Ch. 15 Wavelet-Based Compression

Origins and Applications

The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier Transform (FT) in many (but not all!) applications.
WT theory has its origins in ideas in three main areas and now is being applied in countless different areas of application.

So, What's Wrong With The FT?

First, recall the FT:

$$
\begin{aligned}
& X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
& x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
\end{aligned}
$$

Remember: An integral is like a summation... So, the second equation says that we are decomposing $x(t)$ into a weighted "sum" of complex exponentials (sinusoids!)... The first equation tells what each weight should be.

Note: These components exist for $\underline{\mathbf{A L L}}$ time!!!
This is not necessarily a good model for real-life signals.

DFT Basis Functions... and "Time-Freq Tiles"

Next

Example: Frequency-Hopping Chirped Pulses

DFT tries to build from freq components that last $10 \mu \mathrm{sec}$

The DFT representation is "correct" but does not show us a "joint representation" in time and frequency

This would be a more desirable time-frequency representation

It would show at each time exactly what frequencies were in existence at that time!

However... such a "perfect" t -f representation is not possible... Heisenberg Uncertainty Principle!

But What About The Short-Time FT (STFT)?

Selesnick, Ivan, "Short Time Fourier Transform," Connexions, August 9, 2005. http://cnx.org/content/m10570/2.4/.

STFT T-F Resolution

- The window function $h(t)$ sets the characteristic of how the STFT is able to "probe" the signal $x(t)$.
- The narrower $h(t)$ is, the better you can resolve the time of occurrence of a feature
- However... the narrower $h(t)$ is, the wider $H(f)$ is... and that means a reduction in the ability to resolve frequency occurance
- Just like windowing of the DFT that you've probably studied!
- Each given $h(t)$ has a given time and frequency resolution
- Δt describes the time resolution
- Δf describes the frequency resolution
- The Heisenberg Uncertainty Principle states that

$$
(\Delta t)(\Delta f) \geq \frac{1}{4 \pi}
$$

- Improving Time Resolution.... Degrades Frequency Resolution
- And vice versa

Illustration of Time-Frequency Resolution Trade-Off

http://en.wikipedia.org/wiki/Short-time_Fourier_transform

STFT View of Tiling the T-F Plane

Generally only compute the STFT for discrete values of t and f

$$
X\left(f_{m}, t_{n}\right)=\int_{-\infty}^{\infty} x(\tau) h(\tau-n T) e^{-j 2 \pi(m F) \tau} d \tau
$$

In some applications it is desirable to minimize the number of points in $X\left(f_{m}, t_{n}\right)$ and that means making T and F as large as possible... $T \approx \Delta t$ and $F \approx \Delta f$

Then each $X\left(f_{m}, t_{n}\right)$ represents the "content" of the signal in a rectangular cell of dimension Δt by Δf

STFT Tiling of the T-F Plane

STFT Basis Functions... and "Time-Freq Tiles"

Next^{10}

STFT Disadvantages and Advantages

- The fact that the STFT tiles the plane with cells having the same Δt and Δf is a disadvantage in many application
- Especially in the data compression!
- This characteristic leads to the following:
- If you try to make the STFT be a "non-redundant" decomposition (e.g., ON... like is good for data compression...
- You necessarily get very poor time-frequency resolution
- This is one of the main ways that the WT can help
- It can provide ON decompositions while still giving good t-f resolution
- However, in applications that do not need a non-redundant decomposition the STFT is still VERY useful and popular
- Good for applications where humans want to view results of t-f decomposition

So... What IS the WT???

Recall the STFT: $\quad X(f, t)=\int_{-\infty}^{\infty} x(\tau) \underbrace{h(\tau-t) e^{-j 2 \pi f \tau}}_{\text {Basis Functions }} d \tau$
So... $X(f, t)$ is computing by "comparing" $x(t)$ to each of these basis functions

For the STFT the basis function are created by applying Time Shift and Frequency Shift to prototype $h(t)$

This leads to the "uniform tiling" we saw before...

And it also causes the problems with the non-redundant form of the STFT
So... we need to find a new way to make T-F basis functions that don't have these problems!!!

