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ABSTRACT 
 

This paper describes speech signal modeling techniques which are well suited to high 

performance and robust isolated word recognition.  We present new techniques for incorporating 

spectral/temporal information as a function of temporal position within each word.  In particular, 

spectral/temporal parameters are computed using both variable length blocks with a variable spacing 

between blocks.   We tested features computed with these methods using an alphabet recognition task 

based on the ISOLET database.  The Hidden Markov Model Toolkit (HTK) was used to implement the 

isolated word recognizer with whole word HMM models.  The best accuracy achieved for speaker 

independent alphabet recognition, using 50 features, was 97.9%, which represents a new benchmark for 

this task.   We also tested these methods with deliberate signal degradation using additive Gaussian 

noise and telephone band limiting and found that the recognition degrades gracefully and to a smaller 

degree than for control cases based on MFCC coefficients and delta cepstra terms.    
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I. INTRODUCTION 

Continuous speech recognition systems have been developed for many applications, since low-

cost PCs now have sufficient computing power for speech recognition software.  However, high 

performance and robust isolated word recognition, particularly for the letters of the alphabet and for 

digits, is still useful for many applications such as recognizing telephone numbers, spelled names and 

addresses, ZIP codes, and as a spelling mode for use with difficult words and out-of-vocabulary items in 

a continuous speech recognizer.  

Because of the potential applications, as mentioned above, many isolated word recognizers are 

optimized for the digits or alphabet or both (alphadigit).  The alphabet recognition task is particularly 

difficult because there are many highly confusable letters in the alphabet set - for example, the letters of 

the E-set, (/B, C, D, E, G, P, T, V, Z/), and the /M, N/ pair.  Also, since language models generally 

cannot be used, the alphabet recognition task is a small, challenging, and potentially useful problem for 

evaluating acoustic signal modeling and word recognition methods.  

The ISOLET database [2] was used for all experiments reported in this paper.  This database 

was intended for evaluation of isolated word recognizers; therefore, it has been used in several studies.  

Thus, it is possible to directly compare results.  All of the experiments in the present study1 were 

performed in a speaker-independent fashion using all files from the database, i.e., 120 speakers (60 

males and 60 females) for training and 30 speakers for testing (15 males and 15 females).  The Hidden 

Markov Model Toolkit (HTK) [14], was used to implement the HMM recognizer.  The best result 

obtained in our study of 97.9% corresponds to 19% fewer errors than the best result reported in the 

literature for this task from other labs [10], and 47% fewer errors than the next best reported result [1].  

More importantly, the method introduced in this paper is easier to implement and duplicate than these 

previous state-of-the-art systems. 

This paper is organized as follows.  Section II briefly mentions some issues in speech signal 

modeling methods and gives some results from the literature for the alphabet recognition task reported 
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on in this paper.  Section III describes the signal modeling methods used in this study. Experimental 

verification is presented in Section IV, and conclusions are drawn in Section V. 

 

II. BACKGROUND 

One of the most thorough tests of various front ends for use with automatic speech recognition 

is the often-quoted paper by Davis et al. [3].   In this paper, the signal representations Mel Frequency 

Cepstrum Coefficients (MFCC), Linear Frequency Cepstrum Coefficients (LFCC), Linear Prediction 

Coefficients (LPC), Linear Prediction Cepstrum Coefficients (LPCC), and Reflection Coefficients (RC) 

were all tested for effects on word recognition accuracy with a template-based, dynamic time warping 

recognizer.   The primary conclusion of this paper was that the MFCC parameters perform the best 

overall for automatic speech recognition (ASR), with about six coefficients capturing most information 

relevant for speech recognition, but with some increases in ASR performance as up to 10 coefficients 

are used.  Although the Davis et al. work would seem to be somewhat dated, as it is now almost 20 

years old and there have been many refinements in speech signal representations, the basic conclusions 

of this paper are still considered valid.  

