Ch. 15 Wavelet-Based Compression



Origins and Applications

The Wavelet Transform (WT) 1s a signal processing tool that is replacing the Fourier
Transform (FT) in many (but not all!) applications.

WT theory has its origins in ideas in three main areas and now is being applied in
countless different areas of application.

Physics Mathematics Signal Processing
e Quantum Mech. * Harmonic Analysis e Signal Decomp.
* Group Theory e Filter Banks
* Operator Theory  Image Analysis
* Signal Decompositions
Wavelets  Filter Banks
Wavelets
Applications
e Data Compression * Sonar/Radar * Turbulence
e Computer Vision * Biomedical Proc. * Geophysical Proc.
*Denoising Signals * Communications * Music Processing
Etc. Etc. Etc.
N
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So, What’s Wrong With The FT?
First, recall the FT:

X(f)= j“; x(t)e 177t

X(t)= [ X(f)e’"df

Weight @ f Component @ fJ

Remember: An integral is like a summation... So, the second equation says that
we are decomposing X(t) into a weighted “sum” of complex exponentials
(sinusoids!)... The first equation tells what each weight should be.

Note: These components exist for ALL time!!!

This is not necessarily a good model for real-life signals.



DFT Basis Functions... and “Time-Freq Tiles”



Example Frequency Hopping Chirped Pulses
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But What About The Short-Time FT (STFT)?
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STFT T-F Resolution

» The window function h(t) sets the characteristic of how the
STFT is able to “probe” the signal X(t).

— The narrower h(t) is, the better you can resolve the time of
occurrence of a feature

— However... the narrower h(t) is, the wider H(f) is... and that means
a reduction in the ability to resolve frequency occurance

 Just like windowing of the DFT that you’ve probably studied!
« Each given h(t) has a given time and frequency resolution
— At describes the time resolution
— Af describes the frequency resolution

* The Heisenberg Uncertainty Principle states that

B 1
(Aty(af) >~

— Improving Time Resolution.... Degrades Frequency Resolution

* And vice versa



lHlustration of Time-Frequency Resolution Trade-Off
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http://en.wikipedia.org/wiki/Short-time Fourier transform



STFT View of Tiling the T-F Plane

Generally only compute the STFT for discrete values of t and f

X(f ,t)= j X(£)h(z —nT)e 127"Frrg 7

In some applications it is desirable to minimize the number of points in
X(f,t,) and that means making T and F as large as possible... T~ At and

F =~ Af

Then each X(f,t,) represents the “content” of the signal in a rectangular cell
of dimension At by Af

STFT tiling consists of a
4 uniform tiling by fixed
rectangles

frequency

>

[e—>] time
At

STFT Tihng of the T-F Plane



STFT Basis Functions... and “Time-Freq Tiles”
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STFT Disadvantages and Advantages

The fact that the STFT tiles the plane with cells having the same
At and Af is a disadvantage in many application

— Especially in the data compression!

This characteristic leads to the following:

— If you try to make the STFT be a “non-redundant” decomposition (e.g.,
ON... like 1s good for data compression...

— You necessarily get very poor time-frequency resolution
This 1s one of the main ways that the WT can help

— It can provide ON decompositions while still giving good t-f resolution
However, in applications that do not need a non-redundant
decomposition the STFT 1s still VERY useful and popular

— Good for applications where humans want to view results of t-f
decomposition
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So... What IS the WT???

o0

Recall the STFT: X (f,t)= j X(r)b(r—t)e_jz”f;dr

o —~V
Basis Functions

So... X(f,t) is computing by “comparing” X(t) to each of these basis functions

For the STFT the basis function are created by applying
Time Shift and Frequency Shift to prototype h(t)

This leads to the “uniform tiling” we saw before...
And it also causes the problems with the non-redundant form of the STFT

So... we need to find a new way to make T-F basis functions that don’t have
these problems!!!
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The WT comes about from replacing frequency shifting by time scaling. ..
Start with a prototype signal y(t) and time scale it:

w(t/s) <> sY(sf)