The WT comes about from replacing frequency shifting by time scaling... Start with a prototype signal $\psi(t)$ and time scale it:

$$
\psi(t / s) \leftrightarrow s \Psi(s f)
$$

This shows some typical t-f cells for wavelets

We still need to satisfy the uncertainty principle: $(\Delta t)(\Delta f) \geq \frac{1}{4 \pi}$
But now Δt and Δf are adjusted depending on what region of frequency is being "probed".

all this leads to... The Wavelet Transform:

$$
X(s, t)=\int_{-\infty}^{\infty} x(\tau)\left[\frac{1}{\sqrt{s}} \psi\left(\frac{\tau-t}{s}\right)\right] d \tau, \quad s>0
$$

$\psi(t)$ is called the Mother Wavelet

The Inverse Wavelet Transform (Reconstruction Formula):

$$
x(t)=\frac{1}{C_{\psi}} \int_{0}^{\infty} \int_{-\infty}^{\infty} X(s, \tau)\left[\frac{1}{\sqrt{s}} \psi\left(\frac{\tau-t}{s}\right)\right] \frac{d s d \tau}{s^{2}}, \quad C_{\psi}=\int_{0}^{\infty} \frac{|\Psi(\omega)|^{2}}{\omega} d \omega
$$

Requirements for a Mother Wavelet are:
Finite Energy: $\quad \psi(t) \in L^{2}(\mathbb{R}) \Rightarrow \int_{-\infty}^{\infty} \psi^{2}(t) d t<\infty \underset{\text { Parseval }}{\Rightarrow} \int_{-\infty}^{\infty}|\Psi(\omega)|^{2} d \omega<\infty$
Admissibility Condition: $\int_{0}^{\infty} \frac{|\Psi(\omega)|^{2}}{|\omega|} d \omega<\infty$

- $|\Psi(\omega)|^{2}$ must go to zero fast enough as $\omega \rightarrow 0$
- $|\Psi(\omega)|^{2}$ must go to zero fast enough as $\omega \rightarrow \infty$ $\psi(t)$ must be a bandpass signal

The prototype basis function $\psi(t)$ is called the mother wavelet... All the other basis functions come from scaling and shifting the mother wavelet. There are many choices of mother wavelet:

- Each gives rise to a slightly different WT
- ...with slightly different characteristics
- ...suited to different applications.

Example of a WT

Non-Redundant Form of WT

It is often desirable to use a discrete form of the WT that is "non-redundant"... that is, we only need $X(s, t)$ on a discrete set of s and t values to reconstruct $x(t)$.

Under some conditions it is possible to do this with only s and t taking these values:

$$
\begin{aligned}
s=2^{m} \quad t=n 2^{m} \text { for } \quad \begin{aligned}
m & =\ldots-3,-2,-1,0,1,2,3, \ldots \\
n & =\ldots-3,-2,-1,0,1,2,3, \ldots
\end{aligned}
\end{aligned}
$$

In practice you truncate the range of m and n

Lower values of $m \Rightarrow$ Smaller values of $s \Rightarrow$ Higher Frequency
Incrementing m doubles the scale value and doubles the time spacing
Then the WT becomes a countably infinite collection of numbers (recall the Fourier series vs. the Fourier transform):

$$
X(s, t)=\int_{-\infty}^{\infty} x(\tau)\left[\frac{1}{\sqrt{s}} \psi\left(\frac{\tau-t}{s}\right)\right] d \tau \longmapsto X_{m, n}=\int_{-\infty}^{\infty} x(\tau) \underbrace{\left[2^{-m / 2} \psi\left(2^{-m} \tau-n\right)\right]}_{\triangleq \psi_{m, n}(\tau)} d \tau, \quad m, n \in \mathbb{Z}
$$

Advantages of This Form

- The $\psi_{m, n}(t)$ can be an ON basis for L^{2}
- Good for Data Compression
- Simple, numerically stable inverse
- Leads to efficient discrete-time form

$$
x(t)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} X_{m, n}\left[2^{-m / 2} \psi\left(2^{-m} t-n\right)\right]
$$

