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Abstract 

In this paper, a new spectral/temporal method is described for 
robust pitch tracking for both high quality and telephone speech. 
A previous version of this algorithm was presented as YAAPT 
(Kasi and Zahorian, 2002) [10].   In the current paper, a novel 
method is presented for spectral pitch tracking, using nonlinear 
processing to partially restore the potentially missing 
fundamental frequency. A frequency domain modified 
autocorrelation is used to determine the spacing between 
harmonic peaks in the spectrum. The frequency domain spectral 
track is then used to refine time-domain pitch candidates 
obtained using the   “NCCF or Normalized Cross Correlation” 
reported by Talkin [1]. Dynamic programming is used to find 
the “best” pitch track among all the candidates, using both local 
and transition costs. The algorithm was evaluated using the 
Keele pitch extraction reference database. 

Index Terms: speech analysis, pitch tracking, dynamic 
programming  

1. Introduction 

Numerous studies show the importance of prosody for human 
speech recognition, but only a few automatic systems actually 
combine and use fundamental frequency (F0) or pitch as it 
commonly called. Combined with other acoustic features, 
prosody can be used to significantly increase the performance of 
automatic speech recognition (ASR) systems [2]. A big 
stumbling block remains the lack of robust algorithms for F0 
tracking. F0 is especially important for ASR in tonal languages 
such as Mandarin speech, for which pitch patterns are 
phonemically important [5].  Other applications for accurate F0 
tracking include devices for speech analysis, transmission, 
synthesis; speaker recognition; speech articulation training aids 
for the deaf ([4], [6]), and foreign language training.  

An important consideration for any speech-processing algorithm 
is performance using telephone speech, due to the many 
applications of ASR in this domain [3]. However, since the 
fundamental frequency is often weak or missing for telephone 
speech, and the signal distorted and noisy and overall degraded 
in quality, pitch detection for telephone speech is especially 
difficult [3]. 

Many pitch detection algorithms have been reported, using a 
variety of techniques and with varying degrees of accuracy (see 
[7], [8] for summary).   In a 2004 paper [11], Nakatani uses the 
harmonic dominance spectrum and reports high accuracy of 

pitch tracking for noisy speech. In our own past work [10], 
YAAPT was introduced and high accuracy was reported.   
However, more extensive testing with additive noise to both 
studio quality and telephone speech indicated an unacceptable 
drop in the accuracy of the tracking.  A comprehensive 
examination of the YAAPT algorithm for speech signals with 
additive noise indicated that much of the problem was due to 
errors in the spectral pitch tracking used.  Therefore, in this 
paper, the focus is on the new methods developed for spectral 
pitch tracking.        

2. Algorithm 

The entire F0 tracking algorithm is summarized in the flow 
chart given in Figure 1. The general strategy for pitch tracking 
is the same as that used in YAAPT.     

The details of determining F0 candidates from the NCCF, the 
intelligent peak picking, use of multiple candidates with 
computed merits, and the use of dynamic programming to 
determine the final lowest cost pitch path were described in 
[10].  In the remainder of this section, the focus is on the 
illustration of using the nonlinear (squared) speech signal to 
restore missing harmonics, and especially on the method used to 
identify F0 from the spectral information.     
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Figure 1. Flow chart of spectral/temporal pitch tracker 



2.1. Restoration of missing fundamental via nonlinear 
operations 

 

Figure 2. The telephone speech signal (top panel) and 
squared telephone signal (bottom panel) for one frame. 

The underlying concept used for non-linear processing is that a 
periodic sound is characterized by the spectrum of its 
harmonics.   To illustrate the principle, consider a speech signal 
consisting of only three spectral components: 
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For x(t), the first term represents the fundamental frequency ω = 
2πF0 and the rest of the cosine terms have frequencies that are 
harmonics of the fundamental. 

The above representation is best suited for clean/studio quality 
speech signals as the fundamental and its harmonics are very 
prominent. Telephone quality signals where the fundamental is 
either very weak or absent can be approximated as 
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It can be shown that the fundamental frequency (F0) re-appears 
for the telephone quality signal by squaring the signal and 
applying some basic trigonometric properties. 

Squaring the telephone signal results in 
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After applying trigonometric identities,  
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As can be observed the fundamental (F0) re-appears in the 
squared version of the telephone signal. This is further 
illustrated in Figure 3. 

