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ABSTRACT 

This paper presents an investigation of non-uniform time 
sampling methods for spectral/temporal feature extraction for 
use in automatic speech recognition. In most current methods 
for signal modeling of speech information, “dynamic” features 
are determined from frame-based parameters using a fixed time 
sampling, i.e., fixed block length and fixed block spacing. This 
work explores new methods in which block length and/or block 
spacing are variable. Three methods are suggested and each was 
tested with the TIMIT database using a standard HMM 
recognizer. Phone recognition experiments were conducted 
using the standard 39 phone set. The methods were also 
evaluated with various HMM  model complexities. 
Experimental results indicated that none of the proposed non-
uniform feature time sampling methods perform significantly 
better than fixed time sampling  methods. However, the best 
results obtained with the front end are comparable to those 
obtained with current state-of-the-art systems. Also the 
performance of our monophone system surpasses that of most 
reported context-dependent monophone systems. 

1.  INTRODUCTION 

A standard strategy to compute spectral/temporal features for 
automatic speech recognition uses uniform temporal resolution 
with respect to spectral features.  That is, features are computed 
using a fixed frame length and spacing for frame-based 
parameterization and fixed block (segment) length and spacing 
for feature trajectory calculations.  The underlying assumption is 
that speech information is uniformly distributed in time across 
an utterance.   However, both the physics underlying speech 
production and available psychophysical evidence on speech 
perception contradict this time uniformity assumption.    For 
example, vowels are the longest phones in English with 
relatively fixed spectra whereas stop consonants are much 
shorter and more dynamic in nature.    The informational 
importance of stops is generally considered to be at least as 
great as that of vowels and humans are also quite proficient at 
recognizing  stops.  Although a statistical modeling framework 
such as Hidden Markov Model (HMM) can account for duration 
variability, still HMMs  implicitly “score” observations 
proportional to length.  Thus, an HMM recognizer typically 

performs similarly to human performance for the long duration 
vowels , but is more degraded relative to human performance 
for the short duration stops.   An HMM recognizer also has 
difficulty with tasks such as the “e” set,  where most of the 
distinguishing characteristics occur over a small time portion of 
each token.   Another consideration is that the large degree of 
redundancy in the long steady sounds could degrade the 
performance of an HMM since this situation contradicts the 
HMM  assumption that successive observation vectors are 
independent. 

Motivated by some of the comments above, this paper presents 
some techniques that compute spectral/temporal parameters 
with non-uniform time sampling. After frame features have been 
calculated, a Discrete Cosine Transform (DCT) over time was 
used to encode blocks of frame features.  Note this approach to 
calculating feature trajectories is not the same as the linear 
regression approach more typically used.   The primary goal of 
this paper is to investigate methods which emphasize the 
temporal characteristics of speech in the areas where the 
spectrum changes rapidly, while de-emphasizing those areas 
where spectrum changes slowly.  

Temporal information can be better captured when measured  
with a short time widow. This corresponds to the use of a short 
block length to encode the information or to closely sample the 
data in that area.   Based on this basic notion, a method called 
‘variable block length’ was explored and tested. This method 
extracts the spectral/temporal features using blocks of variable 
length.  The length of a block was determined by minimizing a 
local reconstruction error. The second method  used  a fixed 
block length fixed but non-uniformly advanced the block 
depending on the magnitude of a spectral derivative measure. 
This method is called ‘variable block spacing’. The last method 
tested utilized both short block and long block to capture rapid  
spectral changes and slow spectral changes. Principal 
Components Analysis (PCA) was used to reduce the 
dimensionality of the combined features. 

The methods were tested with  the TIMIT database using the 
NIST training set and the NIST core test set. An HMM 
recognizer was constructed with the HTK software tools [1] and 
was designed to recognize all 39 phones. Results with 
monophone and biphone systems are reported.  



2.  BACKGROUND 

The main frame-based features used in this work are Discrete 
Cosine Transform Coefficients (DCTCs). These coefficients 
were obtained by encoding the global spectral shape of the 
frame using a DCT. The process can be summarized as follow.  

First, a frame of speech was emphasized by a second-order 
banpass IIR filter whose center frequency was at 3200 Hz. The 
filtered signal was then windowed by a Kaiser window function 
prior to FFT analysis. A 512-point FFT was used and the 
logarithmic-scaled spectral amplitude was calculated. A set of 
DCT basis vectors (13 in this paper) was computed to encode 
the spectral shape over a selected frequency range. A dot 
product between the spectrum and the basis vectors yielded the 
DCTCs for the frame. 

To compute spectral/temporal features, a Discrete Cosine Series 
was used to represent the temporal characteristics of the speech 
over several consecutive frames.  A detailed description for 
computing DCTC and DCSC features can be found in [2]. 

