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Abstract 
One of the main practical difficulties for automatic speech 
recognition is the large dimensionality of acoustic feature 
spaces and the subsequent training problems collectively 
referred to as the “curse of dimensionality.” Many linear 
techniques, most notably principal components analysis 
(PCA) and linear discriminant analysis (LDA) and several 
variants have been used to reduce dimensionality while 
attempting to preserve variability and discriminability of 
classes in the feature space. However, these orthogonal 
rotations of the feature space are suboptimal if data are 
distributed primarily on curved subspaces embedded in the 
higher dimensional feature spaces. In this paper, two neural 
network based nonlinear transformations are used to represent 
speech data in reduced dimensionality subspaces.  It is shown 
that a subspace computed with the explicit intent of 
maximizing classification accuracy is far superior to a 
subspace derived as to minimize mean square representation 
error.  

 
Index Terms: dimensionality reduction, nonlinear principal 
components analysis 

1. Introduction 
Methods in multivariate statistical analysis are essential for 
working with large amounts of geophysical data, data from 
observational arrays, from satellites, or from numerical model 
output. In classical multivariate statistical analysis, there is a 
hierarchy of methods, starting with linear regression at the 
base, followed by principal component analysis (PCA) and 
finally canonical correlation analysis (CCA). A multivariate 
time series method, the singular spectrum analysis (SSA), has 
been a fruitful extension of the PCA technique [4]. 

The common drawback of these classical methods is that 
only linear structures can easily be extracted from the data. 
For example, linear PCA yields a k-dimensional linear 
subspace of features that best represents the full data 
according to minimum square error criterion. If the data 
represents the complicated interaction of features, then the 
linear subspace may be a poor representation and a nonlinear 
subspace may be needed. Figure 1 illustrates one potential 
limitation of linear PCA [1]. The straight line fit to the data 
obtained by linear PCA does not provide much information 
about the original curve of the data. However, a nonlinear 
method might “discover” the curve that the data lies on. 

For data that lies on curved subspaces, the basic concept 
is not to apply PCA directly to the given data but rather to a 
transformed version of the data [6]. More precisely, a 
nonlinear transformation can be described as  

 
Figure 1: Straight line obtained using linear PCA, a 
poor representation of the nonlinear data. 

,)(
:(.)

xx
RR MD

φ
φ
→

→
                                                (1) 

such that the structure of the resulting data )(xφ  becomes 
significantly more linear. In machine learning, )(xφ  is called 
the feature of the data point x, and MR  is called the feature 
space. This feature space can be organized as a matrix: 
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The principal components of the feature space are given 

by the eigenvectors of the sample feature covariance matrix: 
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Let M
i Rv ∈  and iλ  be the eigenvectors and eigenvalues 

of )(xφ∑ : 
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then the nonlinear principal components iy  of every data 
point x are given by 
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In many cases, searching for the proper map (.)φ is a 
difficult task limiting the use of nonlinear PCA. However, in 
some practical applications, good candidates for the map can 
be found from the nature of the problem. For an arbitrary 
nonlinear relationship expressed by (.)φ , a neural network is 
an excellent approach to use because of its universal 
approximation property [3].  

It is widely known that mapping performed by a neural 
network can approximate any continuous function with 
arbitrarily desired accuracy [2]. The concept of extracting 
features from highly nonlinear data has been discussed by a 
number of researchers with most techniques reported in the 



 

literature based upon artificial neural networks [5]. This is 
possible due to the capability of neural networks to provide a 
nonlinear transformation of a feature space. 

2. NLPCA approaches 
The two methods for nonlinear PCA (NLPCA) investigated in 
this paper are based on neural networks. In particular, a 
bottleneck neural network as shown in Figure 2, is used to 
perform the dimensionality reduction. 
 

 
  Figure 2:  Bottleneck neural network. 

