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Ch. 15 Wavelet-Based Compression
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Origins and Applications 
The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier 
Transform (FT) in many (but not all!) applications.

WT theory has its origins in ideas in three main areas and now is being applied in 
countless different areas of application. 

Physics
• Quantum Mech.

Mathematics
• Harmonic Analysis
• Group Theory
• Operator Theory

Signal Processing
• Signal Decomp.
• Filter Banks
• Image Analysis

Wavelets

Applications
• Data Compression           Sonar/Radar            Turbulence 
• Computer Vision             Biomedical Proc.    Geophysical Proc. 
•Denoising Signals            Communications    Music Processing 

Etc.  Etc.  Etc.

Signal Decompositions
Wavelets Filter Banks
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So, What’s Wrong With The FT?
First, recall the FT: 2

2
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( ) ( )

j ft
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X f x t e dt

x t X f e df





 















Weight @ f Component @ f

Remember: An integral is like a summation…  So, the second equation says that 
we are decomposing x(t) into a weighted “sum” of complex exponentials 
(sinusoids!)…  The first equation tells what each weight should be.

Note: These components exist for ALL time!!!

This is not necessarily a good model for real-life signals.
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DFT Basis Functions… and “Time-Freq Tiles”
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Example: Frequency-Hopping Chirped Pulses

DFT tries to build from 
freq components that 

last 10 sec

The DFT representation is 
“correct” but does not show 
us a “joint representation” in 
time and frequency

This would be a more 
desirable time-frequency

representation

It would show at each time 
exactly what frequencies 
were in existence at that time!

However… such a “perfect” 
t-f representation is not 
possible…  Heisenberg 
Uncertainty Principle!
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But What About The Short-Time FT (STFT)?
2( , ) ( ) ( ) j fX f t x h t e d   






 

Selesnick, Ivan,  "Short Time Fourier Transform," Connexions, August  9, 2005. 
http://cnx.org/content/m10570/2.4/.

h( - t)

Take the FT of this…
Thus, for each t value 

we get a FT

Spectrogram = |X(f,t)|2

Dummy 
Variable!



• The window function h(t) sets the characteristic of how the 
STFT is able to “probe” the signal x(t).
– The narrower h(t) is, the better you can resolve the time of 

occurrence of a feature
– However… the narrower h(t) is, the wider H(f) is… and that means 

a reduction in the ability to resolve frequency occurance
• Just like windowing of the DFT that you’ve probably studied!

• Each given h(t) has a given time and frequency resolution
– t describes the time resolution
– f describes the frequency resolution

• The Heisenberg Uncertainty Principle states that
–

– Improving Time Resolution….  Degrades Frequency Resolution
• And vice versa

7

STFT T-F Resolution
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STFT View of Tiling the T-F Plane
Generally only compute the STFT for discrete values of t and f

2 ( )( , ) ( ) ( ) j mF
m nX f t x h nT e d   






 
In some applications it is desirable to minimize the number of points in 
X(fm,tn) and that means making T and F as large as possible…   T  t and     
F  f

Then each X(fm,tn) represents the “content” of the signal in a rectangular cell 
of dimension t by f

STFT tiling consists of a 
uniform tiling by fixed 

rectangles
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STFT Basis Functions… and “Time-Freq Tiles”
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• The fact that the STFT tiles the plane with cells having the same 
t and f is a disadvantage in many application
– Especially in the data compression!

• This characteristic leads to the following:
– If you try to make the STFT be a “non-redundant” decomposition (e.g., 

ON… like is good for data compression…
– You necessarily get very poor time-frequency resolution

• This is one of the main ways that the WT can help
– It can provide ON decompositions while still giving good t-f resolution

• However, in applications that do not need a non-redundant 
decomposition the STFT is still VERY useful and popular
– Good for applications where humans want to view results of t-f 

decomposition

11

STFT Disadvantages and Advantages
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2( , ) ( ) ( ) j fX f t x h t e d   






 

So… What IS the WT???