This leads to the sampling and the tiling of the $t-1 / s$ plane as shown below:

WT Tiling and Basis Functions

dradrabownh

Example \#1

- A synthetic Chirp Signal
- Frequency decreases with time
- Amplitude increases with time
- Notice that
- High frequency components dominate early
- Low frequency components dominate later
- Low frequency components are stronger

Signal

Wavelet Transform

Example \#2

Speech Signal

- WT coeffs concentrated
- Blocks closely spaced at high f
- Blocks widely spaced at low f

Example \#3: Effectiveness of WT T-F Localization Properties

- Seismic Trace Signal
- Keep 100 largest DCT coefficients
- Large Error...
especially at start of transient
- Same Seismic Trace Signal
- Keep 100 largest WT coefficients
- SMALL Error..
even at start of transient

Summary So Far: What is a Wavelet Transform?

- Note that there are many ways to decompose a signal. Some are:
- Fourier series: basis functions are harmonic sinusoids;
- Fourier transform (FT): basis functions are nonharmonic sinusoids;
- Walsh decomposition: basis functions are "harmonic" square waves;
- Karhunen-Loeve decomp: basis functions are eigenfunctions of covariance;
- Short-Time FT (STFT): basis functions are windowed, nonharmonic sinusoids;
- Provides a time-frequency viewpoint
- Wavelet Transform: basis functions are time-shifted and time-scaled versions of a mother wavelet
- Provides a time-scale viewpoint

$$
\psi_{m, n}(t)=2^{-m / 2} \psi\left(2^{-m} t-n\right)
$$

$$
x(t)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} X_{m, n} \psi_{m, n}(t)
$$

$$
X_{m, n}=\int_{-\infty}^{\infty} x(\tau) \psi_{m, n}(\tau) d \tau,
$$

- Wavelet transform also provides time-frequency view: 1 /scale relates to f
- Decomposes signal in terms of duration-limited, band-pass components
- high-frequency components are short-duration, wide-band
- low-frequency components are longer-duration, narrow-band
- Can provide combo of good time-frequency localization and orthogonality
- the STFT can't do this

Fourier Development vs. Wavelet Development

- Fourier and others:
- expansion functions are chosen, then properties of transform are found
- Wavelets
- desired properties are mathematically imposed
- the needed expansion functions are then derived
- Why are there so many different wavelets?
- the basic desired property constraints don't use all the degrees of freedom
- remaining degrees of freedom are used to achieve secondary properties
- these secondary properties are usually application-specific
- the primary properties are generally application-nonspecific

Why are Wavelets Effective?

- Provide a good basis for a large signal class
- wavelet coefficients drop-off rapidly...
- thus, good for compression, denoising, detection/recognition
- goal of any expansion is
- have the coefficients provide more info about signal than time-domain
- have most of the coefficients be very small (sparse representation)
- FT is not sparse for transients... WT is sparse for many signals
- Accurate local description and separation of signal characteristics
- Fourier puts localization info in the phase in a complicated way
- STFT can't give localization and orthogonality
- Wavelets can be adjusted or adapted to application
- remaining degrees of freedom are used to achieve goals
- Computation of wavelet coefficient is well-suited to computer
- no derivatives or integrals needed
- turns out to be a digital filter bank... as we will see.

The Discrete-Time WT

Recall the formula for the WT coefficients:

$$
X_{m, n}=\int_{-\infty}^{\infty} x(\tau) \underbrace{\left[2^{-m / 2} \psi\left(2^{-m} \tau-n\right)\right]}_{\triangleq \psi_{m, n}(\tau)} d \tau, \quad m, n \in \mathbb{Z}
$$

If the signal $x(t)$ is bandlimited to $B \mathrm{~Hz}$, we can represent it by its samples taken every $T_{S}=1 / 2 B$ seconds: $x[k]=x\left(k T_{s}\right)$.

Our Goal: Since the samples $x[k]$ uniquely and completely describe $x(t)$, they should also uniquely and completely describe the WT coefficients $X_{m, n} \cdots$ HOW DO WE DO IT??