Increasing s: Stretches the signal

Decreasing s: “Scrunches” the signal

“Scrunches” the spectrum

Stretches the spectrum

Small s

()
y(t/s) Tw(ts)

w(t)

t L arge s

— YV

t

'P(sf)| | Small s covers High
f w/ Broad Width

[

L

f

—

Large s covers Low | [[¥(P)

f w/ Narrow Width j\j\

—t VY

13



This shows some typical t-f cells for wavelets
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It 1s generally more convenient
to plot in terms of 1/s due to its
link to frequency

Narrower in Time
Wider in Frequency
Higher Frequency

Wider in Time
Narrower in Frequency
Lower Frequency

0.2 03 04 0.5 0.6 0.7 0.8 09
Time

1

We still need to satisfy the uncertainty principle: (At)(Af) > .
T

But now At and Af are adjusted depending on what region of frequency
1s being “probed”.



All this leads to... 1 he Wavelet Transform:

0 71 (1) is called the
XS0 = j X(T){f W( S ﬂ (e el Mother Wavelet

—Qo0

The Inverse Wavelet Transform (Reconstruction Formula):

X(t)—CLJ-J‘ X (s, T){\/—‘//( j:| dSS?T’ C, =

Y 0 —oo

¥
w

O'—‘oS

Requirements for a Mother Wavelet are:

Finite Energy: w(t)e (R) = j w’(t)dt < o = j |\P(a))|2 do< o
Parseval —

|\P a))|

Admissibility Condition: _[ do <o

 |'¥(w)|* must go to zero fast enough as ® — 0
* |'¥(w)|* must go to zero fast enough as ® — o
y(t) must be a bandpass signal

15



The prototype basis function y(t) is called the mother wavelet...

All the other basis functions come from scaling and shifting the mother wavelet.

There are many choices of mother wavelet:
e Each gives rise to a slightly different WT
e ...with slightly different characteristics
e ...suited to different applications.

Some Examples of Mother Wavelets
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Example of a WT

Ramp Signal
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Non-Redundant Form of WT

It 1s often desirable to use a discrete form of the WT that is “non-redundant”. ..
that 1s, we only need X(s,t) on a discrete set of S and t values to reconstruct x(t).

Under some conditions it 1s possible to do this with only s and t taking these

values: s=2" t=n2" for m=...-3,-2,-1,0,1,2,3,... In practice you
n=...—3,-2,-1,0,1,2,3,... truncate the range
of mandn

Lower values of m = Smaller values of S = Higher Frequency
Incrementing m doubles the scale value and doubles the time spacing

Then the WT becomes a countably infinite collection of numbers (recall the
Fourier series vs. the Fourier transform):

X(s,)= ]O X(T){fl//(%_tﬂdr mm) (K =_f X(T)[Z_m/zw(Z_mr—n)]dr, m,n e Z

. J

Zmn (7)

Advantages of This Form
The y,, ,(t) can be an ON basis for L? -
Good for Data Compression _ -m/2 -m
X(t) = Xmn| 2 2"t—n)]
Simple, numerically stable inverse ® Z Z e l//( )
Leads to efficient discrete-time form 18




This leads to the sampling and the tiling of the t-1/s plane as shown below:
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Example #1

* A synthetic Chirp Signal
— Frequency decreases with time
— Amplitude increases with time

* Notice that
— High frequency components dominate early
— Low frequency components dominate later
— Low frequency components are stronger

Wavelet Transform

0.5—
7 l I l T T !
& | l ] ] ,_1_4 l
5 I T | =
0 n 7 .‘111111 .
3 it v WT Coefficients are
j shown as spikes on an
- k axis for each 1/s value
l
time

time |



Example #2

[ Speech Signal ;

s

* WT coeff’s are displayed as
gray- scale blocks

* WT coeffs concentrated

* Blocks closely spaced at high f

* Blocks widely spaced at low f

-
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Example #3: Effectlveness of WT T-F Localization Properties
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Summary So Far: What is a Wavelet Transform?

