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Abstract 
A neural network based feature dimensionality reduction for 
speech recognition is described for accurate phonetic speech 
recognition. In our previous work, a neural network based 
nonlinear principal component analysis (NLPCA) was 
proposed as a dimensionality reduction approach for speech 
features. It was shown that the reduced dimensionality 
features are very effective for representing data for vowel 
classification. In this paper, we extend this neural network 
based NLPCA approach for phonetic recognition using 
continuous speech. The reduced dimensionality features 
obtained with NLPCA are used as the features for HMM 
phone models. Experimental evaluation using the TIMIT 
database shows that recognition accuracies with NLPCA 
reduced dimensionality features are higher than recognition 
rates obtained with original features, especially when a small 
number of states and mixtures are used for HMM phonetic 
models.   
Index Terms: feature dimensionality reduction, neural 
networks, HMMs, speech recognition 

1. Introduction 
Accurate automatic speech recognition (ASR) requires both 
speech features that are highly discriminative and a 
recognition model which can form arbitrary boundaries in the 
feature space. Highly discriminative features are required to 
incorporate nonlinear frequency scales and time dependency 
to efficiently present the spectral/temporal characteristics of 
speech. In [9], nonlinear warping functions are used to obtain 
smoothed speech features for highly discriminative features. 
The use of factors that represent dynamic information also 
increases recognition accuracy. Another important 
consideration for features is the large dimensionality of 
feature spaces, leading to problems referred to as the “curse of 
dimensionality” [2, 3]. That is, for a fixed set of training data, 
as additional features or dimensions are added, recognition 
performance improves on the training data but sometimes 
degrades on test data. Therefore, a compact set of highly 
discriminative features is very important for accurate ASR. 

The hidden Markov model (HMM) has been one of the 
most successful recognition models since it has good time 
alignment capability, a well-developed mathematical 
framework, and convenient mechanisms for incorporating 
language models. On the other hand, recognition systems 
using neural networks have some advantages over HMMs. 
Neural networks are not based on any statistical assumptions, 
and have good discriminative power. However, neural 
networks do have limitations such as the lack of ability to 
model temporal variations. 

In our previous work [10], a neural network based 
nonlinear principal component analysis (NLPCA) was 
presented as a dimensionality reduction approach for speech 

features. It was shown that the reduced dimensionality 
features using this approach can be very effective for 
representing data for vowel classification. In this paper, we 
extend this neural network based NLPCA approach to a more 
complex speech recognition system in which a HMM 
recognition model is used for phonetic recognition in 
continuous speech.  

This combination of neural networks and HMMs 
described in this paper can be considered as a hybrid 
NN/HMM recognition system [8]. In contrast to other hybrid 
methods [1, 2, 4, and 5] where neural networks are closely 
integrated with HMMs in the training process, the recognition 
system described in this paper uses neural networks as a form 
of preprocessing. This approach results in a simple and fast 
process, and gives the flexibility and potential to combine the 
neural network with other processing methods. 

The remainder of this paper is organized as follows: In 
Section 2, we give an overview of the system architecture, 
which consists of feature transformation (dimensionality 
reduction) with NLPCA and feature recognition with a HMM. 
The NLPCA training is described in Section 3. Section 4 
presents the recognition performance using the TIMIT 
database for various conditions, followed by the conclusion in 
Section 5. 

2. NLPCA for HMM Recognition 
The architecture of the HMM recognition using NLPCA is 
illustrated in Figure 1.  

Figure 1: Architecture of HMM recognition using 
NLPCA 
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As reported in [10], NLPCA is based on a bottleneck 
neural network and uses the activations from the middle 
hidden layer of the network as the reduced dimensionality 
data. The reduced features are then recognized as phonemes 
using HMMs as well as language model information. 