In a more recent tutorial paper [13], Picone summarizes and compares some of the work on 

speech signal representations that has been done in the1980s and early 1990s.  In a survey of 31 

reported ASR systems, 21 used some form of cepstral coefficients as the basic signal features, with 

FFT-derived MFCC the most common type.   He did note that many systems combine multiple frames 

of speech parameters, usually over intervals ranging from 30 to 75 ms, to compute additional parameters 

which capture spectral/temporal information that improves ASR. A signal parameter vector consisting 

of cepstrum coefficients, the first derivative of the cepstrum coefficients, power, and the derivative of 

the power was reported as the de facto standard for ASR.  This “standard” is still widely used; for 

example, the front end of the HTK, which we use as a control in this paper, also uses this method.   
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Due to the importance of temporal information for HMM-based speech recognizers, Milner [11] 

investigated and generalized several methods for computer spectral/temporal features. Experimental 

results showed that many temporal encoding methods, including the DCT method, outperformed the 

static features augmented with delta and delta-delta terms. Best performance was achieved with the 

Karhunen Lueve transform.  In other related work, Harte et al. [6] showed that a feature vector with 

components from both short intervals and longer time intervals (segments) resulted in superior 

performance for the highly confusable E-set versus features computed from a single time interval. 

The best speaker-independent performance on OGI’s ISOLET database with the same test data 

as used for our work  (97.37%) was obtained using a 2-stage, phoneme-based, context-dependent HMM 

recognizer [10].  The features used were 26 MFCC terms consisting of 12 weighted MFCC terms, 12 

delta MFCC terms, a normalized energy term and a delta energy term.   The next best reported result of 

96.0% was obtained using fully connected feed-forward neural networks with 617 inputs and 26 outputs 

[1]. Those 617 inputs were extracted from selected portions of tokens whose boundaries were 

previously determined by a rule-based segmentor.   Many other studies of alphabet recognition are 

summarized in [10]. 

III. METHOD 

A. Signal modeling 

The first stages of the signal modeling method used in the present work are a variation of the 

method used in [15] and [16] for phonetic classification. We summarize the method and discuss in more 

detail some changes that make the method especially suited to high-accuracy isolated word recognition.  

The basic method begins with second-order pre-emphasis with a second-order filter centered at 

3200Hz.   Next, Kaiser-windowed (beta = 6) 20-ms speech frames are analyzed with a 512-point FFT 

every 5 ms. The spectral range was limited to 60 dB for each frame, using a floor. Neither envelope 

tracking nor a morphological filter (in contrast to [15] and [16]) was used.   From this “preprocessed” 
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spectra, a modified discrete cosine transform over frequency is computed to obtain a set of Discrete 

Cosine Transform Coefficients (DCTCs) which compactly represent the spectral shape of each speech 

frame.    The basis vectors used in the DCTC calculations are modified so that the frequency resolution 

approximates a Mel frequency scale.    In the final step, the DCTCs are block-encoded with a sliding 

overlapping block using another cosine transform over time that was used to compactly represent the 

trajectory of each DCTC.    The cosine basis vectors in this second transform are also “modified” so that 

the temporal resolution was better near the middle portion of each block relative to the endpoints.   The 

coefficients of this second transform are called Discrete Cosine Series Coefficients (DCSC).   The 

overall processing is similar to calculation of cepstral coefficients followed by “delta” term calculations.  

However, the “new” method is very flexible with a small number of parameters which control the 

details of the analysis, particularly in terms of spectral/temporal frequency resolution tradeoffs.
 

 

The method outlined above was used to compute 10 DCTC terms using a bilinear warping 

factor of .45 over the frequency range of 60 Hz to 7600 Hz (or 300 Hz to 3200 Hz for simulated 

telephone speech).  These 10 terms were in turn each represented by a 5-term modified cosine expansion 

over time, resulting in a total of 50 parameters (DCSCs) to encode each block.   In the next few 

paragraphs, we describe the methods used to determine the time duration on which each of the segment 

features is based, and which we call the block length, or number of frames used to compute each set of 

50 features, and the time spacing between blocks.    

Using this formulation, it is quite straightforward to manipulate the block length and/or block 

spacing based on the signal properties.  Shorter block lengths and block spacings could be used to 

achieve better temporal resolution, and longer block lengths and spacings could be used to increase 

temporal smoothing and reduce redundancy.   Thus, the block length presumably should be short in 

regions where the spectrum is rapidly changing, such as the initial portions of most of the words in the 

ISOLET database, and much longer in the vowel portions of each word.     
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The main objective of the current paper is to report two methods for adapting the block length 

based on the signal properties, as applied to isolated words.    The two methods investigated were: 

 