Note that there are many ways to decompose a signal. Some are:
— Fourier series: basis functions are harmonic sinusoids;
— Fourier transform (FT): basis functions are nonharmonic sinusoids;
— Walsh decomposition: basis functions are “harmonic” square waves;
— Karhunen-Loeve decomp: basis functions are eigenfunctions of covariance;
— Short-Time FT (STFT): basis functions are windowed, nonharmonic sinusoids;
* Provides a time-frequency viewpoint
— Wavelet Transform: basis functions are time-shifted and time-scaled versions of

a mother .Wavele.t | | W n (D) =2""y (z—mt _ n)
* Provides a time-scale viewpoint

XO=2 3 Xoa O | [Xw = [ x@wa()r,

M=—00 N=—00

Wavelet transform also provides time-frequency view: 1/scale relates to f
— Decomposes signal in terms of duration-limited, band-pass components
 high-frequency components are short-duration, wide-band
» low-frequency components are longer-duration, narrow-band

— Can provide combo of good time-frequency localization and orthogonality
* the STFT can’t do this
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Fourier Development vs. Wavelet Development

Fourier and others:

— expansion functions are chosen, then properties of transform are found
Wavelets
— desired properties are mathematically imposed
— the needed expansion functions are then derived
Why are there so many different wavelets?
— the basic desired property constraints don’t use all the degrees of freedom
— remaining degrees of freedom are used to achieve secondary properties
» these secondary properties are usually application-specific
* the primary properties are generally application-nonspecific

5



Why are Wavelets Effective?

Provide a good basis for a large signal class
— wavelet coefficients drop-off rapidly...
— thus, good for compression, denoising, detection/recognition
— goal of any expansion is
 have the coefficients provide more info about signal than time-domain
» have most of the coefficients be very small (sparse representation)
— FT 1s not sparse for transients... WT is sparse for many signals
Accurate local description and separation of signal characteristics
— Fourier puts localization info in the phase in a complicated way
— STFT can’t give localization and orthogonality
Wavelets can be adjusted or adapted to application

— remaining degrees of freedom are used to achieve goals

Computation of wavelet coefficient is well-suited to computer
— no derivatives or integrals needed

— turns out to be a digital filter bank... as we will see.

6



The Discrete-Time WT
Recall the formula for the WT coefficients:

Xonn = ]2 X(T)|:2_m/zl//(2_m2'—n):|d2', m,neZ (%)

. J/

'

é‘//m,n(z')

If the signal X(t) 1s bandlimited to B Hz, we can represent it by its
samples taken every To = 1/2B seconds: X[K] = x(KT,).

Our Goal: Since the samples X[K] uniquely and completely
describe X(t), they should also uniquely and completely describe
the WT coefficients X, ,... HOW DO WE DO IT??




Mathematically Interpret the DWT equation in terms of Signal

Processing:

X = ]O X(T)[Z_m/zgﬂ(z_mf— n)] dr,

o0

= [ x(r) [2-”“2.,”(2-"‘@— nzm))] dr,

.

v

—Q0

:(X*wm)(an)

'

2y (z'—n Zm)

= T X(7) (r—n2m) dr,

X1 V(1) X
t=n2"

For fixed m, X, , 1s X(t) convolved
with y(t) and sampled at points 2™,

Remember: /(1) is a bandpass signal... so
this 1s equivalent to filtering x(t) with a BPF.




This leads to a filterbank:

W, (D) X
t=n2"
X(t) Wmo +1 (t) X (my+1),n
1 t =n2Mm*Y
°
°
°
WM (t) X M ,n
t=n2"
‘Tm( ) tm... m+2  m,+l m,
.""_“ l,f""s\ ) PR -~
o000 -‘. ,, \\ ./ \
% (W \
/' " )\‘ N\
_— S, e \ RN f

It IS possible to implement this filterbank in DT...
...but in general it is not possible to efficiently implement it

29



Consider a Special Case, Though...

Let X(t) be bandlimited to B Hz. Choose the mother wavelet to be a modulated
sinc function and m, such that the spectrum is as below

P(f)

Signal
Spectrum is
zero above B




Now consider the relationship
between the filter spectrum and
spectra of the scaled versions of
the mother wavelet...