Mathematically Interpret the DWT equation in terms of Signal Processing:

$$
\begin{aligned}
X_{m, n} & =\int_{-\infty}^{\infty} x(\tau)\left[2^{-m / 2} \psi\left(2^{-m} \tau-n\right)\right] d \tau \\
& =\int_{-\infty}^{\infty} x(\tau) \underbrace{\left[2^{-m / 2} \psi\left(2^{-m}\left(\tau-n 2^{m}\right)\right)\right]}_{\triangleq \psi_{m}\left(\tau-n 2^{m}\right)} d \tau \\
& =\int_{-\infty}^{\infty} x(\tau) \psi_{m}\left(\tau-n 2^{m}\right) d \tau \\
& =\left(x^{*} \psi_{m}\right)\left(n 2^{m}\right) \quad x(t) \quad \psi_{m}(t) \quad \underbrace{}_{t=n 2^{m}} X_{m, n}
\end{aligned}
$$

For fixed $m, X_{m, n}$ is $x(t)$ convolved with $\psi_{m}(t)$ and sampled at points $n 2^{m}$.

Remember: $\psi_{m}(t)$ is a bandpass signal... so this is equivalent to filtering $x(t)$ with a BPF.

This leads to a filterbank:

It $\underline{I S}$ possible to implement this filterbank in DT...
...but in general it is not possible to efficiently implement it

Consider a Special Case, Though...

Let $x(t)$ be bandlimited to $B \mathrm{~Hz}$. Choose the mother wavelet to be a modulated sinc function and m_{o} such that the spectrum is as below

Now consider the relationship

 between the filter spectrum and spectra of the scaled versions of the mother wavelet...Don't have to go to finer scale (i.e., smaller s... more negative m) because the BL signal has no power there!

Finest scale we need is on the order of $1 / F_{S}$

Note that we can do this in

 terms of DT processing...
$h_{1}[n]$ and $h_{0}[n]$ implement the DT versions of $\psi(t)$ and $\phi(t)$, respectively. The change in notation to " h " is to allow for the general non-sinc case where the DT filters used are not simply DT versions of the CT filters (like they are here for the sinc case).

Modification of DT approach:

Reverse Cascaded Filter Structure for Inverting the DVT

Multi-Resolution Viewpoint

Provides solid development of
DT Filter Bank Implementation

Multi-Resolution Approach

- Stems from image processing field
- consider finer and finer approximations to an image
- Define a nested set of signal spaces

$$
\cdots \subset V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset L^{2}
$$

- We build these spaces as follows:
- Let V_{0} be the space spanned by the integer translations of a fundamental signal $\phi(t)$, called the scaling function: spanned by $\phi(t-k)$
- So far we can use just about any function $\phi(t)$, but we'll see that to get the nesting only certain scaling functions can be used.

Multiresolution Analysis (MRA) Equation

- Now that we have V_{0} how do we make the others and ensure that they are nested?
- If we let V_{1} be the space spanned by integer translates of $\phi(2 t)$ we get the desired property that V_{1} is indeed a space of functions having higher resolution.
- Now how do we get the nesting?
- We need that any function in V_{0} also be in V_{1}; in particular we need that the scaling function (which is in V_{0}) be in V_{1}, which then requires that

$$
\phi(t)=\sum_{n} h_{0}[n] \sqrt{2} \phi(2 t-n)
$$

where the expansion coefficient is $h_{0}[n] 2^{1 / 2}$

- This is the requirement on the scaling function to ensure nesting: it must satisfy this equation
- called the multiresolution analysis (MRA) equation
- this is like a differential equation for which the scaling function is the solution

The $\boldsymbol{h}_{\mathbf{0}}[\boldsymbol{n}]$ Specify the Scaling Function

- Thus, the coefficients $h_{0}[n]$ determine the scaling function
- for a given set of $h_{0}[n], \phi(\mathrm{t})$
- may or may not exist

$$
\phi(t)=\sum_{n} h_{0}[n] \sqrt{2} \phi(2 t-n)
$$

- may or may not be unique
- Want to find conditions on $h_{0}[n]$ for $\phi(t)$ to exist and be unique, and also:
- to be orthogonal (because that leads to an ON wavelet expansion)
- to give wavelets that have desirable properties

Whence the Wavelets?