Since the activations of the middle layer represent the 
internal structure of the input features, the reduced features 
created by the NLPCA network may be more suitable for 
recognition or classification than the input features. The 
dimensionality of the reduced feature space is determined 
only by the number of nodes in the middle layer. Thus, an 
arbitrary number of reduced dimensions can be obtained, 
independent of the input feature dimensions and the nature of 
the training targets. This flexibility of dimension 
determination allows dimensionality to be adjusted so to 
optimize overall ASR accuracy.  

Phoneme HMMs are used in this paper for phonetic 
recognition experiments, although other recognition units 
could be used. In the calculation of the emission probability 
for each state in a HMM, the reduced dimensionality features 
are used instead of the original features, based on the 
following Gaussian Mixture Model (GMM). Given a feature 
vector o at time i, the emission probability bj(oi) of the j’th 
model is  
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where M is the number of mixture components, cjm is the 
weight of the m’th component, and N(o; μ, ) is a multivariate 
Gaussian with mean vector μ and covariance matrix , that is  
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where n is the dimensionality of feature vector o.

After emission and transition probabilities are estimated, 
the Viterbi algorithm is used to calculate the overall 
probabilities of a feature vector over HMMs and find the 
HMM with highest probability as the recognition result. 

The parameters of the HMMs are trained by the Baum-
Welch estimation algorithm. Some global optimization 
training methods have been used in hybrid NN/HMMs 
recognition models [1, 7]. However, in this work, the weight 
training of neural network in NLPCA, as described later, is 
conducted separately from the HMM training.  

3. NLPCA Training 
In our previous work [10], two approaches were used for 
training the bottleneck neural network in NLPCA. One 
approach (NLPCA1) is to train the neural network as an 
identity map. However, this approach was not as effective as a 
second approach (NLPCA2), for which the neural network is 
trained as classifier. NLPCA2 was also found to be superior 
to linear PCA. Therefore, only the NLPCA2 method was used 
for all work reported in this paper.  

A difficulty in neural network training is that the input 
data has a wide range of means and variances for each feature 
component. These wide ranges can lead to difficulties in 
training. In order to avoid this difficulty, the input data is 
scaled so that all feature components have the same mean and 
variance. In particular, a input feature vector x at time i is 
scaled using  
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where μ is the mean vector and � is the standard deviation 
vector of input features. The scale factor r was set to 5; with 
this scaling the mean of each scaled vector component of o is 
0.0,  and the standard deviation of each component of o is 0.2,   
thus resulting in a range of approximately [-1,1] for all the 
scaled feature vectors. The mean vector μ and standard 
deviation vector � are computed from the training data. 
However, both training and test data were scaled the same 
way.    

The training targets for NLPCA2 correspond to category 
indices, that is, the phoneme label for the work reported in 
this paper. An appropriate representation of the target is thus 
required for the output layer of the network. We use a number 
of output nodes equal to the number of phone categories (39 
for this paper), with a value of 1 for the target category and 0 
for the non-target categories. For instance, in a four-category 
problem, if the pattern is in category 3, the target vector is set 
as t = (0, 0, 1, 0). In every target vector, one component is 1 
and all the rest are 0. 

The weights of the neural network are estimated using a 
standard Back-propagation algorithm to minimize the distance 
between the scaled input features and target data described 
above. Since the target data represents the category 
information of the input data, the neural network is trained to 
have good classification ability as well as reduce feature 
dimensionality.  

4. Experimental Evaluation 
Several experiments were conducted to evaluate the proposed 
method based on the widely used TIMIT database, consisting 
of 630 speakers and 10 sentences from each speaker. A total 
of 4620 sentences were used for training, and the remaining 
1680 sentences were used for testing. A reduced 39 phone set 
as used in [6] was mapped down from the original TIMIT 62 
phone set and used in the experiments. 