/Don’t have to go to
finer scale (i.e.,
smaller S... more
negative m) because
the BL signal has no
power there!

Finest scale we need

Q on the order of 1/ Fy

Y(4f)

B/




Note that for these ideal filters
we can do this...

Running the signal through
¥ (2f) is the same as
running it first through

@ ( f) and then through

¥ (2f)... etc.

Sampled
_ET Slower
(1) —

x(z

¢ (O [TIv2)

KU2) o wva)|— —

ava—ETC.

.
B2 B P
w2
-
BA B2 £
f D (4f




Note that we can do this in

terms of DT processing... s@ \
hl[n] 4’@_’

x[ﬂ

2
oY

The “tildes” are used to indicate filter s
that correspond to a time-scaled version

)
()
=
-
e
Do
i
-
| S—
-
a
~
N
a
oY

of the filter w/o the tilde

mt/4 7t/2

h,[n] and h,[n] implement the DT versions of  (t) and ¢ (t), respectively.
The change in notation to “h” is to allow for the general non-sinc case
where the DT filters used are not simply DT versions of the CT filters (like

they are here for the sinc case).

oY



Modification of DT approach:

y

y

h,[n] a@ fh,[n] —»@—»

2
oY

7t/2

Etc.

2
oY

7t/2

This development is valid for the “sinc wavelet”...
But the general development is not as straight-
forward as this example might indicate!!!

After
Dec by 2

oY



WT

Coefficients

x(n) _*/"\ Xﬁl
HPFF \.; /'
I PF '/ ':\ HPF '/"—:\* Xﬂ]
il AN, il ANV
e ‘\%_ _}/’ N X)3£1
LPF (1t {2 HP 2 1 : :
LPF 2 HPF 2
_ X,
o [N

—» [PF | /2 T HPF |+ 2 +—»"

RN il Y.

: : : N Y4n
This structure 1s the final result of this —» LPF —‘r\:‘.‘- /*—P

development... although the way we did the

development is easily applicable only to the sinc

wavelet case the result holds true but i1s better

developed using the so-called “multi-resolution’

viewpoint which we will develop next.

bJ

What are
these??




xin) e ‘\
€ HPF —%\:: /K
7\ N\
LPF —K; /01 HPF —+\;/y<
_*/ N
= f2
LPF P,

HFPF

2 )
_/

7\
—{ 12
AN

This structure provides a way to compute
the inverse WT using a cascaded filter
bank structure that is essentially a reverse
version of the filter bank used to compute
the WT.

Sum




Multi-Resolution Viewpoint

Provides solid development of
DT Filter Bank Implementation
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Multi-Resolution Approach

Stems from image processing field

— consider finer and finer approximations to an image

Define a nested set of signal spaces
-cV_,cV [ cVycVicV,c-- L2

We build these spaces as follows:

Let V, be the space spanned by the integer translations of a fundamental
signal ¢(t), called the scaling function: spanned by @(t — k)

So far we can use just about any function ¢(t), but we’ll see that to get the
nesting only certain scaling functions can be used.

8



Multiresolution Analysis (MRA) Equation

Now that we have V, how do we make the others and ensure that they
are nested?

If we let V, be the space spanned by integer translates of @(2t) we get
the desired property that V, 1s indeed a space of functions having
higher resolution.

Now how do we get the nesting?

We need that any function in V, also be in V; in particular we need
that the scaling function (which 1s in V) ) be in V,, which then requires

that
#(t) = hy[nIV24(2t - n)

where the expansion coefficient is h,[n]2”
This is the requirement on the scaling function to ensure nesting: it
must satisfy this equation

— called the multiresolution analysis (MRA) equation

— this 1s like a differential equation for which the scaling function is the
solution

9



The hy[n] Specify the Scaling Function

 Thus, the coefficients h,[n] determine the scaling function
— for a given set of hy[n], &(t)

* may or may not exist ¢(t) = z ho [n]\/z¢(2t o n)

* may or may not be unique

«  Want to find conditions on hy[n] for #t) to exist and be unique, and
also:

— to be orthogonal (because that leads to an ON wavelet expansion)

— to give wavelets that have desirable properties

MRA
Equation

ho[n] must
satisfy some
conditions




Whence the Wavelets?