Two approaches were used for training the bottleneck 
neural network.  In the first approach, which we refer to as 
NLPCA1, the neural network is trained as an identity map. 
That is, the network is trained to minimize mean square error 
using targets that are the same as the inputs. As was 
mentioned in [4], training with regularization is often needed 
to “guide” the network to a better minimum in error. In the 
second approach, referred to as NLPCA2, the network 
structure shown in Figure 2 is trained as classifier. This 
second method could also be viewed as nonlinear 
discriminant analysis, since the network is trained to 
maximize discrimination. In both cases, the data at the output 
of the middle hidden layer, the bottleneck layer, is the 
reduced dimensionality data. 

Figures 3 and 4 illustrate the potential of NLPCA1 to 
determine a curved subspace embedded in a higher 
dimensional space. In particular for the case of Figure 3, two- 
dimensional pseudo-random data was generated that is 
clustered about a parabolic curve in the 2-D space.  A neural 
network with 1 hidden node was able to determine this 
underlying data structure.  

 
Figure 3: Plot of input and output data for semi-
random 2-D data. The output data is a plot of 
reconstructed data obtained after passing the input 
data through the trained neural network. 

Figure 4 illustrates a case where pseudo-random 3-D data 
is constrained to lie on a Gaussian surface, and a neural 
network with 2 hidden nodes is shown to be able to determine 
this underlying data structure.  
 

 
Figure 4:  An example with 3D data. Input and output 
plot of 3-D Gaussian data before and after using 
neural network for NLPCA. 

3. Experimental evaluation  
The two versions of NLPCA as well as linear PCA and LDA 
were compared with vowel classification experiments for 
various numbers of features. The 10 steady-state vowels /ah/, 
/ee/, /ue/, /ae/, /ur/, /ih/, /eh/, /aw/, /uh/, and /oo/ were 
extracted from the NTIMIT database and used [8]. All the 
training sentences (4620 sentences) were used to extract a 
total of 31,300 vowel tokens for training. All the test 
sentences (1680 sentences) were used to extract a total of 
11,625 vowel tokens for testing. For each vowel token, 39 
DCTC-DCS features were computed, as described in [7].   

For all cases, including original features, LDA, PCA, and 
the two versions of NLPCA, a neural network classifier with 
100 hidden nodes and 10 output nodes, trained with 
backpropagation, was used as the classifier.  In addition, a 
maximum likelihood Mahalanobis distance based Gaussian 
assumption classifier (MXL) was used for evaluation.  

For the NLPCA cases, the first and third hidden layers 
had 100 nodes (empirically determined).  The number of 
hidden nodes in the second hidden layer was varied from 1 to 
39, according to the dimensionality being evaluated.  For the 
case of NLPCA2, the network used for dimensionality 
reduction was also a classifier.  For the sake of consistency, 
the outputs of the hidden nodes from the bottleneck neural 
network were used as features for a classifier, using either 
another neural network or the MXL classifier. 1 

3.1. Experiment 1 

In the first version of this experiment, all training data were 
used to train the transformations including LDA, PCA and 
two NPLCAs as well as the classifiers.   

Figure 5 shows the results based on the neural network 
and MXL classifiers for each transformation method in terms 
of classification accuracy, as the number of features varies 

                                                                 
 
1 It was, however, experimentally verified that classification results 
obtained directly from the bottleneck neural network were nearly 
identical to those obtained with this other network. 



 

from 1 to 39. For both the neural network and MXL 
classifiers, highest accuracy was obtained with NLPCA2, 
especially with a small numbers of features. For the MXL 
classifier, NPLCA2 features result in approximately 10% 
higher classification accuracies as compared to all other 
features.  For both the neural network and MXL classifiers, 
accuracy with NLPCA1 features was very similar to that 
obtained with linear PCA. 
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Figure 5: Classification accuracies of neural network 
(top panel) and MXL (bottom panel) classifiers with 
various types of features. 

Another evaluation was conducted with a small amount of 
training data, since dimensionality reduction is often not 
needed with enough training data and a powerful classifier. 
Here, experiments were conducted using 1%, 2%, 5%, 10%, 
25%, 50% and 100% of the available training data.  