Recall the STFT:

Basis Functions

So… X(f,t) is computing by “comparing” x(t) to each of these basis functions 

For the STFT the basis function are created by applying
Time Shift and Frequency Shift to prototype h(t)

This leads to the “uniform tiling” we saw before…

And it also causes the problems with the non-redundant  form of the STFT

So… we need to find a new way to make T-F basis functions that don’t have 
these problems!!!
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The WT comes about from replacing frequency shifting by time scaling…
Start with a prototype signal (t) and time scale it:

( / ) ( )t s s sf  

Increasing s:  Stretches the signal
“Scrunches” the spectrum 

Decreasing s: “Scrunches” the signal
Stretches the spectrum 

t

(t)

|( f )|

f

t

(t/s)

|(sf )|

f

t

(t/s)

|(sf )|

f

Small s Large s

Small s covers High 
f  w/ Broad Width

Large s covers Low 
f  w/ Narrow Width
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This shows some typical t-f cells for wavelets

Narrower in Time
Wider in Frequency
Higher Frequency

Wider in Time
Narrower in Frequency

Lower Frequency

We still need to satisfy the uncertainty principle:

But now t and f are adjusted depending on what region of frequency 
is being “probed”.

1( )( )
4

t f


  

In
cr

ea
si

ng
 1

/s
It is generally more convenient 
to plot in terms of 1/s due to its 

link to frequency
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All this leads to…  The Wavelet Transform:
1( , ) ( ) , 0
s

tX s t x d s
s

  




       

The Inverse Wavelet Transform (Reconstruction Formula):

1
2

0

1( ) ( , ) ,
s

t dsdx t X s
C s s

  
 



        
2

0

( )
C d






 
 

Requirements for a Mother Wavelet are:

(t) is called the 
Mother Wavelet

Finite Energy: 
22 2( ) ( ) ( ) ( )

Parseval
t L t dt d   

 

 

        

Admissibility Condition:
2

0

( )
| |

d





 
 

• |()|2 must go to zero fast enough as   0
• |()|2 must go to zero fast enough as   ∞ 

(t) must be a bandpass signal
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The prototype basis function (t) is called the mother wavelet…
All the other basis functions come from scaling and shifting the mother wavelet.
There are many choices of mother wavelet:

• Each gives rise to a slightly different WT
• …with slightly different characteristics
• …suited to different applications.
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Example of a WT

Next

lo
g 2

(1
/s

)
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Non-Redundant Form of WT
It is often desirable to use a discrete form of the WT that is “non-redundant”…  
that is, we only need X(s,t) on a discrete set of s and t values to reconstruct x(t). 

Under some conditions it is possible to do this with only s and t taking these 
values: 2 2 for   3, 2, 1,0,1,2,3,

3, 2, 1,0,1,2,3,

m ms t n m
n

     
   
 
 

Lower values of m  Smaller values of s  Higher Frequency

Incrementing m doubles the scale value and doubles the time spacing 

Then the WT becomes a countably infinite collection of numbers (recall the 
Fourier series vs. the Fourier transform):

 
,

/2
,

( )

( ) 2 2 , ,

m n

m m
m nX x n d m n

 

   


 



    





1( , ) ( )
s

tX s t x d
s

  




       

In practice you 
truncate the range 

of m and n

 /2
,( ) 2 2m m

m n
m n

x t X t n
 

 

 

    

Advantages of This Form
• The m,n(t) can be an ON basis for L2

• Good for Data Compression
• Simple, numerically stable inverse
• Leads to efficient discrete-time form
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This leads to the sampling and the tiling of the t-1/s plane as shown below:
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Example #1
• A synthetic Chirp Signal

− Frequency decreases with time 
−Amplitude increases with time

• Notice that
− High frequency components dominate early
− Low frequency components dominate later
− Low frequency components are stronger 

time time

Wavelet TransformSignal

lo
g 2

(1
/s

)
WT Coefficients are 

shown as spikes on an 
axis for each 1/s value
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Example #2
Speech Signal

lo
g 2

(1
/s

)
• WT coeff’s are displayed as 

gray- scale blocks
• WT coeffs concentrated
• Blocks closely spaced at high f
• Blocks widely spaced at low f
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Example #3: Effectiveness of WT T-F Localization Properties

• Seismic Trace Signal
• Keep 100 largest DCT coefficients
• Large Error… 

especially at start of transient

• Same Seismic Trace Signal
• Keep 100 largest WT coefficients
• SMALL Error… 

even at start of transient
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Summary So Far: What is a Wavelet Transform?
• Note that there are many ways to decompose a signal. Some are:

– Fourier series: basis functions are harmonic sinusoids; 
– Fourier transform (FT): basis functions are nonharmonic sinusoids; 
– Walsh decomposition: basis functions are “harmonic” square waves; 
– Karhunen-Loeve decomp: basis functions are eigenfunctions of covariance; 
– Short-Time FT (STFT): basis functions are windowed, nonharmonic sinusoids; 

• Provides a time-frequency viewpoint
– Wavelet Transform: basis functions are time-shifted and time-scaled versions of 

a mother wavelet
• Provides a time-scale viewpoint

• Wavelet transform also provides time-frequency view: 1/scale relates to f
– Decomposes signal in terms of duration-limited, band-pass components

• high-frequency components are short-duration, wide-band
• low-frequency components are longer-duration, narrow-band

– Can provide combo of good time-frequency localization and orthogonality
• the STFT can’t do this

Next

 , ,( ) m n m n
m n

x t X t
 

 

   , ,( ) ( ) ,m n m nX x d   




 

 /2
, ( ) 2 2m m

m n t t n   
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Fourier Development vs. Wavelet Development
• Fourier and others:

– expansion functions are chosen, then properties of transform are found
• Wavelets

– desired properties are mathematically imposed
– the needed expansion functions are then derived

• Why are there so many different wavelets?
– the basic desired property constraints don’t use all the degrees of freedom
– remaining degrees of freedom are used to achieve secondary properties

• these secondary properties are usually application-specific
• the primary properties are generally application-nonspecific

Next
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Why are Wavelets Effective?
• Provide a good basis for a large signal class

– wavelet coefficients drop-off rapidly…
– thus, good for compression, denoising, detection/recognition
– goal of any expansion is

• have the coefficients provide more info about signal than time-domain
• have most of the coefficients be very small (sparse representation)

– FT is not sparse for transients…  WT is sparse for many signals
• Accurate local description and separation of signal characteristics

– Fourier puts localization info in the phase in a complicated way
– STFT can’t give localization and orthogonality

• Wavelets can be adjusted or adapted to application
– remaining degrees of freedom are used to achieve goals

• Computation of wavelet coefficient is well-suited to computer
– no derivatives or integrals needed
– turns out to be a digital filter bank… as we will see.

Next
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The Discrete-Time WT
Recall the formula for the WT coefficients:

 
,

/2
,

( )

( ) 2 2 , ,

m n

m m
m nX x n d m n

 

   


 



    





If the signal x(t) is bandlimited to B Hz, we can represent it by its 
samples taken every TS = 1/2B seconds:  x[k] = x(kTs).

Our Goal: Since the samples x[k] uniquely and completely 
describe x(t), they should also uniquely and completely describe 
the WT coefficients Xm,n …   HOW DO WE DO IT??

()

x(t) Xm,n

x[k]

via ()

via Sampling
????
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Mathematically Interpret the DWT equation in terms of Signal 
Processing: 

Next

 /2
, ( ) 2 2 ,m m

m nX x n d   


 



   

 
 

/2

2

( ) 2 2 ( 2 ) ,
m

m

m m m

n

x n d

 

   


 




   




 ( ) 2 ,m
mx n d   





 

   * 2m
mx n

For fixed m, Xm,n is x(t) convolved 
with m(t) and sampled at points n2m.

Remember: m(t) is a bandpass signal… so 
this is equivalent to filtering x(t) with a BPF.

( )m t
2mt n

,m nXx(t)
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x(t)

( )
om t

1( )
om t 

( )M t

2 omt n

( 1)2 omt n 

2Mt n

,om nX

( 1),om nX 

,M nX

This leads to a filterbank:

( )m f

f

mo+1 momo+2M

It IS possible to implement this filterbank in DT… 
…but in general it is not possible to efficiently implement it
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Consider a Special Case, Though…
Let x(t) be bandlimited to B Hz.  Choose the mother wavelet to be a modulated 
sinc function and mo such that the spectrum is as below

( )f

Signal 
Spectrum is 
zero above B
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Now consider the relationship 
between the filter spectrum and 
spectra of the scaled versions of 
the mother wavelet…

Don’t have to go to 
finer scale (i.e., 
smaller s… more 
negative m) because 
the BL signal has no 
power there!