The spaces V; represent increasingly higher resolution spaces

To go from V; to higher resolution V;,, requires the addition of
“details”

— These details are the part of Vj,; not able to be represented in V;
— This can be captured through the “orthogonal complement” of V; w.r.t
Vj+1
Call this orthogonal complement space W,
— all functions in Wj are orthogonal to all functions in V;

— That 1s: _
Bk O >= [ Oy At =0 VikleZ

Consider that V,, 1s the lowest resolution of interest

How do we characterize the space W ?

— we need to find an ON basis for Wy, say {y (1)} where the basis
functions arise from translating a single function (we’ll worry about the

scaling part later):
ok (D) =w(t—k)



Finding the Wavelets

 The wavelets are the basis functions for the W; spaces
— thus, they lie in Vi,
* In particular, the function y(t) lies in the space V; so it can be

expanded as
’ w(t) = Zhl[n]\/z¢(2t -n), neZ

e This is a fundamental result linking the scaling function and the
wavelet
— the h,[n] specify the wavelet, via the specified scaling function

Wavelet
Equation
(WE)

h,(n) must
satisfy some
conditions




Wavelet-Scaling Function Connection

» There is a fundamental connection between the scaling function and its
coefficients hy[n] , the wavelet function and its coefficients h,[n]:

MR
Equation
(MRE)

How are h,[n] and
ho[n] related?

U |

Wavelet
Equation
(WE)




Relationship Between h,[n] and h,[n]
We state here the conditions for the important special case of
— finite number N+1 of nonzero h,[n] D40t — Kdt = S(k
— ON within V: j POt =d =20
— ON between V, and W, : jw(t)gﬁ(t —k)dt = o(k)

Given the hy[n] that define the desired scaling function, then the h,[n]
that define the wavelet function are given by

h1 [n] = (— l)n hO [ N — n] We’ll see soon that the “h”

coefficients are really DT
where N is the “order” of the “filter” \ filter coefficients

Much of wavelet theory addresses the origin, characteristics, and
ramifications of this relationship between h,[n] and h,[n]

— requirements on hy[n] and h,[n] to achieve ON expansions

— how the MRE and WE lead to a filter bank structure

— requirements on hy[n] and h,[n] to achieve other desired properties
— extensions beyond the ON case



The Resulting Expansions

Suppose we have found a scaling function ¢(t) that satisfies the MRE

Then... ¢t - K) is an ON basis for V|,

More generally, an ON basis for V, s {2j°/2 p(2ht— k)}f__

Since Vj, is a subspace of L*(R) we can find the “best approximation”

to X(t)eL%(R) as follows

X, ()=).¢; 2" p(2*t-k)
Kk

( Not the most useful
N expansion in practice

J

with ¢, =(x(D).4, (D)= [ x()2*” 2 t—k)dt

—Q0

Xjo(1) 1s a low-resolution approximation to X(t)

Increasing J, gives a better (i.e., higher resolution) approximation

-cV,cVjcVycVicV, - L2



The Resulting Expansions (cont.)

« We’ve set things up so that for some |, and its space V;, we have that

2
2 =V; ®W; OW; ,; OW, ,, ®--

We know that an ON basis for V,  1s {2j°/2 P2 t - k)}oo
0 k=—o0

*  We also know than on ON basis for W, is {2"?y(2't —k)
J k=—o0
* Thus we another form of the expansion: A VERY
- useful
_ _ Jo/2 ot _ nin it expansion in
X(t) Zk:%,kz P27t —k) + Zk: ,Z, d, 2"y (2't-k) "
>~ ~ ~ g —
Approximation

o0

C, | =<x(t),¢jmk(t)>= [ x(t2+? g2 -kt

—00

o0

d;, = (X0, (D) = [ X027 w2 t-k)dt

—00

Same as the X;, WT coefficients
in the earlier notes

Next *°




The Resulting Expansions (cont.)