Figure 6 shows the results for 2% and 50% training data. 
The classification accuracies of the original and NLPCA2 
reduced features were compared using both the neural 
network and MXL classifiers. Using 2% of the available 
training data (approximately 626 vowel tokens total), overall 
best accuracy is obtained with a parametrically based 
classifier (MXL) and a large number of features (18 or more) 
For the experiment with 50% of the available training data, 
the accuracy with NLPCA2 features is substantially higher 
than those obtained with original features, at least for 12 or 
fewer features. With a large number of features, accuracy is 
approximately the same with either original or NLPCA2 
features for both classifiers. Overall lowest accuracy is 
obtained with original features and the MXL classifier.  The 
superiority of NLPCA2 with few features was also found 
using 10% and 25% of the training data.   

Thus, the overall conclusion of experiment 1 is that the 
NLPCA2 method is quite effective for improving 
classification accuracy with a small number of features, but 
does not result in an improvement with a large number of 
features. 
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Figure 6: Classification accuracies of neural network 
and MXL classifiers based on original features and 
NLPCA2 reduced features with 2% (top panel) and 
50% (bottom panel) of the training data. 

3.2. Experiment 2 

As mentioned above, dimensionality reduction is not 
usually advantageous (in terms of accuracy) for classifiers 
trained with enough data. However, for the case of complex 
automatic speech recognition systems, there is generally not 
enough training data. To simulate lack of training data, from a 
different perspective, another experiment was conducted. 
  In the experiment, the training data was separated into two 
groups, with about 50% in each group. One group of data 
(group 1) was used for training transformations while the 
other data (group 2) was used for training classifiers. In 
contrast to experiment 1 for which the same percentage of 
data was used for both the training of transformations and 
classifiers, for  experiment 2, a fixed 50% of the training data 
was used for training transformations and a variable 
percentage, ranging from 1% to 100% of the other half of the 
training data, was used for training classifiers. 

The results obtained with the neural network and MXL 
classifiers using 10% of the group 2 training data (that is, 5% 
of the overall training data) are shown in Figure 7. The 
numbers of features evaluated are 1, 2 4, 8, 16 and 32. For 
both the neural network and MXL classifiers, NLPCA2 
clearly performs much better than the other transformations or 
the original features.  

Figure 8 shows the classification accuracies of 
transformations with various percentages of training data. The 
neural network and MXL classifiers both used 4 features 
obtained from dimensionality reduction. NLPCA2 yields the 
best performance, with about 68% accuracy for both cases. 
Similar trends were also observed for 1, 2, 8, 16, and 32 



 

features. However, the advantage of NLPCA2 decreases with 
an increasing number of features.  
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Figure 7: Classification accuracies of neural network 
(top panel) and MXL (bottom panel) classifiers using 
10% of group 2 training data for training classifier. 
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Figure 8: Classification accuracies of neural network 
(top panel) and MXL (bottom panel) classifiers with 
various percentages of classifier training data using 4 
features.    

The results of experiment 2 illustrate that the NLPCA2 
method is much more effective at capturing the structure of 
data than PCA, LDA, or NLPCA1, in terms of classification 
accuracy, using a small amount of additional data to train a 
classifier. However, since group 1 training data was used to 
form the transformations, overall, over 50% of the training 
data was used, directly or indirectly. 

4. Conclusions 
Two nonlinear methods based on neural networks were 
presented as feature dimensionality reduction techniques and 
experimentally compared with linear methods for 
dimensionality reduction.  A nonlinear technique which 
minimizes mean square reconstruction error from a reduced 
dimensionality space can be very effective for representing 
data which lies in curved subspaces, but does not appear to 
offer any advantages over linear dimensionality reduction 
methods for a speech classification task. A nonlinear 
technique for dimensionality reduction based on minimizing 
classification error is quite effective for accurate classification 
in low dimensionality spaces. For the case of vowel 
classification, from telephone speech, approximately 8 
dimensions are nearly as effective as using all 39 original 
dimensions. Additionally, the reduced features appear to be 
well modeled as Gaussian features with a common covariance 
matrix. Additional testing is needed to determine if there are 
advantages to using this dimensionality reduction method 
with HMMs in a more complex ASR task. 
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