Finest scale we need 
is on the order of 1/FS

X( f )

Next

( )f

(2 )f

(4 )f



32

Note that for these ideal filters
we can do this…

 ( f ) ( f )

 (2f )  (2f )

 (4f )
 (4f )

Running the signal through 
 (2f ) is the same as 
running it first through     
 ( f ) and then through   
 (2f )… etc.

 (t)
x(t)

nT

 (t)

n2T
(t/2)

(t/2)

Etc.

(t/4)

(t/4)

n4T

Sampled 
Slower

Sampled 
Slower

Next

X( f )

( )f

(2 )f

(4 )f
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Note that we can do this in 
terms of DT processing…

H1()H0()

H1(2)



/2

S()

/2/4

x[n]
2

4



8

Etc.
???

Next

H0(2)

1[ ]h n

0[ ]h n 1[ ]h n

0[ ]h n 1[ ]h n

h1[n] and h0[n] implement the DT versions of  (t) and  (t), respectively.  
The change in notation to “h” is to allow for the general non-sinc case 
where the DT filters used are not simply DT versions of the CT filters (like 
they are here for the sinc case). 

The “tildes” are used to indicate filter s 
that correspond to a time-scaled version 
of the filter w/o the tilde
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Modification of  DT approach:

H1()H0()


/2

S()

H()

/2

x[n]
2

2



Etc.

2

2 H1()H0()

After 
Dec by 2

Next

This development is valid for the “sinc wavelet”… 
But the general development is not as straight-
forward as this example might indicate!!!

1[ ]h n

0[ ]h n 1[ ]h n

0[ ]h n
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X1n

X2n

X3n

X4n

Y4n

What are 
these??

WT 
Coefficients

Next

This structure is the final result of this 
development…  although the way we did the 
development is easily applicable only to the sinc 
wavelet case the result holds true but is better 
developed using the so-called “multi-resolution” 
viewpoint which we will develop next.
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X1n

X2n

X3n

X4n

Y4n

Next

Sum
This structure provides a way to compute 
the inverse WT using a cascaded filter 
bank structure that is essentially a reverse 
version of the filter bank used to compute 
the WT.
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Multi-Resolution Viewpoint

Next

Provides solid development of 
DT Filter Bank Implementation
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Multi-Resolution Approach
• Stems from image processing field

– consider finer and finer approximations to an image
• Define a nested set of signal spaces 

• We build these spaces as follows:
• Let  V0 be the space spanned by the integer translations of a fundamental 

signal (t), called the scaling function:  spanned by (t – k)

• So far we can use just about any function (t), but we’ll see that to get the 
nesting only certain scaling functions can be used.

2
21012 LVVVVV   

Next
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Multiresolution Analysis (MRA) Equation
• Now that we have V0 how do we make the others and ensure that they 

are nested?
• If we let V1 be the space spanned by integer translates of (2t) we get 

the desired property that V1 is indeed a space of functions having 
higher resolution.

• Now how do we get the nesting?
• We need that any function in V0 also be in V1; in particular we need 

that the scaling function (which is in V0 ) be in V1, which then requires 
that

where the expansion coefficient is h0[n]2½

• This is the requirement on the scaling function to ensure nesting: it 
must satisfy this equation
– called the multiresolution analysis (MRA) equation
– this is like a differential equation for which the scaling function is the 

solution 

0( ) [ ] 2 (2 )
n

t h n t n  

Next
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The h0[n] Specify the Scaling Function
• Thus, the coefficients h0[n] determine the scaling function

– for a given set of h0[n], (t)
• may or may not exist
• may or may not be unique

• Want to find conditions on h0[n] for (t) to exist and be unique, and 
also:
– to be orthogonal (because that leads to an ON wavelet expansion)
– to give wavelets that have desirable properties

h0[n]

n

(t)

tMRA 
Equation

h0[n] must 
satisfy some 
conditions

Next

0( ) [ ] 2 (2 )
n

t h n t n  
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Whence the Wavelets?
• The spaces Vj represent increasingly higher resolution spaces
• To go from Vj to higher resolution Vj+1 requires the addition of 

“details”
– These details are the part of Vj+1 not able to be represented in Vj

– This can be captured through the “orthogonal complement” of Vj w.r.t 
Vj+1

• Call this orthogonal complement space Wj
– all functions in Wj are orthogonal to all functions in Vj

– That is: 

• Consider that V0 is the lowest resolution of interest
• How do we characterize the space W0 ?

