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ABSTRACT 

Spectral feature computations continue to be a very difficult 
problem for accurate machine recognition of vowels especially 
in the presence of noise or for otherwise degraded acoustic 
signals.  In this work, a new peak envelope method for vowel 
classification is developed, based on a missing frequency 
components model of speech recognition.  According to this 
model, vowel recognition depends only on the location of 
spectral peaks.  Also, smoothing and interpolation of the 
sampled spectra, performed in the cepstral analysis method 
commonly used in automatic speech recognition results in a loss 
of valuable information.  The new method for feature extraction 
presented in this paper is based on minimum mean square error 
curve fitting of cosine-like basis vectors to all peaks in the 
speech spectrum.  A mathematical model for smoothly tracking 
spectral envelopes using only spectral peak information and 
ignoring other parts of the spectrum is presented.   A software 
algorithm for the model was developed and tested for various 
speaker types using a neural network classifier. Vowel 
classification experiments were conducted based on the features 
derived from the spectral peaks.  The classification rates of the 
peak method under various signal to noise ratios was also 
evaluated.  The basic conclusion is that the new features 
perform the same as cepstral features for clean speech, but have 
advantages when the signal is degraded by noise. 

1.  INTRODUCTION 
 AND BACKGROUND 

Ever since the time of Peterson and Barney [1], the first three 
formants (F1, F2 and F3) have been regarded as the primary 
source of spectral information.  Motivated by the idea that 
vowel information is primarily contained in the spectral peaks, 
but wanting a more robust method than formant tracking, Paul 
[2] tracked the spectral peaks by first computing the 
fundamental frequency.  He then linearly interpolated between 
these peaks in the frequency domain to derive a spectral 
envelope, which better fitted the harmonic peaks in the spectrum 
than do smoothing methods based on the entire spectrum.  

Very recently, a new model for vowel identification was 
proposed by Cheveigne and Kawahara [3]. They argued against 
smoothing and interpolation of the spectrum since it attempts to 
“guess” missing samples based on a predefined model and thus 
may be misleading. According to their theory, vowel 
identification (by humans) is a process of pattern recognition 

where matching is restricted to available data, and missing data 
are ignored using an F0-dependent weighting function that 
emphasizes regions near harmonics. Their theoretical arguments 
are based on human perceptual considerations. They did not 
extend or test their theory in the context of an automatic vowel 
classifier or recognizer. 

The general objectives of this paper are to investigate a model 
for vowel identification based only on harmonic spectral peaks.   
More specifically, a mathematical model for smoothly tracking 
spectral envelopes using only harmonic spectral peak 
information, and ignoring other parts of the spectrum, is 
developed and presented.   The model results in a set of cepstral-
like features, except that the features are only derived from the 
spectral peaks.    This model is illustrated with several spectral 
plots. The model is then tested for both clean and noisy speech 
for vowels for men, women, and children, using a neural 
network classifier. The theory and results are used to provide 
additional information regarding, the theory of Cheveigne and 
Kawahara [3]. 

2.  ALGORITHM 

The algorithm for curve fitting with cosine like basis vectors to 
peaks in the spectrum can be formulated as follows: First, let 
x(n) be a vector of log spectral magnitudes, where typically N  is 
one half of the FFT length used for spectral estimation.  Let 
φk(n) be an N by P matrix of Cosine Basis Vectors (CBV's). 
Then the goal is to approximate x(n)  using ,  ( )nx̂
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Selection of the coefficients ck (which we call Discrete Cosine 
Transform Coefficients--DCTCs, as in our previous work [4]) is 
based on minimizing the error between the original and the 
approximation.  The Weighted Mean Squared Error E between 

( ) and x(n) is given by nx̂
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where index(n) is a vector of 0’s and 1’s used to select peaks in 
the spectrum. In particular, index(n) = 0, for those n such that 
x(n) is not a peak in the spectrum, and = 1, for those n such that 
x(n) is a peak in the spectrum. 