1) Variable block length method 

For this method, the block length in the DCSC calculations was varied according to position 

within the utterance.  In particular, at the beginning of an analyzed token, a block size of 45 ms was 

used.  As the analysis window moved forward, the block size increased until a maximum of 215 ms was 

reached.  The block size was then fixed at this maximum until the end region of the utterance was 

reached.   At this point the block length was again gradually reduced until, for the very final block, it 

again reached 45 ms. Time "warping" was also applied to each block, with the amount of warping 

controlled by the beta value for a Kaiser window, and with this beta value linearly interpolated from 0 

for the shortest length windows, up to a maximum value of 5 (approximately a Hanning window) for the 

longest blocks.2 Thus, the features gave better time resolution for the onset and offset portions of each 

word and less time resolution in the central portions of each word.  The block features were re-

computed every 10 ms. No manual segmentation or phonetic labeling was required or used.  The 

primary modification, relative to [8] and [9], is that the block length was varied at both ends of each 

analyzed utterance, rather than only for the beginning section.  See Fig.1 for an illustration of this 

variable block length method. 

 Each gray horizontal bar in Fig. 1 represents a block. The alignment over the frequency axis of 

the blocks has no relation to frequency---it is used only to illustrate the progression of the blocks. Note 

that although the main effect is the variation in block length at each end of the utterance, the block 

spacing is also effectively twice as long in the center of the utterance, relative to the end regions.   A 

drawback of this method is that it is not obviously extendable to continuous speech recognition. 

2) Variable block spacing method 
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This method adjusts block spacing to accommodate the spectral characteristics while the block 

size is constant. The objective is to advance the block by a small amount in the regions where the 

spectrum is changing rapidly and to advance the block by a large amount when the spectrum is changing 

slowly. This yields a non-uniform data rate.  In this work the spectral rate of change was quantified 

using the spectral derivative method introduced by Furui [5]. 

The overall method is implemented as follows.   First, frame-based features of the utterance are 

computed and the spectral derivative is determined.   Then block spacing is calculated to be proportional 

to the spectral derivative, with a proportionality constant set to obtain a specified maximum and 

minimum block length.   Note that the spectral derivative was clipped at an empirically determined 

threshold (constant threshold over all utterances), which was determined such that only about 5% of 

spectral derivative calculations resulted in clipping.   The DCT over time was then applied to each block 

of fixed length, but using block centers as determined from the block spacing step.       

 Figure 2 depicts an example of this method when applied to a real speech utterance.  Note that 

the block spacing is relatively short at the beginning and end of the utterance and long in the central 

portion. 

 

B.  Endpoint detection 

For all experiments, an endpoint detection adapted from the one given in [4] was used to locate 

endpoints, which were then extended 30 ms in each direction (i.e., backward in time for the onset and 

forward in time for the offset) to allow for some inaccuracies in the automatic detection, and also to 

include a small amount of silence at the beginning and end of each utterance.  The primary difference 

between the method given in [4] and our implementation was that we used 20 ms frames for the first 

pass of endpoint detection, and 10 ms frames for the second pass, as opposed to the longer frames used 

in the original method.  This endpoint detection method resulted in approximately a 34% decrease in 
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errors for an analysis condition corresponding to the best case reported here. However, use of the 

endpoint algorithm, but without the 30 ms silence added at each end, resulted in an error rate more than 

doubled for the same analysis conditions. 

C. Linear Discriminant Analysis  

In some of the experiments reported in this paper, LDA was used to transform and reduce the 

size of speech feature sets.  In our implementation of LDA, we compute two covariance matrices, the 

between-class covariance matrix B and the within-class covariance matrix W.  The B matrix is estimated 

as the grand covariance matrix of all the training data (the same as for a principal components analysis).  

The W matrix is estimated by computing the average covariance of time-aligned frames of data 

belonging to the same class.  Time alignment is accomplished using dynamic time warping to determine 

a “target” for each word by successively aligning and averaging all tokens of that word in pairs until 

only one token remains. Covariance contributions are then computed as variations about the target, after 

another time alignment to that target.  These two matrices are then used to create a linear discriminant 

analysis transformation which maximizes the ratio of between-to-within class covariance. Our 

implementation of this technique is similar to that presented in [7] and [12]. 

D. Hidden Markov Models 

For all experiments presented in this paper, the HTK toolkit was used to implement a word-

based HMM recognizer. In each experiment, there were 26 HMM models trained to recognize all 26 

letters of the English alphabet. Except where otherwise mentioned, each model had 5 states and 3 

multivariate Gaussian mixtures with a full covariance matrix.  Only self transitions and transitions to the 

next state were allowed.  In the training phase of each experiment, every training utterance was 

segmented into equal lengths and then initial model parameters were estimated.  Next, the Viterbi 

decoding algorithm was applied to determine an optimum state sequence of each training token. Every 

token was re-segmented based on its corresponding optimum state sequence. Model parameters were re-
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estimated repeatedly until the estimates were unchanged or the maximum number of iterations was 

reached.  Note that no Baum-Welch iterations were performed, as they were not found to improve 

accuracy on test data.  Again, the Viterbi algorithm was applied in the testing phase to determine the 

model that best matched each test utterance. 

