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The first three formants, ie., the first three spectral prominences of the short-time magnitude
spectra, have been the most commonly used acoustic cues for vowels ever since the work of
Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)]. However, spectral shape
features, which encode the global smoothed spectrum, provide a more complete spectral
description, and therefore might be even better acoustic correlates for vowels. In this study
automatic vowel classification experiments were used to compare formants and spectral-shape
features for monopthongal vowels spoken in the context of isolated CVC words, under a variety
of conditions. The roles of static and time-varying information for vowel discrimination were
also compared. Spectral shape was encoded using the coefficients in a cosine expansion of the
nonlinearly scaled magnitude spectrum. Under almost all conditions investigated, in the absence
of fundamental frequency (FO) information, automatic vowel classification based on
spectral-shape features was superior to that based on formants. If FO was used as an additional
feature, vowel classification based on spectral shape features was still superior to that based on
formants, but the differences between the two feature sets were reduced. It was also found that
the error pattern of perceptual confusions was more closely correlated with errors in automatic
classification obtained from spectral-shape features than with classification errors from
formants, Therefore it is concluded that spectral-shape features are a more complete set of
acoustic correlates for vowel identity than are formants. In comparing static and time-varying
features, static features were the most important for vowel discrimination, but feature
trajectories were valuable secondary sources of information.

PACS numbers: 43.72.Ar, 43.70.Fq, 43.71.Es

INTRODUCTION

The search for acoustically invariant cues to phones
remains one of the most challenging and fundamental
problems in speech science (Pisoni, 1985). Researchers
ranging from speech scientists to automatic speech recog-

nition engineers have toiled long and diligently to define

acoustic cues that are important to perception and that
also improve the performance of automatic speech recog-
nition systems. For the case of vowels, there is, according
to “simple target” theory (Strange, 1989a), a unique vocal
tract configuration (“target”) for the production of each
vowel. Therefore, according to the theory, the primary
acoustic correlates necessary to distinguish vowels from
one another can be extracted from the static spectral char-
acteristics of vowels near the central regions of their acous-
tic waveforms. .

Ever since the classic paper by Peterson and Barney
(1952), the first three formants, i.e., the first three spectral
prominences, have been regarded as the primary source of
this spectral information. The first two formants, in par-
ticular, are considered to be the most important perceptu-
ally (Fant, 1960), with formant three playing a supporting
role. Peterson and Barney plotted vowels in a formant-
one/formant-two space and showed that, to a large degree,
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phonologically similar vowels (as judged by listeners) clus-

* ter in this space while phonologically dissimilar vowels are

more separated. Over the past 40 years, numerous papers
have been presented and published that examine various
aspects of formant representations of vowels. In many
studies (e.g., Syrdal and Gopal, 1986; Miller; 1989;
Nearey, 1989), models of vowel perception have been de-
veloped using formants as the primary acoustic correlates
of vowel perception. These studies show that vowel posi-
tion in a formant space is highly correlated with vowel
perception. Despite this widespread use of formants in rep-
resenting speech spectra, particularly for vowels, it is not
clear that the formants play a fundamental role in speech
perception. On the one hand, in experiments with the au-
ditory nerves of cats (Sachs and Young, 1979; Young and
Sachs, 1979; Delgutte, 1984; and Delgutte and Kiang,
1984), a possible mechanism was shown for accurately
encoding the formants of steady-state vowels at the audi-
tory nerve level. Nevertheless, inconsistencies remain. For
example, in vowel identification tasks using vowels synthe-
sized from the Peterson and Barney formant data, human
listeners typically achieved considerably lower identifica-
tion rates than in listening tests with the original speech
stimuli (Hillenbrand and McMahon, 1987). It is also pos-
sible to synthesize vowels with identical values for /1 and
F2' (thought to be a better perceptual indicator than F2
alone) but which are identified as different vowels (Bla-
don, 1983). Vowel perception for fixed F1 and F2 values
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also depends on FO, fundamental frequency of voicing;
therefore some investigators have modified their formant
models to include the FO interaction. Besides perceptual
studies, automatic recognition of vowels based on formants
with sophisticated pattern recognition schemes is never
quite as accurate as recognition rates obtained by human
listeners (e.g., Hillenbrand and Gayvert, 1987).

Bladon (1982) made several arguments against a for-
mant representation of speech and favored a representation
based on gross spectral shape. First, he made the argument
that changes in formant frequencies, or any mechanisms
that presumably enhance spectral peaks, also change the
spectral shape. The primary objections, however, to a
formant-based representation of speech were based on “re-
duction, determinacy, and perceptual adequacy.”” The re-
duction objection stems from the observation that a for-
mant representation is an incomplete spectral description.
The determinacy objection stems from the great difficulty
in determining the locations of formants for many condi-
tions. The perceptual adequacy objection was raised on the
grounds that perceptual distance for vowels with widely
spaced spectral peaks are poorly predicted by a formant
representation of the spectra but can be predicted by a
spectral-shape model.

Global spectral shape features have been investigated
as acoustic correlates for vowels. For example, Pols and his
colleagues (Plomp et al., 1967; Pols et al, 1969; Klein
et al., 1970) completed an extensive series of experiments
using a principal-components spectral-shape representa-
tion of vowel spectra. They demonstrated that a plot of
vowel data in a rotated principal-components-one versus
principal-components-two parameter space resembles the
Peterson-Barney vowel data plotted in a formant space.
This group also determined that vowels could be automat-
ically classified as accurately from a principal-components
representation as from a formant representation.

Besides spectral-shape representations based on low-
ordered terms in a series basis vector expansion, several
investigators examined two-formant models of vowel spec-
tra (e.g., Carlson et al., 1975; Chistovich et al., 1979; Bla-
don, 1983; Beddor and Hawkins, 1984; and Chistovich,
1985, for a review and tutorial of work in this area). In the
typical experimental paradigm, subjects matched a many-
formant stimulus with a two-formant stimulus, usually by
adjusting the second formant—or matched a given two-
formant stimulus with a single-formant stimulus. The re-
sults of these experiments often suggested a match to the
“center of gravity” of the target vowel formants, thus im-
plying an averaging over frequency. This spectral integra-
tion takes place only when the distance between formants
is less than a critical distance of 3-3.5 bark on the fre-
quency scale. Chistovich (1985) also showed that for
closely spaced formants, both formant amplitudes and for-
mant frequencies affect perceived vowel quality in a man-
ner consistent with a spectral averaging process. For
widely spaced formants, spectral averaging does not appear
to take place. The spectral averaging over small frequency
ranges and apparent lack of spectral averaging over the
entire spectrum is consistent with the hypothesis that over-
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all spectral shape is crucial to vowel identity, provided
spectral shape is characterized appropriately.

Another important issue in the search for acoustically
invariant cues to vowel perception is the relative impor-
tance of static versus temporal cues. There is ample evi-
dence showing that the static spectral properties of vowels
are not always sufficient cues for perception, and that some
time-varying information contained in the interval sur-
rounding the vowel “center” is also required. For example,
Fairbanks and Grubb (1961) examined the static spectral
characteristics of vowels by presenting nine isolated vowels
produced by phonetically trained speakers to experienced
listeners. The overall identification rate was 74%, signifi-
cantly lower than the 94.4% rate obtained by Peterson and
Barney (1952), where vowels were presented in an /hVd/
context and, thus, presumably contained more tempdral
information.

Stevens and House (1963) have also shown that the
acoustic properties of phonologically equivalent vowels
vary greatly because of coarticulation with adjacent pho-
nemes. In continuous speech, “target” states are seldom
reached (Lindblom, 1963; Stevens and House, 1963). This
“target undershoot” or “vowel reduction” problem can be
compensated for if listeners make use of the direction and
rate of change of formants to identify vowels (Lindblom
and Studdert-Kennedy, 1967). The effects of “target un-
dershoot” can also be compensated for by pattern recogni-
tion procedures (Broad, 1976; Kuwabara, 1985). Many
recent perceptual studies (Strange ef al, 1976; Gottfried
and Strange, 1980; Strange et al, 1983; Williams, 1986;
Di Benedetto, 1989a,b; Strange, 1989b) support the hy-
pothesis that both static cues and “gestures,” representing
the time history of spectra, are essential for reliable per-
ception of vowels.

Returning to the discussion of the main thesis of this
paper, despite at least some evidence to the contrary,
among speech scientists “steady-state” formants remain
the acoustic features of choice for vowels. In this study, we
used sophisticated signal processing techniques combined
with automatic pattern classification to investigate in detail
two sets of spectral features, global spectral-shape param-
eters versus spectral peaks, as acoustic cues for automatic
classification of vowels. We hypothesized that overall glo-
bal spectral shape provides a more complete spectral de-
scription than do three formants and therefore classifica-
tion based on spectral-shape features should be superior to
that based on three formants. The formants are important
and efficient acoustic cues because they constrain global
spectral shape to a large degree. We also examined the role
of static and gestural acoustic features in classifying vowels
and examined the extent of contextual influence on acous-
tic features. Finally, we compared error patterns in the
perception of vowels by human listeners with error pat-
terns resulting from automatic classification experiments
for the two feature sets.