If we let J, go to —oo then

L= ®W_, DW_; ®W, ®W, ®W, D ---

And... the above expansion becomes

k

X(t)=> i d, 2w (2't-k)

4

Not the most useful
expansion in practice

o0

d;, = (X(0).p;, (D) = j X(1)212w (2t —k)dt

—00

This is most similar to the “true” wavelet decomposition as it was

originally developed

Next



The Expansion Coefficients cjo(k) and d;(k)

We consider here only the simple, but important, case of ON
expansion

— 1.e., the ¢’s are ON, the s are ON, and the ¢’s are ON to the s
Then we can use standard ON expansion theory:

Chi = (X(D.4;,, (1) = [ x(Dg (Dl

d;, = (X(1).y;, () = [ (O, (Dt

We will see how to compute these without resorting to computing
iner products

— we will use the coefficients h,[n] and h,[n] instead of the wavelet and
scaling function, respectively

— we look at a relationship between the expansion coefficients at one level
and those at the next level of resolution

Next



Filter Banks and DWT



Generalizing the MRE and WE

Here again are the MRE and the WE:

&h Zho[n]m%zt ~n) v Zhl[n]ﬁqﬁ(th ~n)

scale & translate: replace t — 2 It —k

We get:
MRE

-

#(2't—K) = > h[m—2k]W24(2" "t —m)

-

~

Connects V; to V4

/

o



Linking Expansion Coefficients Between Scales
« Start with the Generalized MRA and WE:

#(2't—k)=> h[m — k292" t-m)  w(2't—k)= h[m-2KN24(2""t—m)

1 1
G = (X(1). 4, (D) d,, = (X0, (D)

o | e |

4 &

Ci = 2 [M=2K1(x(1), 297 g2 t—m))  d, =D h[m-2k](x(1),29"? (2" t—m))

Ci = Y hy[m=-2k]c.,, d;, =D h[m-2klc;,,,

m

1



Convolution-Decimation Structure

C., = hm=2klc,,,, dj =D hIm-2k]c,,,,
Convolution
yo[n]:CjH[n]*ho[_n] y1[n]:Cj+1[n]*h1[_n]
:Zho[m—n]cm[m] =Zhl[m—n]cj+l[m]
Decimation
O 6 6 ¢ 6 06 6 6 o O
n=0 1 2 3 4 5 6 7 8 9

® O 6 O € O 6 O @ O
k=0 1 2 3 4

n=2k=0 2 4 6 8

2



The above structure can be cascaded:

Computing The Expansion Coefficients

— given the scaling function coefficients at a specified level all the lower
resolution c¢’s and d’s can be computed using the filter structure

Cis1k |

Vj+1

A 4

HPF
h,(-n)

A 4

LPF
ho(-n)

A 4

2

\ 4

2

A\ 4

HPF
h,(-n)

\ 4

LPF
hy(-n)

2

A 4

2

Ci..

J-1

\4

HPF
h,(-n)

LPF
hy(-n)

A 4

2

\ 4

2




Filter Bank Generation of the Spaces

+» Vo
- " Vi .
- Vj+1 s
/8 Tt/4 /2 T
| HPF . dj¢<
> » 12 >
h,(-n) W,
Ciik |
V.
L eF | [ 1%« | mpF di.1
> 2 > > 12 >
he(-N) V| | hi(n) W, ,
) LPF | [ 1G] HPE | [ ] i
h()(_n) Vj-l hl(-n) Wj-2
|, LPE | |, Ciak
hO(-n) Vj_2




How do we get

299111
these” N~
C, = j X(1)2"2 #(2t — k)dt

HPF

R »

[ WT Coefficients dy

: k
Conjecture: Cj = X(Ej -

— |2
h,(-n)
LPF Cox | HPF .
— 2 ™ — 2 : >
h(-n) L hy(-n)
LPF Cix| HPF A, i
— 2 ™ — V2
hy(-n) h,(-n) : i
LPF . Cak
\L Samples of BL Signal ] hy(-n) 2