IV. EXPERIMENTAL VERIFICATION 

A. Database 

The ISOLET database from OGI [2] was used in all experiments. The database is comprised of 

the English alphabet letters spoken by 150 speakers, 75 males and 75 females. Each speaker uttered the 

same word twice. Thus there are a total of 7800 utterances. The database is divided into 5 groups of 

equal size: ISOLET-1, ISOLET-2, ISOLET-3, ISOLET-4, and ISOLET-5. Utterances were recorded as 

isolated words with a sampling frequency of 16000 Hz and a 16-bit A-to-D system.  The speech signal-

to-noise ratio (SNR) reported by OGI is 31.5 dB with a standard deviation of 5.6 dB.   The endpoints 

were refined with the algorithm mentioned.    

B. Experiments 

Several speaker–independent recognition experiments were conducted with the alphabet set to 

evaluate the algorithms described above, and also to determine the effects of variations in some of the 

parameter values.  Except where noted differently, all experiments used ISOLET-1 through ISOLET-4 

for training and ISOLET-5 for testing. As a control, experiments were also conducted using the MFCC 

front end supplied with the HTK, using primarily default parameter values (pre-emphasis filter transfer 

function H(z) = 1-0.95z-1, frame size of 25 ms, frame spacing of 10 ms, Hamming window, 24 filters, 39 

total terms, including delta terms and delta-delta terms).3  A brief description of these experiments and 

their results follows. 
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  1) Baseline experiments: The first baseline experiment was based on single frame features for both 

DCTCs and MFCCs.  Typical test results in terms of percent accuracy were 82.3% for 10 DCTC terms and 82.6% 

for 12 MFCCs + Energy (13 terms).  In general, for all conditions tested (various frame lengths, numbers of terms, 

etc.) results for these two static feature sets were quite similar.  The next baseline experiment was to use a fixed 

block length for both DCSC features and MFCC features.  Typical results were 94.6% for the DCSC features and 

95.8% for the MFCC features.  These results were based on 50 terms for the DCSC features (10 DCTCs, each 

represented with 5 terms over a block length of 115 ms,) and 39 MFCC terms, with delta and delta-delta 

parameters computed using 5 frames (65 ms).  Although several other parameter settings were tried (block length, 

total number of terms, etc.), the conditions mentioned were the best (by a small amount) of the ones tried for both 

the DCSC terms and the MFCC terms.  

 

 2) Variable block length experiment: As mentioned previously, the endpoint detection 

program included 30 ms of silence at both ends of each utterance in the database. However, as noted in 

section IV.B.3 (below), the best recognition accuracy on test data (ISOLET-5) of 97.9% was achieved 

using the 30 ms of silence before the detected onset of speech, and 25 ms of silence after the detected 

final endpoint.  Therefore, unless otherwise noted, this configuration (30 ms initial silence, 25 ms final 

silence) was used in this experiment and all the following experiments.  

In this test, the method introduced in Section III.A was evaluated using 10 DCTCs, each 

represented with 5 terms in the DCSC expansion (50 features), with the block length varied from 6 

frames (45 ms) at the beginning and end of each utterance up to 40 frames (215 ms) at the center of each 

utterance.  As verification, this test was repeated in “round robin” fashion, using ISOLET-1 through 

ISOLET-5 as test data one at a time (and the remaining four sets for training in each case).  Results of 

the round robin test were then averaged.  Similar testing was done with the 39 MFCC parameters 

mentioned above.  Results for the four cases are given in Table I.  Note that the DCSC and results 

obtained from the robin tests are very close to those obtained with ISOTLET-5 tests, thus implying that 

the parameters are not overly “tuned” to ISOLET-5.  
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 3) Variable block spacing experiment: This method was tested with the same task, but using a 

different HMM configuration. Each letter was modeled with a 6-state, 3-diagonal mixture component 

and trained with the Viterbi and B&W algorithms.  The block length used was 93 ms and the block 

spacing was varied from 2 to 16 ms. Each block was represented by 39 terms (13 DCTCs expanded with 

3 DCSs).   The highest accuracy obtained on test data  (ISOLET-5) was 97.8%.   Note this result was 

nearly as high as the best results of 97.9% given in Table 1 for the variable block length method.   When 

the experiment was repeated using the full covariance matrix method, and the same HMM configuration 

as for experiment 2, results obtained were 96.6%.   Despite the promise of this method using the 

relatively simple diagonal covariance matrix, it was not tested further since even better results were 

obtained with the variable block length method. 