In this study, for comparison with formants, the dis-
crete cosine transform coefficients (DCTCs) of the nonlin-
early scaled spectrum were used as the spectral-shape pa-
rameters. Except for small differences, the DCTCs were
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computed the same as are the cepstral coefficients com-
monly used in speech processing. Static features, which
represent the vowel for one instant in time, were computed
from the middle of the quasi-steady-state portion of each
vowel segment. Gestural features, which represent the tra-
jectory of the vowel spectra over a short segment, were
computed as the coefficients in a series basis vector expan-
sion over the selected segment. Various segments of the
speech signal were investigated for relevant vowel informa-
tion. Many automatic classification experiments were con-
ducted with a large database to refine the features under
investigation for a wide range of conditions.

The present study is a second paper devoted primarily
to comparing formants and global spectral shape features
for speech recognition, following a paper investigating ini-
tial stop consonants (Nossair and Zahorian, 1991). The
format of this paper is the same as that of the previous
paper to facilitate more convenient comparisons. The da-
tabase, basic signal processing techniques, and general ob-
jectives are the same for both papers. The primary differ-
ence between the two papers is, of course, that the present
paper focuses on vowels, rather than initial stops. Addi-
tionally, however, all the signal processing and classifica-
tion techniques were refined to enhance the feature com-
putations and to improve the statistical reliability of
results. Another related paper focused on speaker-
normalization issues for the case of vowels, but again using
the same database and same underlying signal processing
methods, is Zahorian and Jagharghi (1991).

. DATABASE

The database for the experiments was obtained by re-
cording 99 CVC syllables produced in isolation by each of
30 speakers. This database is also described in both Nossair
and Zahorian (1991) and Zahorian and Jagharghi (1991),
Summarizing briefly, ten of the speakers were men (M),
ten were women (W), and ten were children (C) between
the ages of 7 and 11 (five male, five female). The distribu-
tion of dialect regions for these speakers was Southern
(15), Mid Atlantic (7), Northern (6), and New England
(2). However, many of the speakers had moved exten-
sively during childhood and adolescence, thus making it
difficult to label the speech of these individuals with re-
gional dialects. The Southern speakers were primarily from
urban areas of Virginia. The CVC syllable list contained
approximately 9 instances of each of the 11 vowels
/iy,ih,eh,ae,ah,aa,a0,0ow,uh,uw,er/.! The initial consonant
was one of /b,d,g,p,t,.k,hh,J,w/. The final consonant was
one of /b,d,g,p,t,k,v,s/. The speech signals were low-pass
filtered at 7.5 kHz and sampled at 16 kHz with a 12-bit
analog-to-digital converter. The total number of usable
vowel stimuli was 2922 (out of 99%30 = 2970).

In comparison with the Peterson and Barney vowel
database (1952), our database is larger (2970 tokens ver-
sus 1520) but is derived from fewer speakers (30 vs 76)
from a more restricted geographical region. The primary
difference, however, is the much greater consonantal con-
text, with every vowel paired with at least one instance of
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/b,d,g,p,t.k/ in both initial and final position, as opposed to
the fixed /hVd/ context for the Peterson and Barney vowel
data. Thus, our database also enables an investigation of
context effects. In any event, the Peterson and Barney
vowel data was not suitable for the present experiments
since only the formant data, rather than the actual speech
signals, have been preserved.

The acoustic regions of all speech files were manually
labeled through visual and auditory inspection of the wave-
form, with the aid of an interactive computer waveform
editor. In addition to the acoustic speech waveform, the
spectral derivative (Furui, 1986) was also displayed to
help define the boundaries between the acoustic segments.
All segmentation points were selected to coincide with
voicing-pulse zero crossings in the speech waveform. The
acoustic regions most relevant for vowels are the following:
(a) initial transition (IT), a periodic waveform that begins
at the first voicing pulse and ends at the start of the steady-
state vowel; (b) steady-state vowel (SV), a section of
quasiperiodic steady-state waveform—the SV region was
defined as that portion of the vowel with a high almost
constant amplitude and a low value of the spectral
derivative;? and (c) final transition (FT), the voiced tran-
sition region from the end of the SV region to the begin-
ning of the final burst.

I.. SPEECH PARAMETERS AND CLASSIFICATION
METHODS

A. Speech parameters

In this section we explain the signal processing tech-
nigues used in computing the two feature sets investigated
in this study. These two feature sets are formants and dis-
crete cosine transform coefficients (DCTCs). Fundamen-
tal frequency FO was also used as an additional feature for
some experiments. Although we have used the same fea-
tures in previously reported studies, we have refined the
signal processing for feature extraction, as described below.

1. Formanis

Formants were computed for the vowels in a multi-
stage process as follows. The speech signal was first digi-
tally low-pass filtered at 3.8 kHz with a 49th-order FIR
linear-phase low-pass filter and resampled at 8 kHz. The
speech signal was then high-frequency preemphasized with
transfer function (1-0.75 z=1). The signal was windowed
with a 50-ms Hanning window and a tenth-order LP model
was computed. The roots of the LP polynomial were com-
puted to determine up to five formant candidates (fre-
quency, amplitude, and bandwidth) for each frame.? For-
mant candidates were obtained for each frame over the
interval of interest. The frame spacing was variable, de-
pending on the token, since a fixed total number of frames
was processed for each interval. However, the spacing was
typically between 2 and 6 ms.

The “actual’” formants were selected from the formant
candidates using a dynamic programming approach as de-
scribed by Talkin (1987).  This approach can be summa-
rized as follows. Dynamic programming (Sakoe and
Chiba, 1978) selects the lowest-cost* path among the set of
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FIG. 1. The LP poles, original formant trajectories (light lines), and
smoothed formant trajectories {(heavy lines) for F1, F2, and F3 for /aa/
from a female speaker (extracted from the syllable “TOG”) for the
IT-FT interval. Each circle is centered at an LP pole location with radius
proportional to the pole bandwidth. The formant trajectories were
smoothed with a three-term cosine expansion over time.

formant candidates over the tracking interval. The cost of
each path is the sum of “local” costs and “transition’ costs
encountered for that path. Local costs depend on the de-
viation of formant candidates from expected formant val-
ues and the bandwidth of the candidates. Transition costs
model the constraint that formants generally change
smoothly from frame to frame, Formants are also con-
strained such that F3> F2> F1. Dynamic programming is
then used to find the minimum cost path through the can-
didates. The equations used to compute the local costs and
transition costs, along with empirically determined con-
stants, are given in the Appendix.’

The formant seed values were chosen independently
for each vowel and for each speaker type (M, W, C) as
follows. Initial seed values were obtained from the pub-
lished Peterson and Barney data. These values were then
used to track formants, and the average values were recom-
puted for each vowel and for each speaker type, and used
as the updated seed values. The entire process was repeated
several times (approximately five) until the average values

no longer changed. Thus, the algorithm was not fully au-
tomatic, since both the vowel and speaker type were inputs
to the procedure,

The performance of the formant tracking routine was
verified by visual inspection of the computed formant tra-
jectories for a large percentage of the stimuli. Figure 1
depicts formant candidates and formant trajectories (light
lines) as computed by the tracking algorithm for a typical
token. The heavier lines are smoothed formant trajectories,
used for classification experiments, as described in a later
section of this paper. The average formant frequencies are
given in Table I for each vowel and each speaker category.
These values were computed over the center frame of the
SV interval.

2. DCT coefiicients

Global spectral shape was represented as the coeffi-
cients in a discrete cosine transform expansion of a selected
frequency range of the magnitude spectra (chosen as a
portion of the original O- to 8- kHz range), after nonlinear
amplitude and frequency scaling. Consistent with our pre-
vious work, we refer to these coefficients as DCTCs rather
than cepstral coefficients to emphasize their interpretation
as the coeflicients in a cosine expansion of the magnitude
spectrum. With our notation, DCTCI, the coefficient of
the constant term, is a measure of the average level of the
spectrum; DCTC2, the coefficient of a half-cycle of a co-
sine, is a measure of the spectral tilt; DCTC3, the coeffi-
cient of a full cycle of a cosine, is a measure of spectral
compactness; higher-ordered DCTCs provide additional
spectral resolution. Also note that a smoothed spectrum
can be computed from the DCTCs, with the degree of
smoothing dependent on the number of DCTCs used to
reconstruct the spectrum.