For both training and testing data, the modified Discrete 
Cosine Transformation Coefficients (DCTC) and Discrete 
Cosine Series Coefficients (DCSC) were extracted as original 
features. As in our work with vowel classification [9], the 
modified DCTC is used for representing speech spectra, and 
the modified DCSC is used to represent spectral trajectories. 
For the all experiments, 13 DCTCs and 7 DCSCs were 
computed using 20 ms frames with 10 ms frame spacing, for a 
total of 91 features. In Experiment 1, the DCSC term was 
computed using 10 frames per block (block length of 100 ms). 
Then, this block length was varied for the evaluations in 
Experiments 2 and 3. 

Left-to-right Markov models with no skip were used and a 
total of 39 monophone HMMs were created from the training 
data using the HTK toolbox (Ver3.4). The bigram phone 
information extracted from the training data was used as the 
language model. Various numbers of states and mixtures were 
evaluated as described in the following experiments. 

The neural network used for NLPCA had 3 hidden-layers 
with 500 nodes in the first and third hidden layers. The 
number of hidden nodes in the second hidden layer (the 
bottleneck) was varied from 4 to 91, according to the reduced 
dimensionality being evaluated.  The numbers of nodes in the 
input and output layers were 91 and 39 respectively, with 91 
corresponding to the dimensionality of the original features 
and 39  determined by the number of phone categories. 

4.1. Experiment 1 
In the first experiment, NLPCA was evaluated with 

various dimensions in the reduced feature space. The HMMs 
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were trained with 1, 3 and 5 states, and with 1, 2, 5 and 10 
mixtures for each state.  

Figure 2 shows the results based on 1-state and 3-state 
HMMs, with various numbers of mixtures, in terms of 
recognition accuracy, as the reduced dimensionality of 
features varies from 4 to 91. The dotted lines are the results 
with the original 91 features. For the case of 1-state HMMs, 
the highest recognition accuracy of 65.46% was obtained with 
a 15-dimensional feature space and 10 mixtures. For the 
simplest HMM case, with 1 state and 1 mixture, the 15-
dimensional NLPCA features result in approximately 20% 
higher accuracy than obtained with the original 91 features.  
For the case of 1 state and 10 mixtures, the 15-dimensional 
NLPCA space results are about 5% higher than those obtained 
with the original 91 features. For the 3-state HMMs, the 
highest accuracy was obtained with 10 mixtures using 20-
dimensional NLPCA features. Furthermore, accuracy 
obtained with the 20-dimensional NLPCA features and 5 
mixtures is similar to that obtained with original features and 
10 mixtures. 

Figure 2: Recognition accuracies of 1-state HMMs 
(top panel) and 3-state HMMs (bottom panel) with 
various reduced feature dimensions. 

For both 1-state and 3-state HMMs, best accuracy was 
obtained with feature dimensionality between 10 and 30, 
especially when a small number of mixtures are used. In a 
similar experiment, the 5-state HMMs also resulted in higher 
accuracy with NLPCA reduced dimensionality spaces versus 
the original 91 dimensionality space.   

These results imply that the NLPCA is able to represent 
the complexity of original feature in a reduced dimensionality 
space. Furthermore, with an HMM speech recognizer, the 
reduced features result in high accuracy using a small   
number of mixtures and states in the HMM phone models. 

4.2. Experiment 2 
In the previous experiment, a fixed block length of 100 ms 
was used for DCTC-DCSC feature calculations. In this 
experiment, various block lengths were evaluated to optimize 
the block length that would maximize the accuracy of the 
entire system. The 20-dimensional NLPCA features that gave 
the best performance in Experiment 1 were used to compare 
with the original features. 

The recognition accuracies obtained with 1-state and 3-
state HMMs with various numbers of mixtures are shown in 
Figure 3. The block lengths evaluated were 70, 100, 150, 200, 
250 and 300 ms. For both 1-state and 3-state HMMs, highest 
accuracy was obtained with reduced dimensionality features 
using block lengths between 100 and 200 ms. In contrast to 
the original features which largely degrade performance with 
an increasing block length, the 20-dimensional NLPCA 
features lead to a small degradation.  