 

Peak Picking The use of this index term is what differentiates this new 
method from methods which use the entire spectrum. If index(n)  
is 1 for all n, then the method is identical to that in Zahorian and 
Nossair [4], or essentially very similar to cepstral coefficients 
which depend on the entire spectrum.   Note that as in this 
previous work, the basis vectors are “warped” to provide a Mel-
like frequency resolution in this new work. 

The method used to select peak regions in the spectrum can be 
described algorithmically as follows. 

The objective is to compute the coefficients ck such that E is 
minimized. Differentiating with respect to each of the 
coefficients and setting these derivatives equal to zero is used to 
solve this problem. Substituting for )x̂  in (2) we first obtain (n
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Consider a spectral vector X(k), 1 ≤ k ≤ N, as the speech 
spectrum for which the peak regions are to be identified. k is 
considered as the frequency index.  Define a frequency 
dependent window width for finding maxima in X(k).  This 
function is referred as W(k).   For each frequency index k, 
determine the maximum of X(k) over the width determined by 
W(k).  That is, compute Y(k)  =  max (X(j), k - W(k)/2 ≤ j ≤ k + 
W(k)/2),  for W(1)/2  < k < W(N)/2.  For k outside the range 
given above, define Y(k) = X(k).   

Differentiating (3) with respect to the coefficients cm, and letting 
each term equal zero.  We obtain P equations (1 ≤ m ≤ P) 
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Next compare X(k) and Y(k), for 1 ≤ k ≤ N, using delta as a 
parameter to compare closeness.   If (Y (k) – X(k)) < delta, then 
X(k) is close to a peak, and  index(k) = 1.0. If (Y (k) - X(k)) > 
delta, then it is assumed that X(k) is not close to a peak,  and 
index(k) = 0.0.   Note that with very small modifications, this 
algorithm could also be used to find spectral dips, which it was 
used for a control case in some of the experiments reported 
below. Expanding and rearranging terms,  
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The P equations from (5)  can be further organized to obtain the 
matrix equation  

                              

  (6) 













































=





















ppp

k

k

pp AA

AA
AAA

c

c
c

B

B
B

.........

........

....

..

..
..
..

1

221

11211

2

1

2

1

This overall method was implemented using three parameters:  
delta, which controls the width of each peak; freq_rang_min, 
which sets the width of the frequency window at low 
frequencies; and freq_rang_max, which sets the width of the 
frequency window at high frequencies.  Typical values used 
were delta = 6 dB, freq_rang_min = 200 Hz,  and 
freq_rang_max = 300 Hz.    Note the frequency window width 
was linearly interpolated between the lowest and highest 
frequencies.   

where  

                                  (7) 
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The overall algorithm is illustrated in Figure 1.  The figure 
shows the FFT spectrum, the peaks (heavy dots), the spectrum 
smoothed by a DCTC analysis which uses the entire spectrum,   
and the spectrum smoothed by the peak-DCTC analysis method 
described in this paper.    Note, as mentioned above, the 
algorithm used for peak picking selects broad peak regions 
(typically 3 to 5 points centered at each spectral peak), rather 
than individual points for each peak. For this particular example, 
the main difference between the two DCTC smoothed spectra is 
a level shift; however, there are also some small differences in 
the regions around the formant peaks. 

3.  EXPERIMENTAL VERIFICATION 

“Standard” matrix methods can then be used to solve for the 
coefficient vector.  Note that, unlike whole spectrum methods 
for computing cepstral (or DCTC coefficients), a matrix inverse 
is required.   Although stability is, of course, an issue, if this 
algorithm is used with the  “broad” peak method described in 
the next section, stability has not been a problem in practice.   
Stability will become a problem if an excessive number of 
coefficients are chosen relative to the number of peaks selected 
from the spectrum.   The resultant problems are very similar to 
those encountered in polynomial curve fitting using a small 
number of data points and a higher order polynomial [5]. 