Figure 2 depicts examples of FFT spectra, tenth-order
LP spectra, and spectra reconstructed from 11 DCTCs, for
the vowels /iy/ and /aa/ from a male speaker. Note that
although both the DCTCs and the LP model smooth the
high-resolution spectra, the LP spectra provides more res-
olution for spectral peaks whereas the DCTC smoothing
models peaks and valleys with equal resolution. Another
difference is that the DCTC spectra provide more resolu-
tion at low frequencies than at high frequencies as a result

TABLE 1. Average formant frequencies (in hertz) for 11 vowels for each of three speaker categories.

F1 F2 . F3
Vowel M w C M w C M w C
/iy/ 272 338 313 2209 2837 2705 2971 3456 3517
/ih/ 410 486 564 1859 2284 2615 2600 3093 3521
/eh/ 550 745 875 1740 2123 2436 2535 3041 3526
/ae/ 656 922 1116 1748 2089 2345 2483 . 2981 3409
/ah/ 596 793 862 1289 1599 1627 2400 2872 3470
/aa/ 749 981 1125 1192 1440 1590 2501 2847 3440
/ao/ 637 822 906 1004 1176 ) 1327 2557 2860 3432
/ow/ 456 532 660 1176 1419 1645 2307 2789 3320
/uh/ 439 528 573 1234 1437 1558 2349 2848 3400
/Juw/ 324 400 400 1396 1617 1806 2352 2766 3267
VE 74 445 542 614 1286 1532 1596 1656 1992 2140

1969 J. Acoust. Soc. Am., Vol. 94, No. 4, October 1993

S. A. Zahorian and A. J. Jagharghi: Shape features vs formants 1969



60 f ! I [ i P
LA ; ; 1 fiy/
50 ﬁ L P2 Fa
A i 1 ;
) LpP Spegtrumww A
) LN \
kA |
o 30 S S -
.8 . i
2 ! " |
=520 -1 S e i — - i SRR
2 NI '
10 v V A A - ‘
0 L V\hﬂﬂﬂﬁ%ﬁ - . .DCIC Spectrum.|
. |FFT Spectrum—"" | | ‘
_10:-..i,...“...§.......‘l...,l..|.|...,
0 o6 1 45 2 25 3 35 4
Frequency (kHz)
60 ; ; ; : !
r F11 F2 | FFTSpectrum | I Jaa/
50 | BN T ey VLA [ S i
L i ; : i ;
_ | | L - -} - -DCTC Spestrum
) I
o o
©
2
=]
E
<

0 05 1 1.5 2 25 3 3.5 4
Frequency (kHz)

FIG. 2. FFT, DCTC, and LP spectral plots for /iy/ and /aa/ from a male
speaker.

of bark warping, as opposed to uniform frequency resolu-
tion for the LP case. Further discussion of the spectral
plots depicted in Fig. 2 is deferred until the results of au-
tomatic classification experiments are presented.

The DCTCs were computed using the same processing
described in Nossair and Zahorian (1991) except for slight
differences as follows. The signal was windowed with a
25-ms Hamming window. No high-frequency preemphasis
was used.® The frequency scale was warped using bark
frequency scaling (Zwicker, 1961; Syrdal and Gopal,
1986) rather than bilinear frequency warping (Oppenheim
and Johnson, 1972} as used in previous studies. Note, how-
ever, that bilinear warping is very similar to bark warping
if the bilinear warping coefficient is between 0.5 and 0.6.
The log amplitude scaling of the magnitude spectrum was
modified slightly such that the scaling is logarithmic for
the uppermost 50 dB of the range for each frame with hard
limiting (a “floor”) at —50 dB relative to the peak spectral
value for each frame. This method, determined
empirically,’ eliminates large negative spikes in the log that
would occur for very low-energy spectral valleys. Figure 3
shows DCTCs 3-6 (light lines) for the same token and
same segment as was used to depict the formant tracks in
Fig. 1. Note that both the formants and DCTCs are rela-
tively constant in the SV segment and vary more in the IT
and FT segments.
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FIG. 3. DCTC trajectories (light lines) and smoothed trajectories (heavy
lines) for DCTCs 3-6 for /aa/ from a female speaker (extracted from
TOG) for the IT-FT interval. The DCTC trajectories were smoothed
with a three-term cosine expansion over time.

3. Fundamental frequency

Fundamental frequency (FO) was computed using a
form of the SIFT fundamental frequency algorithm (Mar-
kel, 1972). That is, the LP residual was computed for a
window of speech (50 ms for males, 40 ms for females and
children) in the steady-state portion of each vowel with a
12th-order LP inverse filter. The FO values were computed
from peaks in the autocorrelation of the residual after low-
pass filtering at 1 kHz. Then, FO was smoothed with me-
dian smoothing over a seven-frame window. The details of
the signal processing for the FO extraction, including the
LP window lengths, were developed and investigated in
previous studies (Zahorian and Gordy, 1983; Effer, 1985).
For the static case, FO was computed for 15 frames over
the SV segment, and the resultant FO for the center frame
was used for experiments. For the case of time-varying
features, FO values were computed for each frame of the
vowel.

B. Features for time-varying specira

Speech features were also computed for each of several
speech frames, to evaluate automatic recognition accuracy
for the case of time-varying spectra. Several methods were
investigated for sampling the spectra and for combining
the parameters of several frames. The best approach found,
insofar as automatic vowel classification is concerned, was
to sample the speech spectra with frames equally spaced
over the desired interval, The value of each parameter for
each frame (i.e., a vector with a length equal to the number
of frames) was then expanded using a discrete cosine series
(DCS) expansion. That is,

(k—1)m(n—0.5)
L 3

where P(n), 1<n< L, is the parameter value for frame n, L

is the total number of frames, NV is the number of cosine

(1)

N
P(n)= 2, Cpcos
k=1
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coefficients used to encode P, and the C; are the cosine
coefficients. Thus the coefficients C;, 1<k<#, in Eq. (1)
encode the smoothed trajectory of a speech parameter. C;
is the average value of a parameter, C, is a measure of the
tilt over time of a parameter, and higher-number terms
encode additional details of a parameter trajectory. The
Cy, which we call DCS coefficients, were then used as the
features for classification. To illustrate the effect of this
smoothing, Fig. 1 shows the smoothed trajectories for for-
mants (heavy line, obtained with a three-term DCS expan-
sion) as well as the original trajectories. Figure 3 also de-
picts both the original and smoothed DCTC trajectories.

C. Classifiers

All feature sets for vowels were evaluated using auto-
matic classifiers as described in this section. The primary
classifier used for experiments was a Bayesian maximum
likelihood classifier (BML). That is, each stimulus was
classified according to the category for which the distance

Dy(x)=(x—x) "R; ! (x—x;) +In|R;| —2 In P(G)),
1<i<M, (2)

is minirhized. In Eq. (2), x is the feature vector, x; is the
centroid for category G, R; is the covariance matrix for
category G;, and P(G,) is the a priori probability for cate-
gory G;. Thus each category is characterized according to
the centroid of all the training data in that category and the
covariance matrix of the training data for that category.
This classifier is optimum if the feature vector components
are multivariate Gaussian (Duda and Hart, 1973). One
variation of this method is to compute a single pooled
covariance matrix over all categories. For this case the
distance measure is referred to as Mahalanobis (MAH).
Another variation is to assume that the covariance for each
category is an identity matrix and to assume that the a
priori probabilities are equal for all categories. For this case
the distance measure is Buclidean distance (EUC).

Besides the traditional classifier described above, we
also used an artificial neural network (ANN) for classifi-
cation. The ANN used was fully interconnected with one
hidden layer and sigmoid nonlinearities (Lippmann,
1987). The ANNs were trained with back propagation to
recognize vowels using the features under investigation.
Pilot experiments were used to determine the “best” num-
ber of hidden nodes. Based on the pilot testing 35 hidden
nodes were selected for the reported experiments.®

In all the automatic classification experiments re-
ported in this paper (except for a few special cases noted),
the speakers used for training the classifier were different
from those used for testing the classifier. To maximize the
amount of training data (a fundamental problem with sta-
tistical classifiers) and to insure that all speakers were
weighted equally, the following “round-robin” procedures
were used. Specifically, for the BML, MAH, and EUC
classifiers, 29 speakers were used for training and 1 for
testing; the overall procedure was then repeated 30 times
and test results averaged. For the case of the ANN classi-
fiers, the database was partitioned into 24 speakers for
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training, 3 for evaluation, and 3 for testing. The networks
were trained on the training data, until performance was
maximized on the evaluation data. At this level of training,
performance was tested on the remaining three speakers.
This process was repeated ten times and test results aver-
aged. This data management method was chosen for the
ANN classifier to help insure the optimal amount of net-
work training. Thus all comparisons of feature sets are
derived from speaker-independent automatic recognition
experiments.