– we need to find an ON basis for W0, say {0,k(t)} where the basis 
functions arise from translating a single function (we’ll worry about the 
scaling part later):

Z  lkjdttttt ljkjljkj ,,0)()()(),( ,,,, 

)()(,0 kttk 
Next
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Finding the Wavelets
• The wavelets are the basis functions for the Wj spaces

– thus, they lie in Vj+1

• In particular, the function (t) lies in the space V1 so it can be 
expanded as

• This is a fundamental result linking the scaling function and the 
wavelet
– the h1[n] specify the wavelet, via the specified scaling function

1( ) [ ] 2 (2 ),
n

t h n t n n    Z

h1[n]

n

(t)

t

h1(n) must 
satisfy some 
conditions

Wavelet 
Equation 

(WE)

Next
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Wavelet-Scaling Function Connection
• There is a fundamental connection between the scaling function and its 

coefficients h0[n] , the wavelet function and its coefficients h1[n]:

h1[n]

n

(t)

t

h0[n]

n

(t)

t

How are h1[n] and 
h0[n] related?

Wavelet 
Equation 

(WE)

MR 
Equation 

(MRE)

Next
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Relationship Between h1[n] and h0[n] 

• We state here the conditions for the important special case of
– finite number N+1 of nonzero h0[n]
– ON within V0:
– ON between V0 and W0 : 

• Given the h0[n] that define the desired scaling function, then the h1[n] 
that define the wavelet function are given by

where N is the “order” of the “filter”
• Much of wavelet theory addresses the origin, characteristics, and 

ramifications of this relationship between h1[n] and h0[n] 
– requirements on h0[n] and h1[n] to achieve ON expansions
– how the MRE and WE lead to a filter bank structure
– requirements on h0[n] and h1[n] to achieve other desired properties
– extensions beyond the ON case

  )()()( kdtktt 

  )()()( kdtktt 

1 0[ ] ( 1) [ ]nh n h N n  

Next

We’ll see soon that the “h” 
coefficients are really DT 

filter coefficients
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The Resulting Expansions
• Suppose we have found a scaling function (t) that satisfies the MRE
• Then… (t - k) is an ON basis for V0

• More generally, an ON basis for 

• Since Vjo is a subspace of L2(R) we can find the “best approximation” 
to x(t)L2(R) as follows

Next

 /2is 2 (2 )o o

o

j j
j k

V t k





/2
,( ) 2 (2 )o o

o o

j j
j j k

k

x t c t k 
with /2

, ,( ), ( ) ( )2 (2 )o o

o o

j j
j k j kc x t t x t t k dt 





  

xjo(t) is a low-resolution approximation to x(t)

Increasing jo gives a better (i.e., higher resolution) approximation

Not the most useful 
expansion in practice

2
21012 LVVVVV   
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The Resulting Expansions (cont.)
• We’ve set things up so that for some jo and its space Vjo we have that

• We know that an ON basis for

• We also know than on ON basis for Wj is

• Thus we another form of the expansion:  

Next

  21
2

0000 jjjj WWWVL

 /2is 2 (2 )o o

o

j j
j k

V t k





 /22 (2 )j j

k
t k






0 0

0

0

/2 /2
, ,( ) 2 (2 ) 2 (2 )j j j j

j k j k
k k j j

x t c t k d t k 




     

Low-Resolution 
Approximation

Wavelet Details

/2
, ,( ), ( ) ( )2 (2 )o o

o o

j j
j k j kc x t t x t t k dt 





   /2
, ,( ), ( ) ( )2 (2 )j j

j k j kd x t t x t t k dt 




  

A VERY
useful 

expansion in 
practice

Same as the Xj,k WT coefficients 
in the earlier notes
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The Resulting Expansions (cont.)