Consider case where ¢(2t—k) =sinc(2Bt —k) = sinc(2B(t—k /2B))

KT
w(t) [——

x(i

# () [~

A X(f) o e \% @ (1 2)
- T
B s



#(2t —K) = sinc(2Bt — k)

First, prove this: X( : j= | x(t)sinc(2Bt k)t

B) -,
T X(t)sinc(2Bt —k)dt = T X(t)sinc(2B(t—k /2B))dt

FT of sinc = rectangle

So... for the “sinc wavelet” 2 j2rtk
case... the conjecture is true = J- X(f)xlxe df
-B

with perfect equality
/ ‘ ' j27 K
N :“ X (f)el? e e df
-B t=0

For other cases... there is
some high enough scale where
this result holds

B
. j27 f (t+55)
S approximately! ) — { j X( f )e‘ t df }
-B

t=0

=[xt+59)].,

Generalized
Parseval’s
Theorem

Pure
Cleverness!!

Inverse FT

6



So... now we can change this...

o e

R | | [ WT Coefficients f d0,=k
h,(-n)
LPF Cox | HPF L dy
> ~L2 > —> \LZ : >’
ho(-n) hi(-n)
LPF Cix| HPF ] day
— 42 g > 2 i—
ho(-n) hi(-n) :
LPF Cok
— 2 —
hy(-n)
Into this...
HPF | [ [ WT Coefficients f d0,=k
h,(-n)
LPF Cox | HPF L dy,
— 12 > L |2 : >’
ho(-n) hi(-n)
an ™
This is the DWT... and the LPF | [, ]Cu HPE | [\ do
most widespread way of () hy(n) :
computing thewavelet | | e
transform in practice! LPE | [ ] S
\_ J hy(-n)

7



Connection between Notations of WT Notes

Ten- | = =
xis00= o] o 5 ) pro-] x| o) |5

—jx(t)[z My (2 t-n) | {x(®) = Z Z Xon| 27"y (27"t =n)

]
\\ N \ \\ <

A / y A A

Compute d(K)... & 6,K)... (t) = z >, (k)[z‘”w(?t k)|

using filter bank k=—o0 j=

x(t)=ch0,k2"°/2go(2"°t—k)+Z Zd 22w (27t —k)
k =1

=4
() s




Magnitude Response (dB)

Practical Orthogonal Filter Pair (Daubechies’ DA, length 8)

2

|
n
o

|
w
o

|
B
(=]

|
(4]
o

-60

-70

|

I I — - - 1 |

-

-80

i I I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normailized Frequency (f/(Fs/2))



Level

Level

Level

Level

Level

-

LF$

x(1) x2) x(3) x#) x5} x0) x7) x(8) x©) x(10) x(11) x(12) x(13) x(I4) x(15) x(16)
LPF HPF
Iy 20 053 4 IG5 060 7 SR hfl) hg2) k30 hgd) kg3 hfo) hy7)  hy3)
LPF HPF
L L2 LG L) | k) kg2 k) )
lj!jl “J’:J h,f‘l’ h_’f:.'
Keep The Numbers That are Inside
The Heavy Boxes
They Are The WT Coefficients
'1; HII.!



A Frequency

B
h(1) h,(2) hi(3) h,(4) hi(5) h,(6) hy(7) hy(8)
: o
h_\(]) h_\’.?) }7:(3) }?_‘(4)
B/4
h_z(-]) i?_;(._))
B/s —
hy(l)
B/16 _
(1)
0 %
0 T, aT, 6T, 8T, 10T, 12T, 14T, 16T, Time



Computational Complexity of DWT
For a signal of length N: # of Multiplies & Adds is O(N)

Lower order than the FFT which is O(Nlog,N)
But watch out for the multiplicative constant!