 4) Endpoint examination experiment: Since the block length in the variable block length 

method depends on the position of the block relative to the determined starting and final endpoints of 

each word, we hypothesized that performance might depend heavily on the accuracy of the endpoint 

algorithm.  This notion was reinforced when we repeated the test mentioned above with the variable 

block length, but using the data as distributed without the benefit of the refined endpoint algorithm, and 

found that accuracy dropped from 97.9% to 96.8% (about a 52% increase in errors.)  To test our 

hypothesis more systematically, we independently varied the starting and final endpoints over a range of 

+-30 ms from the automatically computed location, with the other endpoint fixed (30 ms for starting 

endpoint and 25 ms for final endpoint).  A negative amount of silence means that a portion of speech is 

discarded. With the exception of these variations in endpoints, all other signal processing was identical 

to that used above in the variable block length experiment.  The recognition results for these tests are 

depicted in Figure 3. 

The results clearly illustrate that, at least for this data, the beginning endpoint is much more 

critical than the final endpoint.  It also appears that adding even more than 30 ms of silence before the 

onset of each word would have been beneficial; however, this could not be done since the original 
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tokens did not include sufficient extra silence.  The absolute best result of 97.9% was obtained with 30 

ms of initial silence and 25 ms of ending silence.  These values of silence were thus used in the other 

experiments reported in this paper. 

 5) Signal to noise ratio experiment with and without LDA and with and without band limiting:

  To test the robustness of the signal features more thoroughly, experiments were conducted  

with additive Gaussian white noise over a range of SNRs from –10dB to + 30 dB.  For all experiments, 

noise was added to both training and testing data.   These tests were done both with the 50 DCSC 

features, as used above, and the 39 MFCC features (also previously mentioned).  All conditions were 

identical to those reported for Experiment 2, with the exception of the additive noise. Moreover, tests 

were made using LDA for each noise level, with the hypothesis that the effects of LDA might depend 

on noise level.  Based on pilot experiments, we extracted 30 LDA terms for the DCSC case and 25 LDA 

terms for the MFCC case  (about 60% of the size of the original feature vector in each case).   Results 

are given in Fig. 4. 

Note that for all cases except SNRs of –10 and –5 dB, the 50 DCSCs perform better than the 39 

MFCC parameters.  For both features sets, LDA is beneficial with SNRs of 0 dB or worse.  For higher 

SNR values, the effect of LDA is quite small for both feature sets, sometimes slightly degrading 

performance and sometimes slightly improving performance.  For “clean” speech, SNRs of 25 dB or 

higher, LDA degrades the DCSC features - but only by a small amount - whereas LDA improves the 

MFCC features nearly to the level of DCSC features. 

As one final “robustness” test, tests were made with band-limited speech (300 Hz to 3200 Hz) 

to simulate telephone bandwidth for each noise level. Results are shown in Fig. 5. 

In every case, without the use of LDA, the DCSCs resulted in higher accuracy than the MFCCs. 

Except at an SNR of 30 dB for the DCSCs, the performances of DCSCs and MFCCs were improved 

somewhat with LDA.  In general the performance increase due to LDA was higher at lower values of 

SNR.    
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The effects of LDA applied to features extracted from band-limited speech are quite different 

depending on DCSC versus MFCC parameters.  For almost all noise levels, the LDA results in very 

little change for the DCSC case, whereas the LDA results in larger improvements with the MFCC 

parameters.  The performance obtained with LDA transformed MFCCs very closely matches that 

obtained with the DCSCs, with or without LDA.    

Note that for the full bandwidth speech, the rates based on DCSC signal modeling are typically 

about 1.5% higher than the rates based on MFCC signal modeling.  For the telephone bandwidth case, 

the DCSC method averages about 3.4% higher than for the MFCC method.  Additionally, the typical 

degradation between full bandwidth and telephone bandwidth is also less for the DCSC case versus the 

MFCC case (average degradation of 5.3% versus 7.3%). 