/2
,( ) 2 (2 )j j

j k
k j

x t d t k




  

   21012
2 WWWWWL

Next

• If we let jo go to –∞ then 

• And… the above expansion becomes

• This is most similar to the “true” wavelet decomposition as it was 
originally developed

/2
, ,( ), ( ) ( )2 (2 )ojj

j k j kd x t t x t t k dt 




  

Not the most useful 
expansion in practice
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The Expansion Coefficients cj0
(k) and dj(k)

• We consider here only the simple, but important, case of ON 
expansion
– i.e., the ’s are ON, the ’s are ON, and the ’s are ON to the ’s 

• Then we can use standard ON expansion theory:

• We will see how to compute these without resorting to computing 
inner products
– we will use the coefficients h1[n] and h0[n] instead of the wavelet and 

scaling function, respectively
– we look at a relationship between the expansion coefficients at one level 

and those at the next level of resolution

0 0 0, , ,( ), ( ) ( ) ( )j k j k j kc x t t x t t dt   

, , ,( ), ( ) ( ) ( )j k j k j kd x t t x t t dt   

Next
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Filter Banks and DWT

Next
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Generalizing the MRE and WE
• Here again are the MRE and the WE:

• We get:

0( ) [ ] 2 (2 )
n

t h n t n   1( ) [ ] 2 (2 )
n

t h n t n  

scale & translate: replace ktt j  2

1
0(2 ) [ 2 ] 2 (2 )j j

m

t k h m k t m     

Connects Vj to Vj+1

MRE

1
1(2 ) [ 2 ] 2 (2 )j j

m

t k h m k t m     

Connects Wj to Vj+1

WE

Next
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Linking Expansion Coefficients Between Scales 
• Start with the Generalized MRA and WE:

1
0(2 ) [ 2 ] 2 (2 )j j

m

t k h m k t m      1
1(2 ) [ 2 ] 2 (2 )j j

m

t k h m k t m     

, ,( ), ( )j k j kc x t t
, ,( ), ( )j k j kd x t t

, 0 1,[ 2 ]j k j m
m

c h m k c  

( 1)/2 1
, 0[ 2 ] ( ),2 (2 )j j

j k
m

c h m k x t t m   

, 1 1,[ 2 ]j k j m
m

d h m k c  

( 1)/2 1
, 1[ 2 ] ( ),2 (2 )j j

j k
m

d h m k x t t m   

)(1 mc j

Next
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Convolution-Decimation Structure

0 1 0

0 1

[ ] [ ] [ ]

[ ] [ ]
j

j
m

y n c n h n

h m n c m




  

 
1 1 1

1 1

[ ] [ ] [ ]

[ ] [ ]
j

j
m

y n c n h n

h m n c m




  

 

Convolution

Decimation

k = 0             1             2            3            4

n = 0      1     2      3     4      5    6     7      8     9

n = 2k = 0              2            4            6             8

Next

, 1 1,[ 2 ]j k j m
m

d h m k c  , 0 1,[ 2 ]j k j m
m

c h m k c  
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Computing The Expansion Coefficients
• The above structure can be cascaded: 

– given the scaling function coefficients at a specified level all the lower 
resolution c’s and d’s can be computed using the filter structure

LPF 
h0(-n)

HPF 
h1(-n)

cj+1,k

Cj,k

dj,k
2

2

LPF 
h0(-n)

HPF 
h1(-n)

cj-1,k

2

2

LPF 
h0(-n)

HPF 
h1(-n)

cj-2,k

2

2

dj-1,k

dj-2,k

Vj+1

Vj

Vj-1

Vj-2

Wj

Wj-1

Wj-2

Next
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Filter Bank Generation of the Spaces

Vj
Vj-1

WjWj-1Wj-2Vj-2

Vj+1

/2/4/8

Next

LPF 
h0(-n)

HPF 
h1(-n)

cj+1,k

Cj,k

dj,k
2

2

LPF 
h0(-n)

HPF 
h1(-n)

cj-1,k

2

2

LPF 
h0(-n)

HPF 
h1(-n)

cj-2,k

2

2

dj-1,k

dj-2,k

Vj+1

Vj

Vj-1

Vj-2

Wj

Wj-1

Wj-2



LPF 
h0(-n)

HPF 
h1(-n)

c1,k

c0,k

d0,k
2

2

LPF 
h0(-n)

HPF 
h1(-n)

c-1,k

2

2

LPF 
h0(-n)

HPF 
h1(-n)

c-2,k

2

2

d-1,k

d-2,k
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WT CoefficientsHow do we get 
these???!!!