- The spaces V_{j} represent increasingly higher resolution spaces
- To go from V_{j} to higher resolution V_{j+1} requires the addition of "details"
- These details are the part of V_{j+1} not able to be represented in V_{j}
- This can be captured through the "orthogonal complement" of V_{j} w.r.t V_{j+1}
- Call this orthogonal complement space W_{j}
- all functions in W_{j} are orthogonal to all functions in V_{j}
- That is:

$$
<\phi_{j, k}(t), \psi_{j, l}(t)>=\int \phi_{j, k}(t) \psi_{j, l}(t) d t=0 \quad \forall j, k, l \in \mathbf{Z}
$$

- Consider that V_{0} is the lowest resolution of interest
- How do we characterize the space W_{0} ?
- we need to find an ON basis for W_{0}, say $\left\{\psi_{0, k}(t)\right\}$ where the basis functions arise from translating a single function (we'll worry about the scaling part later):

$$
\psi_{0, k}(t)=\psi(t-k)
$$

Finding the Wavelets

- The wavelets are the basis functions for the W_{j} spaces
- thus, they lie in V_{j+1}
- In particular, the function $\psi(t)$ lies in the space V_{1} so it can be expanded as

$$
\psi(t)=\sum_{n} h_{1}[n] \sqrt{2} \phi(2 t-n), \quad n \in \mathbf{Z}
$$

- This is a fundamental result linking the scaling function and the wavelet
- the $h_{1}[n]$ specify the wavelet, via the specified scaling function

Wavelet-Scaling Function Connection

- There is a fundamental connection between the scaling function and its coefficients $h_{0}[n]$, the wavelet function and its coefficients $h_{1}[n]$:

Relationship Between $h_{1}[n]$ and $h_{0}[n]$

- We state here the conditions for the important special case of
- finite number $N+1$ of nonzero $h_{0}[n]$
- ON within V_{0} :

$$
\begin{aligned}
& \int \phi(t) \phi(t-k) d t=\delta(k) \\
& \int \psi(t) \phi(t-k) d t=\delta(k)
\end{aligned}
$$

- Given the $h_{0}[n]$ that define the desired scaling function, then the $h_{1}[n]$ that define the wavelet function are given by

$$
h_{1}[n]=(-1)^{n} h_{0}[N-n]
$$

We'll see soon that the " h " coefficients are really DT filter coefficients

- Much of wavelet theory addresses the origin, characteristics, and ramifications of this relationship between $h_{1}[n]$ and $h_{0}[n]$
- requirements on $h_{0}[n]$ and $h_{1}[n]$ to achieve ON expansions
- how the MRE and WE lead to a filter bank structure
- requirements on $h_{0}[n]$ and $h_{1}[n]$ to achieve other desired properties
- extensions beyond the ON case

The Resulting Expansions

- Suppose we have found a scaling function $\phi(t)$ that satisfies the MRE
- Then... $\phi(t-k)$ is an ON basis for V_{0}
- More generally, an ON basis for $V_{j_{o}}$ is $\left\{2^{j_{o} / 2} \phi\left(2^{j_{o}} t-k\right)\right\}_{k=-\infty}^{\infty}$
- Since $V_{j o}$ is a subspace of $L^{2}(R)$ we can find the "best approximation" to $x(t) \in L^{2}(R)$ as follows

$$
x_{j_{o}}(t)=\sum_{k} c_{j_{o}, k} 2^{j_{o} / 2} \varphi\left(2^{j_{o}} t-k\right)
$$

with $\quad c_{j_{o}, k}=\left\langle x(t), \phi_{j_{o}, k}(t)\right\rangle=\int_{-\infty} x(t) 2^{j_{o} / 2} \phi\left(2^{j_{o}} t-k\right) d t$

$$
x_{j o}(t) \text { is a low-resolution approximation to } x(t)
$$

Increasing j_{o} gives a better (i.e., higher resolution) approximation

$$
\cdots \subset V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset L^{2}
$$

The Resulting Expansions (cont.)