C. Error analysis 

Table 2 shows a subset of the confusion matrix for the highest accuracy case  (97.9% accuracy 

on clean, full bandwidth test data with 50 DCSCs).  In the matrix, each row represents the “actual” 

spoken letter, and each column represents the identified letter.  This confusion matrix is given only for 

the E-set letters and the /M,N/ pair, since these 11 letters accounted for about 2/3 of the total errors (23 

errors out of a total of 33).  The single most confusable pair was the /M,N/  pair. 

The number of errors was small enough to be inspected visually, as plots of time waveforms and 

spectrograms on a computer, and by listening.  Of these 33 errors, 15 were due to confusions within the 

E set, eight were due to confusions between letter M and N, and only ten confusions were among the 

remaining 14 letters.  After listening to all of the error tokens, we concluded there are four situations for 

which tokens were misrecognized.  Six tokens appeared to have a severe endpoint detection problem.  

There were nine tokens pronounced in an unusual way, mostly by a single speaker.  Also, there were 

four tokens misrecognized because they are so similar to other letters that, even with careful listening, 

they were difficult to recognize.  Finally, fourteen tokens sounded intelligible and distinct with no 
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obvious reasons for the errors in machine performance, although some of these may have had 

inaccuracies in endpoint detection. 

To test the hypothesis that several of the errors were due to endpoint problems, we manually 

corrected the endpoints for all the error tokens.  A recognition test performed on this corrected test data 

results in 19 fewer errors, or 99.1% correct.  Although this result does not really “count,” since it was 

not done fully automatically, it does help illustrate the importance of good endpoint detection. 

 

V. CONCLUSIONS 

The variable block length signal analysis method with 50 DCSC terms and a “standard”  (but full-

covariance) HMM recognizer results in 97.9% accuracy for the alphabet set.  This represents a 19% 

reduction in errors relative to the best previously reported result in the literature [10] for the same 

database.  The method used in the current work would be quite easy to duplicate—the front end signal 

processing consists of dot product operations between blocks of FFT computed log spectrum with 

cosine-like basis vectors over time and frequency, with simple procedures for adjusting the block length 

and spacing, and a one stage whole word HMM.    In contrast, the two methods with the best previously 

reported results used either much more complex features (617 features in [1], or a 2-stage context-

dependent phonetic HMM [10].)   The best result obtained with the variable block spacing method 

(97.8%) was slightly lower, but still better than the best previously reported result, and it was obtained 

using the computationally advantageous diagonal-covariance matrix HMM.  The general signal 

modeling approach used in this work, block-encoded DCTCs based on a cosine transform over time, is 

generally more robust to noise and band limiting than are MFCC terms augmented by delta and delta-

delta MFCC.   

The primary contribution of this paper is the demonstration that the calculation of signal 

trajectories over intervals with lengths or spacings dependent on position within the utterance (either 

based on signal properties such as spectral derivative, or “anchor” points such as the endpoints) can 
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improve performance.  The advantage of this method is that it is able to capture rapid transients at the 

beginning and ending of each word, while simultaneously using longer, more noise resistant averaging 

intervals in the center of each word. We also showed that the benefit of using LDA for automatic speech 

recognition depends heavily on the features and noise level.  The improvements in ASR performance 

due to LDA tend to be the largest under noisy conditions, and with signal parameters that are sub 

optimal in terms of recognizer performance.  The only real benefit of LDA for “good” parameters, such 

as the DCSCs used in this study, is that a reduction in dimensionality by about a factor of two is 

possible with very little change in performance.  The results in this paper also demonstrate that accurate 

endpoint detection is still an area for further improvement for very high performance isolated word 

recognition systems.  

The variable block spacing method, with block spacing dependent on spectral derivative, would 

appear to be more easily extensible to continuous speech recognition.    An investigation of this method 

with continuous speech recognition remains a topic for further investigation.  
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Footnotes 

 

1.   A preliminary version of this work was reported in [8] and [9]. 

2.   The values for minimum and maximum block length and degree of time warping were varied and 

tested.  The values mentioned, obtained from pilot experiments, were the ones used for our experimental 

results. 

3.  Note that one difference between this control signal processing and the “new” methods presented in 

this paper is the pre-emphasis filter.   The first-order filter was used for the control, since this is 

typically used.    In our own previous work ([15], [16]), we have reported that the second-order pre-
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emphasis is marginally better than the first order pre-emphasis (and better matches psychophysical 

data), and thus have incorporated this filter as a “standard” for our signal processing.)      
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