known that a wide range of damping values can be

achieved through the proper selection of the distance

between the diaphragm and the backplate and by the

use of perforations in the backplate[14]. The quantiza-

tion error (noise) captures the nonlinearity in the quan-

tizer, and can be regarded as an additive signal at the

output of a quantization gain block, as shown in Figure

3. The noise can be thought of as having a maximum

magnitude of a half of quantization size q. Therefore,

when the input magnitude to the quantizer exceeds A,

noise level increases beyond the maximum quantization

error, and the quantizer is said to be overloaded or sat-

urated. On the other hand, since the quantizer is of

one-bit, the only factor that constains its gain is the

closed-loop stability.

Let us imagine that only the integrator block, the sam-

ple block, the quantizer block, and the DAC block are

retained within the loop. The plant, the trasducer, the

switches, the sensor, and the compensator are all iden-

tity mappings. The control loop is then reduced to a

standard first order sigma-delta modulator[2]. A sigma-

delta modulator is a popular quantization mechanism

that can achieve high resolution with low accuracy cir-

cuitry at the expense of oversampling the integrated

tracking error. It is not difficult to see that, at out-

put yd, the contribution from the seemingly significant

quantization noise of the one-bit quantizer has been

high-pass filtered, while the contribution from signal

fs has been low-pass filtered. Oversampling helps sep-

arate the pass-bands of the two filters in the digital



frequency domain. The decimator demodulates yd to

produce y. It selects the in-band portion of yd and

down-samples it to the Nyquist rate of fs. The reader

is referred to Candy and Temes[2] for a more thorough

but less control-oriented discussion.

The feedback loop in Figure 2 is to be called a sigma-

delta control loop because it is obtained by embedding

a plant with its inherent transducer, a sensor, a pair

of nonlinear switches, and a compensator in a sigma-

delta modulator. Although the demodulated output

of a standard sigma-delta modulator can faithfully fol-

low its input, our imbedded system may significantly

change the nature of the modulator because it contains

a microphone that must be designed to satisfy some ba-

sic acoustic properties, and therefore can impose vari-

ous limitations on how well the sigma-delta control loop

can behave in terms of the damping performance. Our

damping objective will inevitably introduce a compen-

sator, which will further change the appearance of the

sigma-delta modulator.

The most prominent reason that a sigma-delta loop is

used for the feedback damping of resonance is the non-

linearity in the transducers. The nonlinearity repre-

sents a mapping from a voltage to a force proportional

to the square of the voltage. The nonlinear switches

split the bipolar pulse width modulated DAC output

into two channels of unipolar signals. In this case, the

voltage to force mapping in each channel occurs only

at a single point. Therefore the nonlinearity has been

circumvented.

The idea of dealing with nonlinearity by converting a

sensed external signal into a binary form while encod-

ing the information of the signal into the density of a

pulse train has been successfully used in a closed-loop

digital accelerometer[9,10], where the seismic mass is

embedded in a sigma-delta modulation loop and a PI

(proportional integral) controller is formed using the

design-by-analysis approach. We are applying this idea

to a different system with two unique problems.

• Above all the benefits one can expect from a

closed-loop setting, our main goal is to flatten

the sharp resonance peak of the microphone fre-

quency response caused by the rocking mode of

the diaphragm.

• The processing efficiency is the center of our at-
tention because the maximum frequency f0 of the

signals our microphone is required to cope with is

two orders of magnitude higher than that in the

digital accelerometer[9,10], which drives the over-

sampling rate to MHz range, close to the limit

of the current hardware (CMOS) technology for

bitstream processing[1].

3 Compensator and demodulator

With the effective linearization of the quantizer and

the transducers, the sigma-delta control loop can be

treated as a sampled data linear system, which greatly

simplifies the compensator synthesis. Our intention is

to implement the compensator in the continuous do-

main. This is because the sigma-delta control loop is

expected to have high tolerance to inaccuracy in the

analog compensator, and oversampling places a high

processing burden on any dynamic digital components

within the sigma-delta control loop. Therefore, our

analysis of this sampled data system will also be per-

formed in the continuous domain. The only parame-

ter that needs to be designed by emulation[6] is the

quantizer gain Gq which remains the same in both the

continuous and the discrete time domains.

Referring to Figure 2, ya can be expressed in terms of

nq and fs in the following form.

ya(s) =
Ga

1 + L(s)
nq(s) +

L(s)

(1 + L(s))Gf
fs(s) (1)

= Hq(s)nq(s) +Hs(s)fs(s). (2)

In (1), L(s) = GaGqCI(s)PsGf is the loop transfer

function of the sigma-delta control loop, where Ps(s) is

the plant transfer function with the optical sensor gain

absorbed into it, CI(s) is the compensator with the in-

tegrator absorbed into it, Gq is the quantizer gain, and

Ga is the DAC gain, Gf is the collective gain of the one

of the switches/amplifiers pairs and the corresponding

transducer.