 

Figure 3. The magnitude spectra for the telephone and 
non-linearly processed signal. The top panel illustrates 
that F0 is absent in the telephone signal and the bottom 
panel shows the reappearance of F0 for the nonlinear 
signal. The spectra were computed from the signals 
shown in Figure 2. 

2.2. Calculation of approximate pitch track from 
spectrum of squared signal 

In addition to pitch tracking in the time domain, pitch tracking 
in the frequency domain is also widely used.  In particular, the 
spectrum of a periodic signal consists of a series of peaks at the 
fundamental frequency and its harmonics. In this paper, the 
pitch track obtained from the spectrum plays an important role 
to refine the pitch candidates estimated from the waveform, 
since some the time domain extracted candidates are often in 
error, at least for noisy telephone speech. 

An obvious way of determining the pitch from the spectrum is 
the extraction of the spectral peak at the fundamental frequency. 
This requires that the peak at the first harmonic be present and 
identifiable, which is often not the case, especially for noisy 
telephone speech. To achieve a more noise robust pitch track, a 
(frequency domain) autocorrelation type of function that 
considers multiple harmonics is used.  

A function that takes into account multiple harmonics is: 
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where f(i) is the spectrum of the signal and WL , N  indicate 
window length and the number of harmonics respectively.  

The basic idea is that for each k (k is a frequency index), y(k) 
represents the extent to which the spectrum has high amplitude 
at integer multiplies of that k. The use of a window, empirically 
determined to be approximately 40 Hz, makes the calculation 
less sensitive to noise, while still resulting in prominent peaks 
for y(k) at the fundamental frequency. The calculation is 
performed only for 

max_0min_0 FF kkk << . 



Experiments were conducted to determine the best value for the 
number of harmonics, N.  Empirically, it appeared that 3=N  
resulted in the most prominent peaks in y(k) for voiced speech, 
and thus was used for the results given in this paper. 

Figure 4 shows the spectrum (top panel) and the output of this 
autocorrelation type of function (bottom panel). Compared to 
the small peak at the fundamental frequency around 220 Hz in 
the spectrum, a very prominent peak is observed in y(k). 
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Figure 4. Peaks in autocorrelation type of function 

For the peak picking from the spectrum, the same procedure is 
used as for F0 candidate estimation in the time domain [10]. 
Merit is assigned to each candidate according to its magnitude. 
For the examples shown in Figure 4, two candidates were 
chosen as the pitch candidates, as marked by lines.  

To reduce pitch halving or doubling, additional logic is used to 
insert extra pitch candidates for some frames. In particular, if all 
candidates found by peak picking are larger than some threshold 
(typically 150 Hz), an additional candidate is inserted at half the 
frequency of the highest-ranking candidate.   Similar logic is 
used to insert pitch candidate for frames where all the pitch 
candidates are very low. 

Figure 5 shows an example of the additional logic to reduce 
pitch doubling. In the bottom panel of the autocorrelation 
function, only one pitch candidate P1 was chosen by the peak 
picking, and in fact this candidate was at twice F0.   However, 
as indicated by the dotted line, a new pitch candidate P2 whose 
value is half of P1 was produced by the additional logic.  
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Figure 5.   Candidate insertion to reduce pitch doubling 

Given the candidates obtained from the processes above, 
dynamic programming is used to choose the best pitch track 
from the spectral candidates.   Experiments (section 3) indicate 
that the spectral pitch track is quite good, but not quite a good 
as the one obtained by combining the spectral and NCCF tracks. 

2.3. Final pitch determination 

The result of the processing described in section 2.2 is a pitch 
track computed from the spectrum.   This track was found to be 
quite robust with respect to pitch doubling or halving, but only 
approximates the pitch track found from the NCCF time domain 
processing.   As illustrated in Figure 1, and described in more 
detail in [10], the spectral pitch track was used to guide the final 
tracking of the NCCF candidates.  This spectral track is used to 
increase the merit of NCCF pitch candidates close to the 
spectral track, and reduce the merit of NCCF peaks far from the 
spectral track.   A two-sided triangular weighting function was 
used, with a width of approximately 100 Hz. NCCF pitch 
candidates outside the window were eliminated.   