Conjecture: 1, 2j k
kc x
B

   
  Samples of BL Signal

Consider case where  (2 ) sinc(2 ) sinc 2 ( / 2 )t k Bt k B t k B     

 (t)
x(t)

kT

 (t)

k2T
(t/2)  ( f ) ( f )

 ( f/2 )X( f )

( )f

1/2
1, ( )2 (2 )kc x t t k dt





 

Next
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First, prove this:  ( )sinc(2 )
2
nx x t Bt k dt
B





    
  

(2 ) sinc(2 )t k Bt k   

 ( )sinc(2 ) ( )sinc 2 ( / 2 )x t Bt k dt x t B t k B dt
 

 

   

22( ) 1
k
B

B
j f

B

X f e df



  

Generalized 
Parseval’s 
Theorem

222

0

( )
k
B

B
j fj ft

B t

X f e e df

 

 
  
 


Pure 
Cleverness!!

22 ( )

0

( )
k
B

B
j f t

B t

X f e df 

 

 
  
 


 2 0
( )k

B t
x t


 

2( )k
Bx

Inverse FT

So… for the “sinc wavelet” 
case… the conjecture is true 

with perfect equality

For other cases… there is 
some high enough scale where 

this result holds 
approximately!

FT of sinc = rectangle

Next



LPF 
h0(-n)

HPF 
h1(-n)

c1,k

c0,k

d0,k
2

2

LPF 
h0(-n)

HPF 
h1(-n)

c-1,k

2

2

LPF 
h0(-n)

HPF 
h1(-n)

c-2,k

2

2

d-1,k

d-2,k

WT Coefficients

So… now we can change this…

LPF 
h0(-n)

HPF 
h1(-n)

x[n]

c0,k

d0,k
2

2

LPF 
h0(-n)

HPF 
h1(-n)

c-1,k

2

2

LPF 
h0(-n)

HPF 
h1(-n)

c-2,k

2

2

d-1,k

d-2,k

WT Coefficients

Into this…

This is the DWT… and the 
most widespread way of 
computing the wavelet 
transform in practice!
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Connection between Notations of WT Notes

1( , ) ( ) tX s x t dt
ss
 





       
 2

0

1( ) ( , ) t dsdx t X s
s ss
  

 



       
 

 /2( ) 2 2m m
mnX x t t n dt


 



     /2( ) 2 2m m
mn

m n

x t X t n
 

 

 

    

 /2( ) ( ) 2 2j j
j

k j

x t d k t k
 

 

    Compute dj(k)… & cj(k)…

using filter bank

End

0 0

0

0

/2 /2
, ,( ) 2 (2 ) 2 (2 )j j j j

j k j k
k k j j

x t c t k d t k 




     
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Computational Complexity of DWT
For a signal of length N:  # of Multiplies & Adds is O(N)

Lower order than the FFT which is O(Nlog2N)
But watch out for the multiplicative constant!

Each Filter has length L << N

For 1st Stage:
• Each of two filters: computes N/2 outputs, each requiring L multiples
• # Multiplies for 1st stage = NL/2   + NL/2  = NL

For 2nd Stage:
• Each of two filters: computes N/4 outputs, each requiring L multiples
• # Multiplies for 1st stage = NL/4   + NL/4  = NL/2

For 3rd Stage:
• Each of two filters: computes N/8 outputs, each requiring L multiples
• # Multiplies for 1st stage = NL/8   + NL/8  = NL/4

0

# of Mult. < 2 2m

m

NL NL







Next
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Q256

Q1

Q2
8-Level
Wavelet

Transform

h1(1) to h1(8)

h1(9) to h1(16)

l8(1) to l8(8)

h1q(1) to h1q(8)

h1q(9) to h1q(16)

l8q(1) to l8q(8)

Side Info

s(t)

• Bits allocated to quantizers to minimize MSE
• Then allocations less than Bmin are set to zero

» Eliminates negligible cells
• Side info sent to describe allocations

WT-BASED COMPRESSION EXAMPLE

Time

Fr
eq

ue
nc

y

Next
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From http://www.amara.com/IEEEwave/IW_fbi.html

See also http://www.c3.lanl.gov/~brislawn/FBI/FBI.html

Original Fingerprint Image Decoded Fingerprint Image after 26:1 CR
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End