If the plant model is stable and minimum phase, many

classical design techniques can apply, such as loop

shaping[3]. For example, a notch filter tuned to the

resonance can be designed to provide a desired loop

shape – a high loop gain at the low frequency and the

same roll off rate as the plant at the high frequency.

Once CI(s) has been designed and all the gains have

been selected, Hq and Hs can be explicitly obtained.

In this case the output SNR is

SNR =
Psignal
Pnoise

=

R f0
−f0 |Hs(j2πf)fs(j2πf)|2dfR f0
−f0 |Hq(j2πf)|2Sq(2πf)df

(3)

where Sq(ω) is the power spectral density of the quan-

tization noise, Psignal is the output signal power, Pnoise



is the contribution of the total output noise to the sig-

nal band, and f0 is 24KHz in our application. In the

next section, a compensator design is carried out for

an experimentally identified nominal model of a direc-

tional microphone. Note that the above convenience

in compensator design is easily lost once practical fac-

tors, such as overloading and model uncertainty, are

taken into consideration. We are working currently to

address these practical problems.

What should be the appropriate oversampling rate fos
in order to achieve the required fidelity in ya or in y? It

is seen from (3) that the answer requires the knowledge

of all the transfer functions in the loop. Therefore, the

oversampling rate is not a quantity that can be deter-

mined before the compensator is designed. An esti-

mate can be obtained, however, from a slightly mod-

ified existing result[1] by assuming a standard sigma-

delta loop,

fos ≈ SNRy 2πf03
√
3π

3

s
rms2q
rms2s

(4)

Let us turn to the problem of demodulating the pulse

density modulated yd. What is expected from the mi-

crophone output y is a digital version of fs sampled

at its Nyquist rate so that it can be efficiently further

processed. In principle, demodulation can be accom-

plished by a low-pass anti-aliasing filter, followed by

a down-sample of OSR = fos/(2f0) times. Since the

low-pass filter must be operated at the oversampling

rate, a filter performance requirement such as a suf-

ficiently sharp transition from pass-band to stop-band

could drive up significantly the processing requirement.

Our ultimate goal is to integrate the diaphragm with its

transducer, sensor, compensator, switches and ampli-

fiers, clocked sampler and quantizer, DAC, and all the

filters into one system-on-chip, and manufacture the

system using bulk technology at low cost. Therefore,

minimizing the processing requirement is an important

consideration in our design.
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Figure 4 Demodulation using multistage filtering and

decimation

It is possible that a multiple stage filter/decimation

process is more computationally efficient than a single

stage[12]. The number of stages and the down-sample

rate at each stage are determined by how well the se-

lected configuration can lead to a minimized overall

processing requirement. The benefit mainly comes with

a more relaxed filter transition band requirement in the

earlier stages when the sampling rates are still high.

Figure 4 depicts a p-stage decimator. The superscript

of a symbol denotes the sampling interval of the corre-

sponding discrete-time signal/system in real-time. In

particular, τ = 1/fos is the oversampling interval, Mi

is an integer denoting the decimation (↓) factor[12] at
the ith stage, and p is constrained to

2× f0 ≤ fos
M1 ×M2 · · · ×Mp

, τi =

iY
k=1

Mkτ, (5)

The selection of Mi and p is an optimization problem

solvable by exhaustive search. There are some guide-

lines in the literature[12]. For example, if a finite im-

pulse response (FIR) filter is to be designed at the ith

decimation stage using a Kaiser window with stop-band

and pass-band magnitude tolerance at δs,i and δp,i, re-

spectively, and stop-band and pass-band cutoff at θs,i
and θp,i, respectively, the order of the filter Ni can be

estimated using Kaiser’s empirical formula

Ni =
−20 log10

p
δp,iδs,i − 13

2.32|θp,i − θs,i| . (6)

The computational complexity ξi at the ith decima-

tion stage can be estimated by the number of multipli-

cations the filter must perform for each input sample,

which leads to

ξi =
Ni + 1

M1 × · · · ×Mi
. (7)

The complexity measure is used in the next section

to help determine the decimator configuration in our

example.

4 Active damping of a lumped model

The following transfer function for a diaphragm is ex-

perimentally identified using a scanning laser vibrome-

ter.

P (s) =
2.64× 108

s2 + 321.6s+ 2.585× 108 .
This model contains two lightly damped poles with

damping ratio ξ = 0.01, representing a rocking mode

at f = 2.559KHz. We take the approach of starting

from a desirable closed-loop transfer function

T (s) =
1.52 × 1010

s2 + 2× 0.95× 1.5× 105s+ 1.52 × 1010 ,

with a damping ratio 0.95, and working backwards to

solve for the compensator

CI(s) =
56.8× (s2 + 321.6s+ 2.585× 108)

s(s+ 2.85× 105) .