. EXPERIMENTS
A, Listening experiment

Besides the automatic classification experiments, we
also conducted a listening experiment. The objectives of
the experiment, conducted with natural speech, were to
(1) evaluate our database; (2) obtain an estimate of the
relative importance of various acoustic segments in supply-
ing vowel information to human listeners; and (3) use the
identification rates obtained by human listeners as a con-
trol for the results obtained by automatic classification ex-
periments.

This experiment was conducted using the same meth-
ods as described in Nossair and Zahorian (1991). Summa-
rizing briefly, the experiment was conducted with the data
from 9 of the 30 talkers—3 adult males, 3 adult females,
and 3 children. These speakers were chosen based on per-
formance from an automatic vowel classification experi-
ment, with the goal of choosing a representative set of
speakers. Within each group of three, one-speaker was cho-
sen with relatively high automatic vowel classification
rates, one with low automatic vowel classification rates,
and one with average vowel classification rates. The dialect
regions of these speakers were Southern (5), Mid Atlantic
(3), and New England (1). Five paid normally hearing
female students at Old Dominion University served as sub-
jects. Each subject attended an initial half-hour training
session in which the experimental procedure was explained
and 40 CVC syllables from a female talker outside the
testing set were presented. Feedback was given to subjects
during the training session only. For each experimental
condition, the listeners could listen to each stimulus as
many times as they desired but had to make a forced choice
response among the 11 vowels. The five listening condi-
tions were (i) the entire CVC syllable (CVC), (ii) the
beginning of the initial transition up to the end of the final
transition (IT-FT), (iii) the beginning of the burst
through the end of the steady-vowel segment (IB-SV),

TABLE II. Average vowel identification rate for each listening condition.

Identification rate

Condition (%)
CvVC 91.3
IT-FT 88.7
1B-SV 91.0
SV-END 88.9
SV 85.4
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TABLE III. Confusion matrix for the CVC listening condition.

liy/ /ih/ /eh/ /ae/ /ah/ /aa/ /ao/ Jow/ /ub/ /uw/ Jex/
/iy/ 100.0
/ih/ 99.1 0.9
/eh/ 1.5 96.2 23
/ae/ 3.3 82.3 14.5
/ah/ 0.3 93.4 0.3 0.8 4.8 0.5
/aa/ 52 73.6 19.5 1.6
/ao/ 0.9 15.8 82.9 0.2 0.2
/ow/ 99.6 0.4
/uh/ 11.5 0.7 83.3 44
/uw/ 0.7 0.7 4.5 94.0
Jer/ 0.3 0.3 99.4

(iv) the beginning of the steady vowel through the end of
the token (SV-END), and (v) the steady-vowel segment
(SV).

Each subject completed these five conditions, in the
order listed, in approximately five 1-hr sessions over a 2-wk
period. Tokens were blocked by talker, with the order of
tokens within each block and the order of blocks separately
randomized for each listener. The conditions were ar-
ranged in order of expected difficulty to maximize the ex-
perience of the listeners before testing with the more diffi-
cult stimuli. Table II gives the average percent
identification, averaged over five listeners and nine talkers,
for the 11 vowels for each of the five listening conditions.
As Table II shows, the average percent correct for the 11
vowels, based on listening to the entire syllable, was
91.3%, thus showing that there was significant ambiguity
in vowel identity for human listeners, even if the entire
word was available. Comparison of the other conditions in
Table IT shows that IB-SV is nearly equivalent to listening
to the entire CVC, the IT-FT and SV-END conditions
result in nearly identical average results, which are lower
than for the best conditions, and there is a further drop in
performance for the SV case. '

Confusion matrices are given for the CVC, IT-FT,
and SV conditions in Tables II1-V, respectively. The con-
fusion matrices for the IB-SV and SV-END conditions are
omitted since the confusion patterns are similar to those
for the CVC and IT-FT conditions, respectively. Each row
of each matrix represents the vowel intended by the
speaker and the columns are the responses of the listeners

TABLE IV. Confusion matrix for the IT-FT listening condition.

to each spoken vowel. The vowels /iy,ih,uw,er,ah/ were
easily identified for all conditions. Most confusions were
for vowels that are separated only one step in vowel height
(/ih,eh/, /eh,ae/, /uh,uw/, /ow,uh/) or one step in the
frontness (/uh,ah/, /er,ow/, /aa,ao/, /ae,aa/). The per-
centage of vowel errors due to vowel height for the CVC,
IT-FT, and SV conditions, respectively, were 18%, 20%,
and 27% while the corresponding numbers due to changes
in frontness were 32%, 61%, and 50%. There were rela-
tively few errors for the tense/lax vowel pairs /iy,ih/ and
/ow,a0/, whereas the tense/lax vowels /uw,uh/ were
somewhat confused in all listening conditions. The neutral
vowel /ah/ was confused with the largest number of other
vowels. There were few errors for vowels widely spaced on
the traditional vowel triangle. The confusion between
vowel pairs was fairly symmetric except for the vowel pairs
/ah,uh/ and /ae,aa/. The main increases in vowel identi-
fication accuracy between the SV and CVC conditions
were for the vowels /ih,eh,ao0,ow,uh/, implying that time-
varying and/or contextual information is needed to resolve
these vowels.

Additional discussion of the results of the listening
experiment, and comparison to automatic classification re-
sults, is deferred until the results of the automatic classifi-
cation experiments are presented.

B. Automatic classification based on static specira
1. Optimization experimenis

For both the formants and DCTCs several optimiza-
tion experiments were conducted to enhance the signal

/iy/ /ih/ /eh/ /ae/ /ah/ /aa/ /ao/ - Jow/ - /uh/ /Juw/ sfer/
/iy/ 98.2 0.7 0.9
/ih/ 0.3 96.0 2.0 0.3 1.1 0.3
/eh/ 0.3 3.8 92.2 3.0 0.5 0.3
/ae/ 9.0 84.3 0.3 6.3 0.3
/ah/ 0.3 0.8 93.2 1.0 0.5 0.5 3.5 0.3
/aa/ 0.2 52 76.8 16.1 0.5
/ao/ 04 242 74.2 0.7 0.2 0.2
/ow/ 98.4 1.6
/uh/ 25.9 1.5 70.0 2.6
/uw/ 2.1 1.2 3.3 93.3
/er/ 0.6 99.4
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TABLE V. Confusion matrix for the SV listening condition.

/iy/ /ih/ /eh/ -/ae/ /ah/ /aa/ /ao/ Jow/ /uh/ /uw/ sex/
/iy/ 98.8 0.2 0.5 ! 0.5
/ih/ 0.3 91.7 5.1 0.6 0.6 0.6 1.1
/eh/ 0.5 5.6 83.8 7.6 2.0 0.3 0.3
/ae/ 9.5 81.8 8.3 0.5
/ah/ 0.3 0.8 89.1 2.0 0.3 2.8 4.6 0.3
/aa/ 1.6 7.0 73.6 17.7
/ao/ 2.2 24.2 73.6
Jow/ 0.2 0.7 3.8 84.0 6.1 4.3 0.9
/uh/ 0.4 24.4 0.4 2.2 67.8 4.8
/Jaw/ 0.7 0.5 2.4 96.4 }
Jer/ 0.3 1.2 0.3 98.6

processing prior to the primary experiments. All refine-
ments in signal processing were evaluated in terms of au-
tomatic vowel recognition results for the 11 vowels used in
this study. All constants listed in the equations in the Ap-
pendix for the formant tracking were determined from pi-
lot experiments. The constants listed gave “good” results,
as determined both from automatic identification experi-
ments and graphical inspection of resultant formant tracks.
The window length (50 ms), low-pass filter, and high-
frequency preemphasis constant (0.75) were also selected
from pilot tests. In addition, one series of tests was per-
formed to compare the differences between linear and bark
scaling of formants, since some researchers have obtained
higher automatic recognition results with bark scaling of
formants as opposed to linear scaling (Syrdal and Gopal,
1986). The results of our experiment, in terms of auto-
matic recognition results for four classifiers, are given in
Fig. 4. For the simplest classifiers, i.e., EUC and MAH,
vowel identification was significantly higher based on bark
formants as compared to linear formants. However, for the
more sophisticated classifiers, i.e, BML and ANN, the
results were nearly identical for the two frequency scales.
Apparently the BML and ANN classifiers are able to form
complex decision regions that compensate for the lack of
nonlinear scaling of the original features. Nevertheless,
since, overall the results based on bark scaling were better
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FIG. 4. Comparison of linear versus bark formant scaling of formants

with four classifiers for 11 vowels.
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than those derived from linear scaling of the formants,
bark scaling was used for all later experiments. For the
case of DCT coefficients, the primary optimization exper-
iments were to evaluate (1) the number of DCT coeffi-
cients needed, (2) the required frequency range, and (3)
various forms of nonlinear amplitude and frequency scales.
Results of selected experiments are given in Figs. 5 and 6.

