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Wavelet Example: Haar Wavelet
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Suppose we specify the MRE coefficients to be 1 1[ ] ,
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Then the MRE becomes ( ) (2 ) (2 1)t t t    

Clearly the scaling function (t) as shown below satisfies this MRE
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• Special case:  finite number N of nonzero h(n) and  ON wavelets & scaling functions
• Given the h(n) for the scaling function, then the h1(n) that define the wavelet function 

are given by h1[n] = (–1)n h(N – 1 – n) where N is the length of the filter
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Clearly the scaling function (t) and wavelet (t) shown below satisfies this WE
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Define a nested set of signal spaces

Let  V0 be the space spanned by the integer translations of scaling function (t) 
so that if x0(t) is in V0 then it can be represented by:
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Q: For the Haar scaling function what kind of functions are in V0??

A: Those that are “piece-wise” constant on the intervals [k,k+1] for integer k…
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If we let V1 be the space spanned by integer translates of (2t) then V1 is 
indeed a space of functions having higher resolution.
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Q: For the Haar scaling function what kind of functions are in V1??

A: Those that are “piece-wise” constant on the intervals [k/2,k/2+ ½] for integer k

Note:  x0(t) is also in V1 because it is also “piece-wise” constant on [k/2,k/2+ ½]

In fact, x0(t) is also in every Vj for j  0 … that is the nesting!!!
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If we keep going to higher j values we get finer and finer resolution and 
can ultimately express (in the limit of j) any finite energy signal
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Figure 15.8 from Textbook

This MRA 
development 
started at V0
and worked 
its way up to 
higher 
resolutions…
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How do the wavelets enter into this? 
• To go from Vj to higher resolution Vj+1 requires the addition of “details”

– These details are the part of Vj+1 not able to be represented in Vj

– This is captured through Wj the “orthogonal complement” of Vj w.r.t Vj+1
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This is in Vj

This is in Wj

Note that it is orthogonal to 
the signal in Vj

This is in Vj+1 

It is found by adding the two 
functions above
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The filterbank viewpoint that the MRA analysis lead to starts from some 
high-level resolution and works down… so let’s see how that works…

We’ll start at the resolution level where the scaled version of (t) has 
width of the sampling interval Ts

Figure 15.7 from Textbook
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Daubechies’ Compactly-Supported Wavelets

From Ch. 6 of I. 
Daubechies, Ten 
Lectures on 
Wavelets, SIAM 
1992
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