BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

In-situ warpage measurement of 300mm wafer with speckle-free digital image correlation method

Background

Wafer Warpage: During the manufacturing process, wafer undergoes many microfabrication process steps, which would make wafer experience thermal cycles.

Figure 1. III-V-OI on Si wafer fabrication process flow chart

Digital Image Correlation:

Figure 3. 3 DIC surface treatment methods: (a) etching; (b) spraying; (c) painting

Objectives

Figure 4. 300mm warpage contour & patterns projected on the wafer

Figure 5. Digital Image Correlation System

Experiment Set-up

Figure 6. Schematic of speckle-free DIC The thermal chamber provides the temperature range from -73°C to 315°C. High contrast ratio and resolution projector generates patterns on the wafer (fig. 4).

Figure 8. Pattern size and density effects: pattern generation program

Yuling Niu¹, Seungbae Park¹, Hohyung Lee¹

¹Department of Mechanical Engineering, State University of New York at Binghamton

In project plan, two sets of sensors are applied for different

	Field of View (mm)	Measurement Sensitivity (µm)	Usage
Camera	350 x 280	11.67	Whole wafer
amera	10 x 8	0.33	Microcircuits on the wafer
Global camera Local camera			
reflectio	on glass Wafer		

Figure 7. Control system for the experiment: (a) oven control program; (b) linear stage control program

Pattern Size and Density

Core Steps

Measurement Verification

Before the wafer measurement starts, two verification tests were done to verify the speckle-free method.

Warpage Test

A plastic package (fig. 9) with convex surface is selected for profiling. The surface is measured by both speckle-free DIC and Wyko (nanometers of measurement sensitivity).

Figure 9. Plastic package _____ 0.16 0.14 0.12 _ _ _ _ _ _ _ _ _ _ _ _ 0.06 diagonal data length, mm

Surface Treatment Effect

For wafer level specimen, surface is flat and the surface treatment might influence the actual result. So an optical mirror was used to check the surface treatment effect.

Wafer Warpage Measurement

Once the speckle-free DIC method solidified, the actual 300mm wafer was measured

Figure 13. In-situ warpage measurement of 300mm wafer with speckle-free DIC method

Discussion

Reference image

Deformed sample image Reference image

Figure 16. Schematic of speckle-free DIC method limitation

Conclusion

Deformed sample image