Figure 5 depicts the results of the experiment to deter-
mine the number of DCT coefficients that should be used
to represent each spectrum for classification. This test was
performed using a frequency range of 75 to 5500 Hz, log
amplitude scaling, and bark frequency warping. Sixteen
DCT coefficients were computed from the spectrum of one
frame sampled at the center frame of each SV segment.
Classification rates were obtained as a function of the num-
ber of DCTCs. Training and test results, obtained with the
BML classifier, are shown for all speakers. In all cases,
consecutively numbered DCTCs beginning with DCTC2
were used. Thus, as the value on the abscissa increases, the
level of spectral detail available to the classifier increases.
The difference between the training and test recognition
rate increases as the number of features increases. The test
recognition rate for all speakers peaks at 77.0% using
DCTCs 2-11 (or ten total) and then decreases slightly if
DCTCs with indices higher than 11 are used. DCTCI,
corresponding roughly to overall signal level, was not used
for the results plotted in Fig. 5 because its use did not
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FIG. 5. Automatic recognition of 11 vowels versus the number of DCTCs
used. For each case, consecutive DCTCs beginning with DCTC2 were
used.
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FIG. 6. Automatic recognition of 11 vowels from DCTCs 2-11, using
linear and log amplitude scaling, linear and bark frequency warping, and
four type of classifiers. The DCTCs were computed over a frequency
range of 75 to 5500 Hz.

improve the recognition rate. Therefore these results imply
that the vowel steady-state spectrum can be encoded as a
relatively smooth spectrum for use in automatic classifica-
tion of vowels.

Several classification experiments were conducted to
examine the effect of bandwidth used to compute DCTCs
on classification accuracy. The “optimum® range, as deter-
mined from these tests, of 75 to 5500 Hz was used in later
experiments. As expected, with high-frequency compo-
nents removed from the signal, identification degraded the
most for children and the least for men, whereas removal
of low-frequency components was most detrimental for the
men. In general, the drop in performance was gradual as
bandwidth was reduced. For example, there was a 9.1%
degradation in classification rates if a range of 0.3 to 3.0
kHz (approximately telephone bandwidth) was used.

Figure 6 depicts vowel classification results for various
combinations of amplitude and frequency scales with four
types of classifiers. All experiments were performed using
DCTCs 2-11, computed over a frequency range of 75 to
5500 Hz, and other conditions as mentioned previously.
The results clearly show that both nonlinear frequency and
amplitude scaling are required to achieve high vowel clas-
sification rates. DCTCs computed using a log amplitude
scale and bark frequency scale resulted in approximately
25% higher vowel classification accuracy than for DCTCs
computed using linear amplitude and frequency scales.
Therefore these scalings were used for additional experi-
‘ments.

Since the results depicted in both Fig. 4 (formants)
and Fig. 6 (DCTCs) are higher for the BML classifier than
for any of the other three classifiers tested, these other
three classifiers were not used for additional experiments
reported in this paper.

2. Comparison of formant and DCTC resulis

In order to more thoroughly compare formants and
DCTCs as features for representing the static vowel spec-
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FIG. 7. Automatic recognition of 11 vowels from formants, DCTCs,
formants-+ F0, and DCTCs+ F0, as computed from one static spectrum.

trum for use with automatic vowel classification, a sum-
mary of automatic classification experiments is depicted in
Fig. 7. The figure depicts results using formants and
DCTCs, with and without FO, as obtained with the BML
classifier for four classes of speakers—men (M), women
(W), children (C), and all speakers (A). With spectral
features alone, vowel classification based on smoothed
spectral shape is superior to that obtained with three for-
mants. With the addition of FO, the two feature sets are
more nearly equivalent. The addition of FO increased rec-
ognition rates by 3.6% for formants but only 0.3% for
DCTCs. The overall (i.e., all-speaker case) highest rate for
DCTCs was 77.0% without FO and 77.3% with FO added.
The corresponding rates obtained with formants were
71.5% and 75.1%. A correlated one-tailed ¢ test showed
that the DCTC results (all speakers) were higher than the
formant results at the 999% level of confidence if FO is not
used (#==3.32). With FO added as a feature, the DCTC
results were higher than the formant results at the 95%
confidence level (¢==1.77).

As another comparison of formants and DCTCs, a
feature evaluation algorithm similar to that described by
Cheung (1978) was used to rank the top five features of
various feature sets. In our implementation of this proce-
dure, the BML classifier first determines M features that
individually contribute most to classification accuracy. The
algorithm then adds features that, in combination with any
of the M highest-ranking features already selected, result in
the highest classification rate. The procedure is iterated,
finding M “‘best” feature sets, each with the desired num-
ber of total features. This procedure was used with three
initial feature sets: (1) formants, amplitudes, bandwidths,
and FO; (2) DCTCs and FO; and (3) formants, DCTCs,
and FO. For each feature set, the algorithm was pro-
grammed to determine the best four subsets with five fea-
tures each. We also note that these computations were
derived from training data only (all data from all speak-
ers), since the difference between training and test results
is generally small for low-dimensionality feature spaces
and since the round-robin testing described previously was
not feasible with this algorithm.

The results are given in Table VI For the formant
feature set, one set of five features was significantly better
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TABLE VI. The “best” five static features for vowel classification, selected from various original feature sets. The classification rates given are

cumulative.

Formants+amps+BWs+ F0 DCTCs+FO

Formants+DCTCs+ FO

Set 1 . Set 2

Feature F1
% classified 28.3 60.5 73.0 77.8 78.4

F2 F3 F0 A4l DCTC3 DCTC5 DCTC6 DCTC2 DCTC4 Fi
34.6 48.2 60.8 69.5

F2 F3 FO DCTC7 DCTC3 F2 F3 F1 FO

753 283 60.5 73.0 77.8 789 346 523 653 73.7 789

than any other set of five features. The first formant fre-
quency contributed most individually to vowel identity.
However, the addition of F2 improved vowel classification
by an amount even greater than that obtained with F1
alone. Clearly F1 and F2 are the most important features,
with F3 and FO contributing to vowel discrimination, but
to a lesser extent. The formant amplitudes and bandwidths
contributed almost no information, with 41, the most im-
portant of these, adding only 0.6% to vowel classification.
Therefore formant amplitudes and bandwidths were not
used in additional experiments.

The results for the DCTC feature set, again with a
single solution, showed that the most important features
are DCTC3, DCTCS, and DCTCS, in that order. The most
important single feature, DCTC3, has more vowel discrim-
inating power than either F1 or F2 singly. However, the
top three DCTC features are significantly poorer than
three formants (60.8% vs 73.0% of vowels correctly clas-
sified). If five features were used, the DCTC feature set
was more nearly comparable to the formant feature set
(75.3% vs 78.4%). For the third feature set, consisting of
both formants and DCTCs, the feature selection algorithm
determined two ‘“‘best” sets of five features, both similar in
overall performance. Set 1 consists of formants, selected in
the same order as for the formant feature set, with DCTC7
completing the set of the top five features. Set 2 begins with
DCTC3, and then incorporates the formants and FO. F0
was selected in either the fourth or fifth position for all
cases except for the DCTC+-FO feature set.

3. Discussion

The experiments reported in this section showed that if
a large number of features are used (ten or more), the
DCTCs are superior to formants for automatic vowel clas-
sification. However, no set of three DCTCs contains as
much discrimination power as do the three formant fre-
quencies. If FO is an additional feature, the two spectral
feature sets are more nearly equivalent for vowel classifi-
cation.

More insight into the differences between the two fea-
ture sets can be gained by inspection of spectral plots such
as those shown in Fig. 2. For the /iy/ token, both the
DCTCs and formants indicate the general regions of spec-
tral energy. However, the broad energy peak from approx-
imately 2.5 to 4 kHz is better represented by the DCTC
spectrum than by the second and third formants at 2.55
and 2.8 kHz. The /aa/ token has substantial energy
throughout the low-frequency range of approximately 200
to 1500 Hz, with spectral peaks at 250, 800, and 1300 Hz.
The peaks at 800 and 1300 Hz represent F'1 and F2, re-
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spectively, for the formant model, but the peak at 250 Hz
is ignored. Although this low-frequency energy peak may
be due to glottal source characteristics rather than the vo-.
cal tract, the peak nevertheless is presumably important to
perception of the /aa/.