Each Filter has length L << N

For 15t Stage:

 Each of two filters: computes N/2 outputs, each requiring L multiples
 # Multiplies for 15t stage = NL/2 + NL/2 =NL

For 2™ Stage:

 Each of two filters: computes N/4 outputs, each requiring L multiples
 # Multiplies for 15t stage = NL/4 + NL/4 = NL/2

For 3™ Stage:

 Each of two filters: computes N/8 outputs, each requiring L multiples
o # Multiplies for 15t stage = NL/8 + NL/8 = NL/4

# of Mult. <NL» 27" =2NL
m=0




7 " 9

- signal/image data compression
- computer vision

- enhancing noisy signals

- sonar/radar processing

- biomedical signal processing

- digital communications

- studying turbulance

- geophysical signal processing
- music synthesis

afe.. etc.. efe 1!



W T-BASED COMPRESSION EXAMPLE

Side Info |
h,(1) to hy(8) hlq(l) to hlq(‘8)
s(t) h;(9) to hy(16) h,,(9) to hlq(:16)

I8q(1) to I8q(8=)

l5(1) to Ig(8)

* Bits allocated to quantizers to minimize MSE

 Then allocations less than B, are set to zero
» Eliminates negligible cells

* Side info sent to describe allocations

Frequency

Time



ﬁ
The WT is VERY good at efficiently representing lines and edges

One application is to the compression of fingerprint images:

« FBI uses the WT for compression of its fingerprint image‘s
« Can achieve a 26:1 compression ratio with little degradation

« Avoids the “blocking effects” of JPEG
Original Fingerprint Image Decoded Fingerprint Image after 26:1 CR

From http://www.amara.com/I[EEEwave/IW _fbi.html
See also http://www.c3.lanl.gov/~brislawn/FBI/FBI.html



Summary

The Wavelet transform provides a means to “see” the time-frequency structure
of a signal:

« The WT consists of the coefficients of a signal expansion
» the basis functions correspond to t-f cells

The t-f cells adjust their shape to cover the same number of cycles
» short and wide at low freequencies
» tall and narrow at high frequencies

« The representation can be easily computed from signal samples
» simple cascaded filter bank
» computational complexity is O(~}; lower order than the FFT

The representation is non-redundant {orthogonal)
» good for compression

Statistical methods have been developed for de-noising
» work best when signal is concentrated in WT domain



Papers:
' Overview Tutorial

A. Graps, “An Introduction to Wavelets,” IEEE Computational Science and
Engineering, Summer 1995, pp. 50 - 61.

A. Bruce, D. Donoho, and H. Gao, “Wavelet Analysis,” IEEE Spectrum, Oct.
1996, pp. 26 - 35.

M. Cody, “The Fast Wavelet Transform,” Dr. Dobbs Journal, April 1992, pp.
16 - 28.
< Code Listing on pp. 100 - 101 >

P. Bentley and J. McDonnell, “Wavelet Transforms: An Introduction,”
Electronics and Communication Engineering Journal, August 1994, pp. 175 -

186.
Technical Tutorial

O. Rioul and M. Vetterli, “Wavelets and Signal Processing,” IEEE Signal
Processing Magazine, Oct. 1991, pp. 14 - 38.

A. Cohen and J. Kovacevic, “Wavelets: The Mathematical Background,”
Proceedings of the IEEE, April 1996, pp. 514 - 522, '

N. Hess-Nielsen and M. V. Wickerhauser, “Wavelets and Time-Frequency
Analysis,” Proceedings of the IEEE, April 1996, pp. 523 - 540.



Books:

The first book listed gives a nice, gentle overview of wavelets; it is
good for technical folks who want to know more but don’t have the
time to slog through more technical tomes.

The second book is intended for statisticians, but gives one of the
nicest concise treatments ['ve seen of the mathematical theory of
wavelets; it also covers denoising.

The other books assume a background in standard DSP topics.

B. Burke Hubbard, The World According 1o Wavelets, A. K. Peters, 1995.

R. Todd Ogden, Essential Wavelets for S tatistical Applications and Data
Analysis, Birkhauser, 1997.

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall,
1995. |

G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge
Press, 1996.

A. Akansu and R. Haddad, Multiresolution Signal Decompositions:

Transforms, Subbands, and Wavelets, Academic Press.
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