3. METHODS 

This section discusses the three proposed methods of non-
uniform time sampling for spectral/temporal feature 
computation. Each method assumes that the frame-based or 
static parameters have already been obtained. Thus all methods 
are discussed from the viewpoint of including temporal 
information into the final feature set.  

3.1. Variable Block Length Method 

Use of  a DCT to capture the temporal information is a method 
for encoding the signal trajectory over a period of time with a 
small number of parameters. Moreover, encoded information 
can be reconstructed, but generally with error.   This method 
could thus be used a method for lossy encoding.  In the work 
presented here, the method uses reconstruction distortion as the 
criteria to determine block length.  

Beginning with an error threshold, the appropriate block length 
is determined with an iterative process. First the shortest block 
length  within the range of consideration is encoded and then 
decoded. If the reconstruction error is less than the selected error 
threshold, then a larger block is tried. The largest block size that 
yields an error below the threshold is selected.   Note that the 
error was normalized to reflect average error per frame rather 
than total error over the length of the block. 

The effect of this algorithm is to use  shorter blocks in regions 
of rapid spectral change and longer blocks in regions of more  
steady spectra.  For example, a short block length is used in  
rapid transitions, since these regions have a high reconstruction 
error. 

Figure 1 shows an example of this method applied to real speech 
data. An utterance of the letter “b” is displayed in the 

spectrogram. As can be observed from the figure, large blocks 
and short blocks are used in different areas.  In particular, the 
shortest blocks are in the beginning and end regions, with much 
longer blocks for the steady-state vowel portion of the utterance. 
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Figure 1:  Illustration of the variable block length technique for 
the letter “b.” 

3.2. Variable Block Spacing Method 

This method emphasizes or de-emphasizes an area by means of 
applying different block spacings.  A short  block spacing is 
selected in areas  where the spectrum changes rapidly and long 
block spacings in regions with more steady spectra.   The 
spectral transition measurement was performed using a method 
presented by Furui [3], beginning with the DCTCs for each 
frame-based observations.  The space between the two adjacent 
blocks was determined by examination of the amplitude of the 
spectral derivative associated with the interval  in the block. If 
the spectral derivative is high, which implies abrupt transitions, 
a short block spacing is used and if the spectral derivative is 
low, a long spacing is used. 

Figure 2 shows an example of this method applied to an 
utterance of the letter “b.”  Blocks are closely spaced in the 
beginning and end regions where there are rapid spectral 
changes, but blocks are spaced much father apart in the steady 
vowel portion.  The effect is a variation of that shown in Figure 
1.  
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Figure 2:  Illustration of the variable block spacing technique 
for the letter “b.” 



3.3. Combined Block Length Method 

This method encodes the temporal information using a short and 
a long block at the same time. Encoded parameters for the two 
blocks are combined and then Principal Components Analysis 
(PCA) is used to select the most important features.  Thus, for 
this method,  PCA  selects  the features which are most  
important: short trajectory features, long trajectory features, or a 
mixture of both. 

4.  PHONE RECOGNITION 
TASK AND DATABASE 

All methods were tested with phone recognition using the 
TIMIT database. The NIST training set, comprised  of 3696 sx 
and  si sentences,  was used for training data  and the NIST core 
test set,  which consists of 192 sx and si sentences, was used for 
testing.  Only test results are reported. 

In this paper, all 61 TIMIT phones were folded into a 48 phone 
set as described by Lee in [4]. For the case of monophone 
models, there were 48 HMM models, one each per phone. 
However result evaluations were performed with 39 phones in 
which confusions among some phones were not counted as 
errors. This arrangement is also described in [4]. 

The monophones were initialized with time-labeled data which 
was provided with the TIMIT database using 20 iterations of the 
Viterbi and 20 iterations of the B-W algorithms. The initialized 
models were further trained in the embedded mode with the B-
W algorithm for 5 iterations.  Tests were made with both full 
covariance and diagonal covariance matrix HMMs.   Note that 
the HTK was used to construct the HMM based recognizers. 

A simple right-context biphone models was also built to test all 
methods. The occurrences of all phone pairs in the training data 
were counted and the top 400 most frequently occurring  pairs 
were selected. In addition, the 48 monophones were added 
resulting in a total of 448 models. Each biphone model was 
cloned from its corresponding well-trained monophone.  Five 
iterations of the B-W algorithm were applied to train the 
biphone models. 

Each HMM used in this paper was a 3-state left-to-right model 
with mixtures of Guassian densities.  Only self-transitions and 
transitions to the next state were allowed. Bigram language 
modeling was applied at the phone level. 