In summary, three formants, even with their band-
widths and amplitudes included, appear to be insufficient
to encode all the important properties of natural speech
spectra. In contrast to three formants, ten DCTCs simply
provide a much more complete spectral description. Since
much of the information missing in formants is related to
the voicing source, the addition of F0O to formants provides
a substantial increase in classification accuracy. In con-
trast, FO is less important with DCTC features, since the
dominant effects of the vocal source are already accounted
for. '

With all of the feature sets used, automatic classifica-
tion of 11 vowels obtained from the static spectrum was
still significantly worse than that obtained by human lis-
teners for 11 vowels, for any of the listening conditions. As
mentioned previously, several recent studies have also
noted the importance of time-varying spectral properties
for vowel perception (Strange, 1989a,b; Nearey, 1989;
Di Benedetto, 1989a,b). Therefore, additional experi-
ments, reported in the following section, were conducted to
evaluate the role of time-varying information in enhancing
classification accuracy.

C. Classification experiments based on time-varying
spectra

1. Optim)'zation experiments

For both DCTCs and formants as features, and over
several acoustic intervals, pilot experiments were con-
ducted to compare cosine basis vectors, Legendre polyno-
mial basis vectors, and least-squares polynomial curve fit-
ting for encoding parameter trajectories. Unlike either of
the polynomial curve fitting methods, the cosine basis vec-
tors restrict the smoothed curve to a slope of zero at both
the beginning and end of the interval, thus potentially pre-
venting good matches to rapidly varying features at the
start or end of an interval. However, in the pilot tests, the
cosine basis vector features resulted in slightly higher rec-
ognition rates (although not statistically significant) than
the rates obtained with either the Legendre polynomial
basis vectors or polynomial curve fitting, and thus the co-
sine basis vector expansion was selected for the primary
experiments.

Pilot experiments were also used to determine which
DCTC coefficients to use and the number of cosine coeffi-
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cients to use in the trajectory expansions. From these ex-
periments, DCSs 1-3 were used for each formant, DCS2
was used for DCTC1 and DCTC2, DCSs 1-3 were used for
each of DCTCs 3-7, and DCSs 1 and 2 were used for
DCTCS. Note that DCTCs 9-11 were not used as features
for time-varying spectra. Similarly DCSs 1 and 2 were used
to encode FO trajectories. Thus the number of features
used to encode trajectory information was 9 for formants,
11 for formants 470, 19 for DCTCs, and 21 for DCTCs
+ FO.

For the case of DCTCs, experiments were also con- -

ducted to investigate the effects of bandwidth on classifi-
cation accuracy. All tests were performed over the IT-FT
interval. In general, the results of these tests were quite
similar to those obtained for the static spectra. The pri-
mary differences were that the classification rates were
higher and that the classification rate degraded less rapidly
as bandwidth was decreased for the time-varying spectra
relative to the static case. For example, for “telephone
bandwidth” (0.3-3.0 kHz), results for the time-varying
features degraded 5.9% relative to results obtained from
the optimum bandwidth of 75 to 5500 Hz (as compared to
a 9.1% drop for the static case). Thus, apparently tempo-
ral cues compensate to some extent for the lack of band-
width.

2. Vowel discrimination versus acoustic region

Experiments were conducted to evaluate the vowel in-
formation contained in multiple frames of six different
acoustic regions as follows. Note that the center of the first
frame was always at the beginning of the acoustic region
and the center of the last frame was always at the end of
the acoustic region.

(1) Region IT. Spectral feature sets were computed for
ten equally spaced frames covering the entire IT region.

(2) Region SV. Spectral feature sets were computed
for ten equally spaced frames covering the entire SV re-
~ gion.

(3) Region FT. Spectral feature sets were computed
for ten equally spaced frames covering the entire FT re-
gion,

(4) Region IT-FT. Spectral feature sets were com-
puted for 25 equally spaced frames covering the entire re-
gion from the beginning of IT to the end of FT.

(5) Region IT+170. Spectral feature sets were com-
puted for 17 frames with a frame spacing of 10 ms starting
at the beginning of IT. Note that for some short vowels, the
end of the region may have been beyond the end of the final
consonant,

(6) Region SV-20. Spectral feature sets were computed
for ten frames with a frame spacing of 10 ms starting at 20
ms before the start of the SV segment. Thus, for some
voiced consonants, the beginning of the region may have
been prior to start of the initial transition.

Note that because of the frame selection method, the

acoustic region of conditions (1)-(4) were time normal-

ized, whereas the acoustic regions for conditions (5) and
(6) were not. As described previously, a DCS expansion
was computed for each feature over the entire region of
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FIG. 8. Automatic recognition of 11 vowels from formant and DCTC
trajectories, computed over various acoustic regions as noted. Results are
based on the maximum likelihood classifier (BML).

interest. A summary of the results for both formants and
DCTCs for 11 vowels, obtained with the BML classifier, is
depicted in Fig. 8. For comparison, the corresponding re-
sult obtained from static features is also depicted.

For both formants and DCTCs, the “best” acoustic
region found was IT-FT, followed by SV. For these inter-
vals, the results were substantially higher than the results
for the static case for both formants and DCTCs, showing
that feature trajectories do supply additional vowel infor-
mation. For example, for the SV region, the DCTC results
improved by 4.8% and the formant results improved by
9.3%. The results improved even more for the IT-FT in-
terval. Inspection of the confusion matrices for the static
versus the trajectory features indicated the largest reduc-
tion in errors for /ow/ and /uh/, particularly for confu-
sions between these itwo vowels. Other major confusions
were also reduced to a lesser extent, with the notable ex-
ception of the /aa/ /ao/ confusion.

For every condition tested, the DCTC rates were
higher than the formant rates. All differences between for-
mants and DCTC results were significant at the 99% con-
fidence level. The results showed that each of the transition
segments, IT and FT, contain moderate (58.6% and
65.1%, respectively, for DCTCs) vowel information. Note
that the features extracted from fixed length intervals were
not as effective as features extracted from the “best” time-
normalized intervals. Since the features for the time-
normalized IT-FT interval resulted in the highest classifi-
cation accuracy, these features were used for additional
testing.

3. Comparison of formant and DCTC results

Another series of vowel classification tests was con-
ducted to compare the formant and DCTC trajectory fea-
tures for the IT-FT interval. Results are summarized in
Fig. 9 to illustrate several points: (1) formants versus
DCTCs; (2) speaker type effects; and (3) the use of FO
trajectory as an additional feature. Several conclusions can
be drawn from inspection of this figure. First, the DCTC
trajectories are superior to formant trajectories, in the ab-
sence of FO information. With FO included, the differences
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FIG. 9. Automatic recognition of 11 vowels from formant and DCTC
trajectories, with and without an F0 trajectory, computed over the IT-FT
interval.

between the two feature sets are reduced somewhat. A
correlated one-tailed ¢ test showed that differences of ap-
proximately 2.0% were significant at the 95% confidence
level (or approximately 3% at the 99% confidence level).
The difference between the two feature sets was 3.5% with-
out F0O and 2.9% with FO included. Therefore, the DCTC
results were significantly higher than the formant results (¢
scores of 2.92 and 2.40 for the two cases). In comparing
speaker types, the highest recognition rates are obtained
for either the children or women, with lower results for the
males (0.5% to 8.5%).° The use of the FO trajectory im-
proves the classification rates for all speakers in all cases,
but more so for formants than for DCTCs.

The feature evaluation algorithm mentioned previ-
ously was also used to rank the top five features for three
initial sets of features: (1) formants and F0, (2) DCTCs
and FO, and (3) formants, DCTCs, and 0. The procedure
-used was identical to that described for the static case,
except for the features used. The results are given in Table
VII. For the formant feature set, the average values of the
formants and FO were found to be the most important
features. The “tilt” of F2 (DCS2 of F2) was the most
important trajectory feature. For the DCTCs the top five
features were the average values of DCTCs 3-6 and 8.
Thus, the results were very similar to those obtained for
the static case, except that DCTC2 was no longer selected
and DCTC8 was substituted. For the combined feature set,
the average formant values and the average value of
DCTC3 were found to be most useful for vowel discrimi-
nation.

In summary the results of the feature evaluation
showed that the average value terms are much more im-
portant than are the terms that represent changes over

time. However, in other tests, with the feature evaluation
algorithm programmed to select the best ten features, slope
terms were chosen in positions 6-10. Thus feature trajec-
tories play a supporting role for vowel discrimination. Also
note that the best five-dimensional space is better for for-
mants than DCTCs (83.6% vs 76.6% vowel classification
rates). If the “full” feature sets were used, the DCTC clas-
sification rates were significantly higher (99% confidence
level) than corresponding formant results, but the magni-
tudes of these differences were generally small.