- We've set things up so that for some j_{o} and its space $V_{j o}$ we have that

$$
L^{2}=V_{j_{0}} \oplus W_{j_{0}} \oplus W_{j_{0}+1} \oplus W_{j_{0}+2} \oplus \cdots
$$

- We know that an ON basis for $V_{j_{o}}$ is $\left\{2^{j_{o} / 2} \phi\left(2^{j_{o}} t-k\right)\right\}_{k=-\infty}^{\infty}$
- We also know than on ON basis for W_{j} is $\left\{2^{j / 2} \psi\left(2^{j} t-k\right)\right\}_{k=-\infty}^{\infty}$
- Thus we another form of the expansion:

$$
\underbrace{\text { hus we another form of the expansion: }}_{\text {Low-Resolution }} x(t)=\underbrace{\sum_{k} c_{j_{0}, k} 2^{j_{0} / 2} \varphi\left(2^{j_{0}} t-k\right)+\sum_{k} \sum_{j=j_{0}}^{\infty} d_{j, k} 2^{j / 2} \psi\left(2^{j} t-k\right)}_{\text {Wavelet Details }}<\underbrace{}_{\begin{array}{c}
\text { A VERY } \\
\text { useful } \\
\text { expansion in } \\
\text { practice }
\end{array}}
$$

Approximation

$$
c_{j_{0}, k}=\left\langle x(t), \phi_{j_{0}, k}(t)\right\rangle=\int_{-\infty}^{\infty} x(t) 2^{j_{o} / 2} \phi\left(2^{j_{o}} t-k\right) d t \quad d_{j, k}=\left\langle x(t), \psi_{j, k}(t)\right\rangle=\int_{-\infty}^{\infty} x(t) 2^{j / 2} \psi\left(2^{j} t-k\right) d t
$$

Same as the $X_{j, k}$ WT coefficients in the earlier notes

The Resulting Expansions (cont.)

- If we let j_{o} go to $-\infty$ then

$$
L^{2}=\cdots \oplus W_{-2} \oplus W_{-1} \oplus W_{0} \oplus W_{1} \oplus W_{2} \oplus \cdots
$$

- And... the above expansion becomes

$$
\begin{aligned}
& x(t)=\sum_{k} \sum_{j=-\infty}^{\infty} d_{j, k} 2^{j / 2} \psi\left(2^{j} t-k\right) \\
& d_{j, k}=\left\langle x(t), \psi_{j, k}(t)\right\rangle=\int_{-\infty}^{\infty} x(t) 2^{2^{j / 2}} \psi\left(2^{j_{o}} t-k\right) d t
\end{aligned}
$$

- This is most similar to the "true" wavelet decomposition as it was originally developed

The Expansion Coefficients $\boldsymbol{c}_{j_{0}}(\boldsymbol{k})$ and $\boldsymbol{d}_{j}(\boldsymbol{k})$

- We consider here only the simple, but important, case of ON expansion
- i.e., the ϕ 's are ON, the ψ 's are ON, and the ϕ 's are ON to the ψ 's
- Then we can use standard ON expansion theory:

$$
\begin{aligned}
& c_{j_{0}, k}=\left\langle x(t), \phi_{j_{0}, k}(t)\right\rangle=\int x(t) \phi_{j_{0}, k}(t) d t \\
& d_{j, k}=\left\langle x(t), \psi_{j, k}(t)\right\rangle=\int x(t) \psi_{j, k}(t) d t
\end{aligned}
$$

- We will see how to compute these without resorting to computing inner products
- we will use the coefficients $h_{1}[n]$ and $h_{0}[n]$ instead of the wavelet and scaling function, respectively
- we look at a relationship between the expansion coefficients at one level and those at the next level of resolution