5.  EXPERIMENTS 

5.1. Static Features 

All experiments reported in this section (except ones with 
MFCC parameters) used spectral/temporal featured that were 
extracted from frame-based parameters as follows.  An analysis 
frame size of 25 ms with a frame spacing of 2 ms was  used. 
The frequency range  was selected as 70 Hz to 7000 Hz for each 

spectrum.  Thirteen DCTC parameters were extracted from each 
frame. 

5.2. Control Experiments 

As a control experiment, the fixed block length and fixed block 
spacing method was used. Each frame feature was expanded by 
3 Discrete Cosine Series over time resulting in a total of 39 
terms per block.   

An experiment was also conducted to evaluate the recognizer 
with MFCC features. Parameters used to compute MFCCs were 
mostly the default values of the HTK toolkit. This can be 
summarized as follow. The frame size was 25 ms and the frame 
spacing was 10 ms.  For each frame, 12 MFCCs  were computed 
from 20 band pass filters spread from 70 Hz to 7000 Hz.  A 
normalized energy term was also computed. The final 39 terms 
were obtained by appending the delta terms and the delta-delta 
terms to the original MFCCs and energy term. 

For each method proposed, a series of experiments was 
performed. Every method (except the MFCC as just mentioned) 
used 3 DCT basis vectors over time to encode the temporal 
information within each block. We kept the number of features 
the same for each method so that we could fairly compare the 
results from various methods. 

To find reasonable sets of parameters for each method, 
experiments were first conducted with simple monophone 
models.  For these tests, each HMM had 3 mixtures per state 
and a diagonal covariance matrix.  

Once a reasonably good set of parameters had been found, we 
then tested the methods with more complex models including 
models with more mixtures per state, models with a full 
covariance matrix and context-dependent models. 

Figure 3 depicts best recognition accuracies achieved by each 
method using monophone systems with diagonal covariance 
matrices and full covariance matrices.  
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Figure 3:  Monophone results of different methods with 
diagonal and full covariance mixtures. 

From Figure 3, the results labeled “DCSC” were computed with 
uniform time spacing.   The results labeled “MFCC” were also 
obtained with uniform time spacing,  using the MFFC terms and 



associated dynamic terms as mentioned above.  Method 1 
represents the variable block length method;  Method 2 
represents the variable block spacing method;  and Method 3 
represents the combined block length method.  In most cases, 
use of a full covariance matrix gave higher accuracy than use of 
diagonal covariance matrix. With the diagonal  covariance 
systems no methods were better than the DCSC method.  
However, Method 3 was best with a full covariance matrix. 

Best results for each method with  context-dependent models are  
shown in Table 1. Note that full covariance mixtures were not 
used in context-dependent experiments because the models 
would have been too complex and we could not find a 
reasonable way to reliably train all models. Thus experiments 
were conducted using diagonal covariance matrices only. It can 
be seen from the table that only Method 3 yielded higher results 
than the standard DCSC method. 

 

Method Accuracy (%) 
DCSC 71.5 
MFCC 69.1 

Variable Block. Length 71.6 
Variable Block Spacing 71.5 
Combined Block Length 72.6 

Table 1:  Results of different methods with right-context 
biphone models 

5.3. Comparison of Results 

The absolute best result on the NIST core test set was 74.4% as 
reported in [5]. Table 2 summarizes the methods used and 
accuracy achieved by other systems. 

Interestingly, our monophone system with a full covariance 
matrix was nearly as good as most systems. The accuracy 
obtained from such a system was 71.2%.  

System Accuracy on NIST 
core test set (%) 

Robinson, 1994 [6]  73.9 
Deng and Sameti, 1996 [7] 73.4 
Mari et al., 1996, [8] 68.8 
Chang and Glass, 1997, [9] 73.4 
Ming and Smith, 1998, [5] 74.4 
Karnjanadecha and Zahorian 72.6 

Table 2:  Phonetic recognition accuracies on NIST core test set 
for various ASR systems. 

5. CONCLUSIONS 

The variable block length and the variable block spacing 
methods presented in this paper did not result in any 
improvements over uniform time spacing methods.   The use of 
two block lengths, followed by a PCA transformation, did 
perform slightly better than the baseline system.  Thus, the 
experimental results do not support our original hypothesis that 
simple schemes for non-uniform time spacings for speech 

feature computations will more closely reflect information 
content in speech and thus improve HMM-based recognizers. 

However, to our knowledge, the result obtained with our 
monophone system was the highest among the results reported 
in the literature. The context-independent models yielded higher 
results than most context-dependent system in the past.  This 
system should be straightforward to duplicate, since a 
“standard” HMM and simple context-dependent models were 
used. We believe that recognition performance of our front end 
could be improved with a more refined HMM and with carefully 
designed context-dependent models.  It is also possible that non-
uniform time spacing methods can be more carefully integrated 
into the HMM framework and would result in more advantages. 
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