D. The role of duration

For both static features and features that represent
trajectories over time-normalized intervals, all duration
cues were missing. To check the possibility that duration
information is important for vowel classification, we also
used the lengths of IT, SV, and FT as additional features.
Classification experiments were performed for five cases:
(1) duration features only, (2) static formants augmented
with duration features, (3), static DCTCs augmented with
duration features, (4) formant trajectories augmented with
duration features, and (5) DCTC trajectories augmented
with duration features. For the duration features alone, the
classification rate was 15.6% (vs 9.1% for chance). For
each of the other four cases, the classification rates in-
creased by less than 1%. None of the increases were sta-
tistically significant at the 95% level of confidence. Thus
the duration cues appear to play a small role in vowel
discrimination. Duration cues might, however, be more
significant for vowels in naturally spoken continuous
speech.

E. Comparison with listening results

The experimental results reported in the preceding sec-
tions showed that antomatic vowel classification is gener-
ally superior using DCTC féatures versus formants, partic-
ularly in the absence of FO information. However, those
resulis do not show whether vowel perception is more
closely linked to overall spectral shape or spectral peaks.
We have obtained some previous evidence to show that the
perception of phonologically similar vowels, synthesized
with conflicting cues to vowel identity in terms of spectral
shape and formants, more closely follows spectral shape
cues (Jagharghi, 1990; Jagharghi and Zahorian, 1990).
However, in this section we address this point by examin-
ing correlations between listening results for vowel percep-
tion and automatic classification results.

In particular the confusions obtained from listening
experiments (i.e., Tables IV and V with the diagonal re-

TABLE VII. The “best” five temporal features for vowel classification, selected from various original feature sets. Each feature is labeled with feature
index followed by the index of the coefficient in the DCS expansion. Thus, for example, DCTC12 is the second DCS coefficient of DCTCI.

Formants+4 FO DCTCs+ FO

Formants+F0+DCTCs

Set 1 ) Set 2

Feature

% classified 28.3 58.9 73.1 79.8 83.6 35.8 51.1 63.4 71.7.

F11 F21 F31 FO1 F22 DCTC31 DCTC51 DCTC61 DCTC41 DCTC81 F11 F21 F31 F01 DCTCI12 DCTC31 F21 F31 FOl F11

76.6 283 58.9 73.1 79.8 84.1 35.8  53.0 65.9 74.2 80.5
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TABLE VIII. Correlation coefficients between confusions from auto-
matic recognition experiments with confusions from listening experi-
ments. -

DCTCs Formants
Static - Trajectories Static Trajectories
Without FO 048 0.73 0.32 0.62
With FO 0.48 0.74 0.40 0.67

moved) were correlated with confusions obtained from au-
tomatic classification experiments. The SV listening results
(Table V) were correlated with automatic resulis from a
single static spectrum while the IT-FT listening results
(Table IV) were correlated with the automatic results ob-
tained with the features extracted from the IT-FT interval.

The correlations obtained from comparing classifica-
tion results with the perceptual results, for formants and
DCTCs as features, are summarized in Table VIII. Note
that in computing these correlation coefficients, the auto-
matic classification results were obtained from the same
nine speakers as were used in the listening tests. Confusion
matrices obtained from all 30 speakers for two of the fea-
ture sets are also given in Tables IX and X. The confusion
patterns for perceptual experiments and automatic classi-
fication experiments were positively correlated, with corre-
lation coefficients ranging from 0.32 to 0.74. For all cases,
the correlations were higher for the case of DCTCs than
for formants. The correlations were also always higher for
those cases for which automatic classification results were
more accurate.

F. Context effects

Stevens and House (1963) argued that consonantal
environment greatly affects the acoustic properties of pho-
nologically equivalent vowels in a CVC context. To explore
this issue with our database and with four feature sets
(static formants 4 FO0, static DCTCs 4+ F0, formant and FO
trajectories, and DCTC and FO trajectories), we computed
vowel error profiles from classification experiments for var-
ious initial and final consonants and depict the results in
Fig. 10. Results are shown only for the six English stops

+/hh/ in syllable initial position and only for the six stops
in syllable final position, since our database paired only
these consonants with all 11 vowels.

Figure 10 shows that there are some systematic differ-
ences in error patterns depending on the consonantal con-
text. The error patterns are similar with either formants or
DCTCs as features. However there are differences in the
error distributions between static and time-varying features
and even larger differences between consonants appearing
in initial or final position. For example, the fewest vowel
classification errors were made with either /b/ or /d/ in
syllable initial position if classification was based on a sin-
gle frame of features. If temporal features were used for
vowel classification, error rates were lowest with /b/, /d/,
/g/, and /hh/. Thus, the center of the vowel is apparently
least coarticulated if preceded by the voiced stops /d/ or
/b/. However, coarticulation due to initial /g/ or /hh/ is
readily accounted for if feature trajectories are used for
classification. Similarly, coarticulation is apparently the
highest for-an initial /t/, as demonstrated by the relatively
higher vowel error rates for this condition. For final con-
sonants the lowest error rates were for vowels from sylla-
bles ending in /b/ whereas the highest error rates were for
vowels from syllables ending in the velar stops /g/ or /k/.

V. DISCUSSION AND CONCLUSIONS

Several issues regarding vowel identification were in-
vestigated in this study. The main issue was the role of
global spectral shape parameters (DCTCs) versus spectral
peaks (F1, F2, and F3) as acoustic cues to vowel identity.
This issue was investigated using automatic classification
experiments for both static and time-varying spectral fea~
tures. We also examined the relative importance of various
acoustic regions to vowel identification, the role of addi-
tional features such as 0 and duration, context effects,
and the link between automatic classification results and
human perception of vowels. The principal conclusions
with regard to the investigations in this study are the fol-
lowing.

(1) Both global-shape features and formants are ade-
quate, but redundant, information-bearing parameters for
vowels. Generally results based on the two feature sets
were more similar than different. The advantage of for-
mants is that a large amount of information is contained in

TABLE IX. Confusion matrix from automatic classification using formant and FO trajectories as features.

/iy/ /ih/ /eh/ /ae/ /ah/ /aa/ /ao/ /ow/ /uh/ /uw/ ser/
/iy/ 95.9 14 0.3 2.4
/ih/ 0.8 85.7 6.3 0.4 1.3 5.5
/eh/ 7.9 70.2. 16.2 2.3 0.4 1.5 0.4 1.1
/ae/ 13.4 81.7 34 1.1 0.4
/ah/ 1.9 3.7 79.4 7.1 1.9 2.2 34 0.4
/aa/ 0.7 4.1 80.6 14.6
Jao/ 0.3 2.4 24.3 70.8 0.3 1.7
Jow/ 0.3 1.3 2.0 86.6 4.0 5.7
/uh/ 1.1 10.0 1.1 5.6 77.8 39 0.6
/uw/ 1.0 5.8 5.4 0.3 87.1 0.3
Ser/ 0.4 2.1 0.3 2.1 0.4 94.9
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TABLE X. Confusion matrix from automatic classification using DCTC and FO trajectories as features.

/iy/ /ih/ /eh/ /ae/ /ah/ /aa/ /ao/ /ow/ /uh/ /uw/ fet/
/iy/ 98.3 0.7 0.3 0.7
/ih/ 0.8 87.3 6.8 1.7 34
/eh/ 7.9 79.2 9.1 1.5 0.4 0.4 0.8 0.8
/ae/ 1.1 12,7 84.3 0.7 1.1
/ah/ ) 0.4 2.6 1.5 80.8 8.7 2.6 1.1 1.5 0.8
/aa/ 14 4.1 78.2 14.6 0.3 0.7 0.7
/ao/ 0.3 2.4 22.2 74.3 0.7
Jow/ 0.3 1.7 1.3 94.0 0.3 2.3
/uh/ 1.1 2.2 8.3 0.6 84.4 2.8 0.6
Juw/ . 1.7 4.4 24 2.0 89.1 0.3
/er/ 0.9 1.3 3.0 0.4 1.3 932

a few features. The advantage of DCTCs is that classifica-
tion accuracy is even better than with formants, provided
enough DCTCs (ten or more) are used. Thus, although
spectral peaks contain most of the speciral information
required for vowel discrimination, the overall smoothed
spectral shape provides an even more complete description.
We found no evidence that the precise location of spectral
peaks is needed for vowel identification, given that the
peaks are blurred in the highly smoothed DCTC spectra.
However, as previously noted in the literature (Broad and
Clermont, 1989; Zahorian et al, 1992), approximate for-
mant frequencies can be computed from the spectral shape
features.