Note that this compensator contains all the gains

around the loop. Also a pole-zero cancelation occurs

between Ps and CI . Therefore, this method will not

work for nonminimum phase or unstable plant models.

If there is some uncertainty about where the resonance

occurs, a more prudent approach is to slightly increase

the number 321.6 in the numerator. This would pro-

duce a shallower but wider notch[3].

Using (4), the required oversampling rate for an active

damping scheme using sigma-delta modulation (Figure

2) is estimated at 5MHz. A third order IIR (Infinite

Impulse Response) filter

Hτ
1 (z) =

0.0440z2 + 0.1721z + 0.0421

z3 − 2.9113z2 + 2.8253z − 0.9139 .

with a decimator of down sample factor ↓100 is used to
perform demodulation. The above compensator and

demodulator designs are used to damp the 2.559KHz

rocking mode of our plant. A test speech signal cre-

ated using the modulation demo file mtlb.mat from

MATLAB Signal Processing Toolbox is applied to the

closed-loop microphone. Various responses are plotted

in Figure 5 and Figure 6. The Simulink[16,4] diagram

of the closed-loop microphone with IIR/decimation de-

modulation is shown in Figure 7.
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Figure 5 The first 0.05 seconds of a speech signal, the

output of the microphone without the active damping,

and the demodulated speech signal sampled at 50KHz

from the output of our sigma-delta control loop.

In Figure 5 the oscillation at the diaphragm resonance

frequency when the microphone is not compensated is

clearly visible. The plots in Figure 6 are 100 times

decimated and zoomed in for easy viewing.

Because of the implementation concern, attempts are

also made on multistage FIR filtering/decimation. The

Table 1 summarizes the computational complexity es-

tiamte using (6) and (7)
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Figure 6 Tracking error, quantizer input, quantized

feedback force signals in the sigma-delta control loop

sampled at fs = 5MHz.

Figure 7 Simulink diagram for closed-loop simulation

Stage i Stage 1 Stage 2 Stage 3 Complexity

(Ni, ξi) (N1, ξ1) (N2, ξ2) (N3, ξ3)
P

ξi
5× 5× 4 (8, 1.8) (22, 0.92) (300, 3.01) 5.73
10× 5× 2 (17, 1.8) (749, 15) (150, 1.51) 18.31
10× 10 (16, 1.7) (687, 6.88) N/A 8.58

Table 1 Complexity estimation in terms of total number

of multiplications per input sample (δp,i = 0.033 and

δs,i = 0.01)

It is apparent the factorization that leads to the least

computational complexity is

M =M1 ×M2 ×M3 = 5× 5× 4.
The three stages of filters are designed with the pass-

band, stopband cutoff frequencies (radians/sample),

and passband and stop band ripple specified as follows.

Stage i Stage 1 Stage 2 Stage 3

(θp,i, θs,i) (.0096π, .39π) (.048π, .19π) (.24π, .25π)
(δp,i, δs,i) (.033, .01) (.033, .01) (.033, .01)

Table 2 Multistage filter specifications



The filters are implemented using FIR decimation

blocks provided by the Matlab DSP Blockset[4], and

using polyphase decimation filters[12]. The hardware

and realtime implications of the IIR and the FIR im-

plementations are being investigated.

The demodulated signals with different decimation fil-

ters are tested using the MATLAB demo program

for their receptability by ears. All cases are indistin-

guishable with respect to the re-sampled original signal

(mtlb.mat). It is found that even with the stop-band

tolerance increased to δs,i = 0.1 (10 time worse than

the situation in Table 1 with almost a half of the com-

plexity in all three configurations), the 3-stage demod-

ulated signal still sounds good.

5 Conclusions

This paper proposes a digital active damping scheme

for a micromachined directional microphone where a

rocking mode of the diaphragm associated with the di-

rectivity of the microphone occurs in the audible range.

The feedback loop is a sigma-delta modulator with a

notch filter embedded as a dynamic compensator. The

loop closure is fulfilled by two optical diffraction grating

sensors and two capacitive transducers inherent to the

microphone structure. The proposed scheme was ana-

lyzed and realized in Simulink[16] for an experimentally

identified lumped diaphragm model. The simulation

results show that the active damping scheme is feasi-

ble. Answers are being sought for many practical ques-

tions that are still open with regard to experimental

modeling and testing, realization of dynamic compen-

sation, circuit design and integration, analysis of noise

performance, and micro-fabrication of the microphone.
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