Figure 3: Recognition accuracies of 1-state (top panel) 
and 3-state HMMs (bottom panel) using the original 

and reduced features with various block lengths.  

These results show that the NLPCA features are better 
able to represent speech information over longer segment 
lengths than are the original features. For example, best 
results for 1-state HMMs with NLPCA features are obtained 
with a block length on the order of 200 ms, versus best results 
with original features for the shortest block length tested (70 
ms). Additional, a very simple 1-state 5-mixture monophone 
HMM model based on 20 NLPCA features is able to achieve 
phone accuracy only slightly worse (63.99%) than the best 3-
state model tested (65.68%).  These results thus imply that the 
NLPCA can account for some of the temporal information 
accounted with HMMs, thus potentially simplifying the HMM 
configuration.    
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4.3. Experiment 3 
A case could be made that the advantages of the NLPCA 
features over the original features are only due to the large 
number of neural network parameters obtained from training 
data. This also leads to the question of whether NLPCA 
neural network weights trained from one set of data would 
generalize well to an HMM trained with another set of data.  
Therefore experiments were conducted with 50% of the 
training data used for NLPCA and the other 50% of the 
training data for HMMs.  

For this experiment, the 4620 training sentences were 
equally separated into two groups so that each group had 2310 
sentences with 5 sentences for each speaker. One group of 
data was used for training NLPCA while the other group was 
transformed by the trained NLPCA and then used for training 
HMMs. As for experiment 2, the 20-dimensional NLPCA 
features were used to compare with the original 91 features 
with varying block length.  

Figure 4: Recognition accuracies of 1-state (top panel) 
and 3-state HMMs (bottom panel) using the original 

and reduced features for various block lengths. 

Figure 4 depicts the accuracies of 1 and 3 states HMMs 
with 1, 3 and 5 mixtures respectively. For the case of 1-state 
HMMs, the NLPCA features performed considerably better 
than the original features although the advantage decreases 
with an increasing number of mixtures. The highest accuracy 
of about 62% was obtained for the NLPCA features using a 
block length of 100 ms. The advantage of the NLPCA 
features is also shown for the 3-state HMM case. However, in 
contrast to the 1-state HMM case for which similar accuracies 
were obtained with the block lengths between 100 and 200 
ms, the NLPCA features using a block length of 100 ms 
resulted in highest accuracy, presumably because of the state 
transitions in the HMM models and the shorter duration of 
each state for a 3-state model.  

Comparing results from Figure 3, for which all the 
training data was used for both NLPCA training and HMM 

training, with the results in Figure 4 using the partitioned and 
effectively reduced set of training data, the best 1 state HMMs 
results are about 2% lower (61.48% vs. 63.99%) and the best 
3 state results are slightly lower (65.58% vs. 65.73%). Thus 
there is only a small degradation in test accuracy due to the 
reduced size of the training set. 

5. Conclusions 
In this paper, a nonlinear feature transformation based on 
neural networks is presented. This feature transformation 
method is incorporated with an HMM recognition model for 
continuous speech phonetic recognition. In the method 
presented, the activations from the middle layer of a 
bottleneck neural network are used as reduced dimensionality 
features. The neural network is trained to recognize phonetic 
categories.    

Experimental evaluation using the TIMIT database 
showed that recognition accuracies with NLPCA reduced 
dimensionality features are higher than recognition rates 
obtained with original features, especially when a small 
number of states and mixtures are used for HMM phonetic 
models. For phone recognition using a 3-state 5-mixture 
HMM, the accuracy obtained with the reduced 20-
dimensional features was about 4% higher than that obtained 
with the original 91-dimensional features. Additionally, the 
NLPCA features are able to well represent spectral-temporal 
information in segments as long as 200 ms, thus potentially 
reducing HMM model complexity. Although the NLPCA 
training is relatively time consuming, the entire recognition 
system could benefit from low-dimensionality features both in 
terms of processing time and recognition accuracy. 
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