To the extent that automatic classification of vowels
from either formants or DCTCs is different, the DCTC
features are superior. The DCTC results were also more
highly correlated with listener responses. In line with Bla-
don’s (1982) “reduction” argument, we believe the reason
is simply that the DCTCs provide a more complete spec-
tral description than do the formants. Although the for-
mants “work well” to characterize the spectra of most
vowels, there are still many instances of spectra for which
a three-formant model is inadequate. The plots depicted in
Fig. 2 illustrate examples for which formants can be
readily identified, but yet for which some prominent spec-
tral features are poorly represented. Attempts to use more
than three formants for vowels are likely to be very diffi-
cult, since, for many stimuli, there are no more than three
apparent formants,'®

Our results predict that stimuli with two ‘“close”
narrow-band spectral peaks will be perceived almost iden-
tically to a stimulus with one broader spectral peak that
gives the same contribution to overall spectral shape. Con-
versely, spectral peaks that are separated by a distance
large enough to make a significant contribution to
smoothed spectral shape cannot be ignored. Perceptual ex-
periments would be required to test these predictions. It
could be argued that the formant results are unreliable
because of potential errors in the tracking algorithm. How-
ever, it must be emphasized that considerable effort and
signal processing sophistication were used to maximize the
accuracy of the formant tracking. The tracking algorithm
was not fully automatic since the algorithm made use of
the “expected” formant frequencies for each token as an-
chor points for computations, thus “biasing” the algorithm

1979 J. Acoust. Soc. Am., Vol. 94, No. 4, October 1993

to err on the side of improving formant-based vowel clas-
sification. Also, graphical inspection of the LP spectra and
corresponding formant tracks (such as shown in Fig. 1)
for a large portion of the database revealed almost no ap-
parent errors. As yet additional evidence, classification ex-
periments based on formant data from three speaker cate-
gories resulted in higher recognition rates for children and
women than for men. If the formant tracking were error
prone, the results for the children should be lower than for
the men, since formant tracking is more difficult for chil-
dren than for adult male speakers. Thus all these points
strongly support the validity of the formant tracking algo-
rithm used in this study. '

(2) The experimental results imply that, for monop-
thongal vowels spoken in an isolated-word CVC context,
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FIG. 10. Vowel error rates as a function of initial and final consonantal
context of CVC syllables.
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static spectral cues are more important than temporal cues.
This contrasts with stop consonants, for which temporal
cues are very important (Nossair and Zahorian, 1991).
Even for vowels, however, feature trajectories are impor-
tant secondary sources of information.

(3) The correlations between vowel confusions using
automatic classifiers and those resulting from perceptual
experiments were high, with correlation coefficients as
large as 0.74. We therefore make the argument that auto-
matic classification experiments can be used as a valuable
tool to help understand human speech perception. On the
average, perceptual confusions were more similar to con-
fusions resulting from classification based on spectral-
shape features than to those resulting from classification
based on formants, thus supporting the claim that overall
spectral shape is more important to perception than are the
precise locations of spectral peaks.

(4) All acoustic regions in the vicinity of the steady-
state vowel carry acoustic cues to vowel identity. However,
of these regions, the steady-vowel is the most important,
followed by the final transition, followed by the initial tran-
sition. This conclusion is in general agreement with the
results of Strange (1989b), which showed that listeners
can identify vowels from more than one acoustic region.

(5) Besides spectral features, fundamental frequency
of voicing can be used as an additional feature to improve
speaker-independent vowel classification, particularly for
formants as primary features. For DCTC features, the ad-
dition of FO contributes less to recognition accuracy, pre-
sumably because the DCTCs already contain most of the
information encoded by F0. Duration cues, at least for the
database used in this study, appear to have a minor role for
vowel discrimination.

Note that even the best automatic classification rates
reported in this paper were considerably lower than the
rates obtained by human listeners (85.9% vs 91.3%).
However, speaker normalization of spectral features (Za-
horian and Jagharghi, 1991) can be used to increase clas-
sification rates to the same level as those achieved by hu-
man listeners. Additionally, because of the very high-
dimensionality spaces required to encode time-varying
features, it is possible that our database was not large
enough to adequately train the classifiers for these features.
The classification rates for training data with time-varying
features were typically 4% to 6% higher than the test
classification rates.

The main experimental result of this study, namely,
that vowels can be automatically classified with a high
degree of accuracy from acoustic information, supports the
theory of acoustic-phonetic invariance for vowels. The re-
sults obtained in this study are more statistically reliable
and comprehensive than those obtained from any previous
study. First, the size of the database used was larger than
that in most previous studies and included more consonan-
tal contexts. The two principal parameter sets were also
much more thoroughly investigated under many more con-
ditions. The results of this research give insight into possi-
ble mechanisms for human decoding of speech. The results
also have potential application in the field of automatic
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speech recognition (ASR). Specifically, the feature extrac-
tion process used in this study can be used to improve the
acoustic preprocessing and phonetic analysis components
of ASR systems, commonly called the front end.
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APPENDIX: EQUATIONS FOR COMPUTING LOCAL
AND TRANSITION COSTS FOR FORMANT
TRACKING

The local cost LC of selecting formant candidate g in
frame { as formant £ is given by

LC(g,7) =0.0007 BandW (g,7)

| FmtS(k) —FmtCand(g,?) |
) ( FmtS(k) +FmtCand(g,i) )’

where BandW is the bandwith in hertz of the formant
candidate, FmtS is the expected value of the formant (the
“seed” value), and FmtCand is the frequency in hertz of
the formant candidate.

The transition cost TC of selecting formant candidate
p in frame i— 1 and formant candidate g in frame / is given
by

FmtCand(g,/) —FmtCand(p,i—1)\?
FmtCand(q,i) + FmtCand(p,i—1)

+1.5 DEV(p,g,i) ]

The term DEV was designed to give large costs to
abrupt transitions using

DEV (p,g,i) = |SLC(p,g,1)
—[SLP(p,i—1)+SLN(q,i)]1/2],
where
SLC(p,q,) =FmtCand(gq,/) —FmtCand(p,i—1)
is equal to the slope of the track between candidates p and
g in frames /—1 and /, respectively; and
SLP(p,i—1)=FmtCand(p,i—/) —FmtCand'(p,i—2)

is equal to the slope of most likely track from frame /—2 to
frame i—1, given that the track selects candidate p in
frame i—1; and

SLN(g,i) =FmtCand” (g,i-+1) —FmtCand(g,i)

is equal to the slope of most likely track from frame 7 to
frame i1, given that the track selects candidate. ¢ in
frame 7.

FmtCand’ (p,i—2) is the formant candidate in frame
i—2 closest to candidate p in frame i—1 and FmtCand”
(g,i+1) is the formant candidate in frame i+1 closest to
candidate g in frame i. Thus, DEV is large if the local slope
of the track deviates substantially from the most likely
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track slope immediately preceding and following this seg-
ment of the track. The DEV term helps to insure continu-
ity of formant tracks.

'The DARPABET phonetic notation has been used throughout this pa-
per. The correspondence between DARPABET and IPA notation for the
vowels used in this study is (iy,i), (ih,I), (¢h,e), (ae,ae), (ah,a), (aa,a),
(20,9), (ow,0), (uh,U), (uw,u), (er,3 ). ,
2Although attempts were made to be as objective as possible in the man-
ual labeling, the decisions did involve subjectivity on the part of the
experimenters. No fixed values for “high” and “low” were used.
3Formant bandwidths were computed using the equation B=— (f/7) In
|zf|, where f is the sampling frequency in hertz and z is the LP pole
for the formant (Markel and Gray, 1976). Formant amplitudes were
computed by evaluating the LP spectrum at the formant frequencies.

*Costs are numerically evaluated penalties computed for each possible set
of formant tracks. The penalties are larger as tracks deviate more from
expected behavior.

The algorithm used for the formant data in this paper differs from the
McCandless algorithm (1974) used to track formants in our previously
reported results. The present algorithm was selected over the McCand-
less approach both from visual inspection of formant tracks (fewer ap-
parent errors) and from results of vowel classification experiments (ap-

proximately 1.5% higher vowel classification rates).

SWindow types and durations were chosen for each type of analysis ac-
cording to best performance in automatic recognition experiments—

thus, the differences in windows for the two types of analyses. Also the
high-frequency preemphasis was found to be beneficial for formant anal-
ysis but not for DCTC analysis. However, these differences in processing
resulted in only small differences in classification rates.

"The level of —50 dB was determined by adjusting the threshold in 5-dB
steps from —20 dB to — 100 dB. The —50-dB level resulted in approx-
imately 2% higher recognition rates than the —100-dB level, as used in
our previous work. This does not appear to be an artifact of our partic-
ular database, since similar results were also obtained with the DARPA/
TIMIT database.

8However, results degrade only on the order of 1% with 25, 50, or 100
hidden nodes.

°A possible reason for the lower performance of the classifier with male
vowels is the number of /ao/ /aa/ confusions was larger for the male
speakers than for females or children, presumably because of dialect
variations. Another factor might be that if the female vowel spectra are
more similar on the average to the spectra of children than to male
speakers, the statistical classifiers would form better representations for
the female and children data than for the male data.

1 a pilot experiment, we used the neural network classifier with all five
formant candidates (frequencies, amplitudes, and bandwidths) for

vowel classification. However the results were about 10% lower than
using the three tracked formants.
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