The 3 panels in Figure 6 illustrate the spectral tracking.   

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8
-0.1

0

0.1
Time domain speech signal

Time (Seconds)

A
m

pl
itu

de

Spectrogram of the original signal

Time (Seconds)

Fr
eq

ue
nc

y 
(H

z)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8
0

200

400

Final pitch track overlaid on spectrogram of non-linearly processed signal

Time (Seconds)

Fr
eq

ue
nc

y 
(H

z)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8
0

200

400

 

Figure 6. Illustration of the spectral pitch tracking  

3. Experimental Evaluation  

We evaluated the temporal/spectral pitch tracking using the 
Keele pitch extraction database [9].  This high quality speech 
(20 kHz sampling rate) contains 5 male and 5 female speakers, 
each speaking for about 35 seconds. The telephone version of 
this data, obtained from the spoken language systems group at 
MIT, was transmitted through a telephone channel and re-
sampled at 8 kHz.  

Although the Keele database includes what should be a very 
reliable control (which we call control C1), inspection of this 
track showed several instances of what appeared to be F0 
halving. Therefore, we formed a second control (C2) by 



applying the algorithm described in this paper to the first-
differenced laryngograph signal.    For some of the evaluations, 
errors were computed with respect to both C1 and C2. 

    Of the many error measures that can be used to quantify F0 
tracking accuracy, we used only the gross error in the voiced 
sections to evaluate the tracking method reported in this paper.  
The gross errors (G_err) were computed as the percentage of 
frames such that the pitch estimate of the tracker deviates 
significantly (typically 20%) from the pitch estimate of the 
reference. The measure is based only on those frames for which 
the reference indicates voiced frames.    

Tests were conducted with both studio quality speech and 
telephone speech, using both original versions, and versions 
with additive Gaussian noise to give an overall signal to noise 
ratio of 5 dB, as described in [11].     

Table 1.  Pitch tracking errors for various conditions 

 Control Studio 
clean(%) 

Studio 
5dB(%) 

Tel  
clean(%)

Tel  
5dB(%)

YAAPT C1 4.26 7.62 8.14 17.85 
YAAPT* C1 1.59 1.99 2.69 4.48 
Spectral 
method 

C1 4.23 4.45 6.52 6.95 

NCCF C1 3.58 4.52 8.00 16.61 

* Using control C1 for the spectral track 

Table 1 gives the performance of YAAPT, YAAPT using 
control C1 as the spectral track, and individual performances of 
non-linear spectral method described in section 2 and the 
temporal method alone (NCCF).   The second line in the above 
table give the upper limit on expected performance, if the 
spectral track is error free.   Comparison of the first and last line 
shows that the time domain NCCF is better than YAAPT. 

Table 2. Results with new method, combining spectral and 
temporal information 

Error 
threshold 

Control Studio 
clean(%) 

Studio 
5dB(%) 

Tel  
clean(%) 

Tel  
5dB(%) 

10% C1 5.61 8.04 9.91 15.66 
10% C2 3.93 5.75 8.21 13.74 
20% C1 2.97 3.92 5.25 6.93 
20% C2 1.51 2.10 3.81 5.36 
40% C1 2.32 2.40 2.23 3.25 
40% C2 0.79 0.76 1.59 1.72 

The results of the new method tested against error thresholds of 
10%, 20%, and 40% are shown in Table 2. The pitch tracks 
obtained from studio quality and telephone speech were 
evaluated with controls C1 and C2.  Comparing the 20% error 
results for control C1 with the results in Table 1 shows that the 
new method is significantly improved over YAAPT, especially 
for telephone speech, but still does not match the upper bound 
on performance indicated in the second row of Table 1.  

4. Summary 

In this paper, a new pitch-tracking algorithm has been 
developed which combines multiple information sources to 

enable accurate robust F0 tracking. The multiple information 
sources include peaks selected from the normalized cross 
correlation of both the original and squared signal   and 
smoothed pitch tracks obtained from spectral information.    
These multiple information sources are combined using 
experimentally determined heuristics and dynamic 
programming. An analysis of errors indicates better 
performance for both high quality and telephone speech than 
previously reported performance for pitch tracking with the 
same data and the same conditions.   The routines mentioned in 
this paper are available from the first author of this paper as 
MATLAB functions. 
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