Filter Banks and DWT

Generalizing the MRE and WE

- Here again are the MRE and the WE:

$$
\begin{gathered}
\phi(t)=\sum_{n} h_{0}[n] \sqrt{2} \phi(2 t-n) \quad \psi(t)=\sum_{n} h_{1}[n] \sqrt{2} \phi(2 t-n) \\
\quad \begin{array}{l}
\text { scale \& translate: replace } t \rightarrow 2^{j} t-k
\end{array}
\end{gathered}
$$

- We get:

MRE

$\phi\left(2^{j} t-k\right)=\sum_{m} h_{0}[m-2 k] \sqrt{2} \phi\left(2^{j+1} t-m\right)$
Connects $\boldsymbol{V}_{\mathrm{j}}$ to $\boldsymbol{V}_{\mathrm{j}+1}$

WE

$$
\left(\begin{array}{c}
\psi\left(2^{j} t-k\right)=\sum_{m} h_{1}[m-2 k] \sqrt{2} \phi\left(2^{j+1} t-m\right) \\
\text { Connects } W_{\mathbf{j}} \text { to } \boldsymbol{V}_{\mathbf{j}+\mathbf{1}}
\end{array}\right.
$$

Linking Expansion Coefficients Between Scales

- Start with the Generalized MRA and WE:

Convolution-Decimation Structure

$$
c_{j, k}=\sum_{m} h_{0}[m-2 k] c_{j+1, m}
$$

$$
d_{j, k}=\sum_{m} h_{1}[m-2 k] c_{j+1, m}
$$

$$
\begin{aligned}
y_{0}[n] & =c_{j+1}[n] * h_{0}[-n] & \text { Convolution } & y_{1}[n]
\end{aligned}=c_{j+1}[n] * h_{1}[-n] .
$$

Decimation

		\bigcirc		
$k=0$	1	2	3	4
$n=2 k=0$	2	4	6	8

Computing The Expansion Coefficients

- The above structure can be cascaded:
- given the scaling function coefficients at a specified level all the lower resolution c's and d's can be computed using the filter structure

Filter Bank Generation of the Spaces

How do we get

 these???!!!$$
c_{1, k}=\int_{-\infty}^{\infty} x(t) 2^{1 / 2} \phi(2 t-k) d t
$$

Consider case where $\phi(2 t-k)=\operatorname{sinc}(2 B t-k)=\operatorname{sinc}(2 B(t-k / 2 B))$

First, prove this: $x\left(\frac{n}{2 B}\right)=\int_{-\infty}^{\infty} x(t) \operatorname{sinc}(2 B t-k) d t$

$$
\phi(2 t-k)=\operatorname{sinc}(2 B t-k)
$$

So... now we can change this...

Into this...

Connection between Notations of WT Notes

$$
X(s, \tau)=\int_{-\infty}^{\infty} x(t)\left[\frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)\right] d t
$$

$$
x(t)=\int_{0}^{\infty} \int_{-\infty}^{\infty} X(s, \tau)\left[\frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)\right] \frac{d s d \tau}{s^{2}}
$$

$$
X_{m n}=\int_{-\infty}^{\infty} x(t)\left[2^{-m / 2} \psi\left(2^{-m} t-n\right)\right] d t
$$

$$
x(t)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} X_{m n}\left[2^{-m / 2} \psi\left(2^{-m} t-n\right)\right]
$$

Compute $d_{j}(k) \ldots \& c_{j}(k) \ldots$
using filter bank

$$
x(t)=\sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} d_{j}(k)\left[2^{j / 2} \psi\left(2^{j} t-k\right)\right]
$$

$$
x(t)=\sum_{k} c_{j_{0}, k} 2^{j_{0} / 2} \varphi\left(2^{j_{0}} t-k\right)+\sum_{k} \sum_{j=j_{0}}^{\infty} d_{j, k} 2^{j / 2} \psi\left(2^{j} t-k\right)
$$

Another Way of Viewing the WT: The Coefficient Pyramid

Another Way of Viewing the VVT: Time-Frequency Tiling

Computational Complexity of DWT

For a signal of length N : \# of Multiplies \& Adds is $O(N)$
Lower order than the FFT which is $O\left(\operatorname{Nlog}_{2} N\right)$
But watch out for the multiplicative constant!
Each Filter has length $L \ll N$
For $1^{\text {st }}$ Stage:

- Each of two filters: computes $N / 2$ outputs, each requiring L multiples
- \# Multiplies for $1^{\text {st }}$ stage $=N L / 2+N L / 2=N L$

For 2 ${ }^{\text {nd }}$ Stage:

- Each of two filters: computes $N / 4$ outputs, each requiring L multiples
- \# Multiplies for $1^{\text {st }}$ stage $=N L / 4+N L / 4=N L / 2$

For 3 ${ }^{\text {rd }}$ Stage:

- Each of two filters: computes $N / 8$ outputs, each requiring L multiples
- $\#$ Multiplies for $1^{\text {st }}$ stage $=N L / 8+N L / 8=N L / 4$

$$
\# \text { of Mult. }<N L \sum_{m=0}^{\infty} 2^{-m}=2 N L
$$

So, What's It Good For?

- signal/image data compression
- computer vision
- enhancing noisy signals
- sonar/radar processing
- biomedical signal processing
- digital communications
- studying turbulance
- geophysical signal processing
- music synthesis
etc., etc., etc.!!!

WT-BASED Compression Example

- Side info sent to describe allocations

The WT is VERY good at efficiently representing lines and edges
One application is to the compression of fingerprint images:

- FBI uses the WT for compression of its fingerprint images
- Can achieve a $26: 1$ compression ratio with little degradation
- Avoids the "blocking effects" of JPEG

Original Fingerprint Image Decoded Fingerprint Image after 26:1 CR

From http://www.amara.com/IEEEwave/IW_fbi.html
See also http://www.c3.lanl.gov/~brislawn/FBI/FBI.html

Summary

The Wavelet transform provides a means to "see" the time-frequency structure of a signal:

- The WT consists of the coefficients of a signal expansion
- the basis functions correspond to t-f cells
- The t-f cells adjust their shape to cover the same number of cycles
- short and wide at low freequencies
\rightarrow tall and narrow at high frequencies
- The representation can be easily computed from signal samples
- simple cascaded filter bank
- computational complexity is $O(N)$; lower order than the FFT
- The representation is non-redundant (orthogonal)
- good for compression
- Statistical methods have been developed for de-noising
- work best when signal is concentrated in WT domain

Papers:

Overview Tutorials

A. Graps, "An Introduction to Wavelets," IEEE Computational Science and Engineering, Summer 1995, pp. 50-61.
A. Bruce, D. Donoho, and H. Gao, "Wavelet Analysis," IEEE Spectrum, Oct. 1996, pp. 26-35.
M. Cody, "The Fast Wavelet Transform," Dr. Dobbs Journal, April 1992, pp. 16-28.
< Code Listing on pp. 100-101 >
P. Bentley and J. McDonnell, "Wavelet Transforms: An Introduction," Electronics and Communication Engineering Journal, August 1994, pp. 175 186.

Technical Tutorials

O. Rioul and M. Vetterli, "Wavelets and Signal Processing," IEEE Signal Processing Magazine, Oct. 1991, pp. 14-38.
A. Cohen and J. Kovacevic, "Wavelets: The Mathematical Background," Proceedings of the IEEE, April 1996, pp. 514-522.
N. Hess-Nielsen and M. V. Wickerhauser, "Wavelets and Time-Frequency Analysis," Proceedings of the IEEE, April 1996, pp. 523-540.

Books:

The first book listed gives a nice, gentle overview of wavelets; it is good for technical folks who want to know more but don't have the time to slog through more technical tomes.
The second book is intended for statisticians, but gives one of the nicest concise treatments I've seen of the mathematical theory of wavelets; it also covers denoising.
The other books assume a background in standard DSP topics.
B. Burke Hubbard, The World According to Wavelets, A. K. Peters, 1995.
R. Todd Ogden, Essential Wavelets for Statistical Applications and Data Analysis, Birkhauser, 1997.
M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall, 1995.
G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 19.96.
A. Akansu and R. Haddad, Multiresolution Signal Decompositions:

Transforms, Subbands, and Wavelets, Academic Press.