3.1  Introduction 

Vowel classification experiments were conducted to compare 
the peak DCTC features with our “standard” whole spectrum 
DCTC features. In each case, 12 DCTC features were computed 
for each frame of each vowel data scaled, and classified using a 
neural network classifier. The neural network classifier was a 
feed-forward, 1 hidden layer (12-25-10) network trained with 
100,000 updates using back propagation. The vowels were 
spoken in isolation by adult male speakers (90 for training and 
24 for testing), adult female speakers (100 training speakers and 
24 test speakers), and child speakers (54 for training and 24 for  



 

3.3  Experiment 2 testing).   More details of the database, signal processing and 
classification algorithm can be found in Zimmer et al.[6]. 
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The objective of the second experiment was to examine 
performance as a function of signal-to-noise ratio (SNR) for the 
whole spectrum method and the peak envelope method.  The 
signal to noise ratio used was varied in steps of 5 dB, from –10 
dB to +25 dB, for each speaker type.  The 25 dB SNR can be 
considered as clean speech since the noise level is still very low.   
This was done for the whole spectrum DCTC method and peak 
spectrum DCTC method for the male, female, and child speaker 
populations.   

The plots of test classification rates versus SNR are shown in 
the figure 2 (male speakers), figure 3 (female speakers), and 
figure 4, (child speakers).   It is observed that the peak method is 
superior to the whole spectrum DCTC method, particularly for 
low SNR values and for the female speakers.   For the case of 
high SNR values, the two methods perform very similarly.    
Thus the biggest advantage to the peak spectrum features are for 
the case of noisy speech and high F0 voices, with widely spaced 
harmonics. 
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Figure 2: Vowel classification rates for male speakers for whole 
spectrum (DCTC) and peak spectrum (PEAK METHOD) as a 
function of SNR.  

Figure 1:  Illustration of harmonic spectral peaking  and  whole 
spectrum and peak spectrum DCTC analysis. 

 

Several pilot experiments were conducted to establish good 
parameter settings for the adjustable variables in the processing.   
None of these variables caused large changes in results, and the 
results of those pilot experiments are not reported here.   In the 
present paper we focus only the differences in results between 
the whole spectrum DCTCs and the peak spectrum DCTC 
features. Note that only test results are reported. 

3.2  Experiment 1 
 The objectives of the first experiment were to evaluate some 

basic control and test conditions. Specifically, classification 
rates were obtained for the standard DCTC method without time 
smoothing, standard DCTC method with time smoothing, peak 
method without time smoothing, peak method with time 
smoothing, peak method tracking the valleys of the spectrum 
without and with time smoothing. Time smoothing was done by 
averaging over five frames for each token.   
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Figure 3:  Vowel classification rates for female speakers for 
whole spectrum (DCTC) and peak spectrum (PEAK METHOD) 
as a function of SNR. 

The testing was done for male, female, children, male&female 
vowels and the results are presented in Table 1.  From the table, 
it can be concluded that the peak method performs comparable 
to the standard DCTC method.  However classification rates 
obtained from valley envelope parameters, without time 
smoothing, were distinctly worse.  Time smoothing of valley 
envelope information improved it considerably. Since time 
smoothing was found to generally improve classification rates, it 
was used in all further experiments. 
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vectors to the peaks in speech spectra has been derived and 
tested in a series of vowel classification experiments.  For the 
case of clean speech and closely spaced harmonics (male 
speech), vowel classification rates are nearly identical with 
either whole spectrum coefficients or peak-spectrum 
coefficients.   However, for noisy speech, and particularly with 
more widely spaced harmonics (females and children), the peak 
method for coefficient calculation appears to be more robust.   
These data partially support the missing frequency components 
theory of Cheveigne and Kawahara [3], but not conclusively.   A 
more complete test would involve the use of an accurate F0-
tracking algorithm, so that peaks in the spectrum could be more 
accurately located. 
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 Standard 
DCTC 
method 

Standard DCTC 
method w/ time 

smoothing 

Peak 
method 

Peak method 
w/ time 

smoothing 

Peak method 
tracking valleys 

Peak method 
tracking valleys w/ 

time smoothing 

male 86.8 87.2 86.0 87.1 78.9 84.3 

female 87.6 89.6 880 87.7 70.8 82.8 

children 64.8 64.9 65.0 64.7 55.1 59.4 

male & female 84.6 83.0 83.6 82.8 70.8 78.5 

 
Tabel 1: Vowel classification rates for various speaker groups and various signal processing configurations. 


