Wavelet Example: Haar Wavelet

- Special case: finite number N of nonzero h(n) and ON wavelets & scaling functions
- Given the h(n) for the scaling function, then the $h_1(n)$ that define the wavelet function are given by $h_1[n] = (-1)^n h(N 1 n)$ where N is the length of the filter

Thus the WE coefficients are $h_1[n] = \left\{ \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\}$

Then the WE becomes $\psi(t) = \sum_{n} h_1(n)\sqrt{2}\varphi(2t-n) \quad \longrightarrow \quad \psi(t) = \varphi(2t) - \varphi(2t-1)$

Clearly the scaling function $\phi(t)$ and wavelet $\psi(t)$ shown below satisfies this WE

Define a nested set of signal spaces

$$\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots \subset L^2$$

Let V_0 be the space spanned by the integer translations of scaling function $\phi(t)$ so that *if* $x_0(t)$ is in V_0 *then* it can be represented by:

$$x_0(t) = \sum_k a_k \varphi(t-k)$$

Q: For the Haar scaling function what kind of functions are in V_0 ??

A: Those that are "piece-wise" constant on the intervals [k,k+1] for integer k...

Next 3

If we let V_1 be the space spanned by integer translates of $\phi(2t)$ then V_1 is indeed a space of functions having higher resolution.

Q: For the Haar scaling function what kind of functions are in V_1 ??

A: Those that are "piece-wise" constant on the intervals $[k/2, k/2 + \frac{1}{2}]$ for integer k

Note: $x_0(t)$ is also in V_1 because it is also "piece-wise" constant on $[k/2, k/2 + \frac{1}{2}]$ In fact, $x_0(t)$ is also in every V_j for $j \ge 0$... that is the nesting!!!

If we keep going to higher j values we get finer and finer resolution and can ultimately express (in the limit of j) any finite energy signal

Figure 15.8 from Textbook

How do the wavelets enter into this?

- To go from V_i to higher resolution V_{i+1} requires the addition of "details"
 - These details are the part of V_{i+1} not able to be represented in V_i
 - This is captured through W_i the "orthogonal complement" of V_i w.r.t V_{i+1}

The filterbank viewpoint that the MRA analysis lead to starts from some high-level resolution and works down... so let's see how that works... We'll start at the resolution level where the scaled version of $\phi(t)$ has width of the sampling interval T_s

→ Samples are approximately proportional to the scale coefficients at j_{max}

8 Next

Daubechies' Compactly-Supported Wavelets

	761	Nha			n	Nha
N = 2	0	.4829629131445341		N = 8	0	.0544158422431072
	1	.8365163037378077	1		1	.3128715909143166
	2	.2241438680420134			2	,6756307362973195
	3	1294095225512603			3	.5853546836542159
N = 3	0	.3326705529500825			4	0158291052563823
	1	.8068915093110924			5	2840155429615824
	2	.4598775021184914			6	.0004724845739124
	3	1350110200102546			7	.1287474266204893
	4	0854412738820267			8	0173693010018090
	5	.0352262918857095			9	0440882539307971
N = 4	0	.2303778133088964			10	.0139810279174001
	1	.7148465705529154			11	.0087460940474065
	2	.6308807679298587		1	12	0048703529934520
	3	0279837694168599			13	0003917403733770
	4	- 1870348117190931			14	.0006754494064506
	5	0308413818355607			15	0001174767841248
	1.2	.03288301166688852		N = 9	0	0380779473638778
	7	0105974017850690			ĩ	2438346746125858
N = 5	0	1601023979741929			2	6048231236900955
14 - 0	1	038303607071805			a	6572880780512735
		7343085384377736			a a	1331073858346883
	1	1384381450013303				- 2932737832791683
	2	.1304201439013203				- 00014078333390403
	12	2122940870063623				1485407403391258
	2	- 3322448695846361			1.2	11007107100110001200
	6	.0775714935400459				0307230814783385
1	1	0062414902127983				0616328280613278
		0125807519990820 002005705095.4739			10	0002303471146340
	- 9	.0033357252854738		1	11	0223010021230198
N = 6	0	.1115407433501095			1.2	0047232047577518
	1.	.4946238903984533			13	0042813036824633
	1 2	.7511339080210959			1.44	000000000000000000000000000000000000000
	1 3	.3152503517091982		1	10	0002303551635232
	1.2	2282648939654400			16	- 300/2819631669427
	8	1297668675672625		N	17	,0000393473203163
	6	.0975016055873225	L	N = 10	1 .	.0266700579005473
	17	.0275228655303053	1			.1881768000776347
1	8	0315820393174862	L		1 2	.5272011889315757
	.9	.0005538422011614	L		3	.6884590394534363
1	10	.0047772575109455	1	1	1.4	.2811723436606715
	11	0010773010853085	L	1	5	2498494243271598
N = 7	0	.0778520540850037			6	1959462743772862
	1	.3965393194818912		1	17	.1273693403357541
	2	.7291320908461957	L	1	8	.0930573646035547
	3	.4697822874051889	L		9	0713941471663501
	1.4	1439060039285212	L		10	0294575368218399
	5	2240361849938412	1		11	.0332126740593612
	6	.0713092192668272	1		12	.0036065535669870
I	7	.0806126091510774	L		13	0107331754833007
	8	0380299369360104			14	.0013963517470688
	9	0165745416306655	L	1	15	.0019924052951925
	10	.0125509985560986			16	0006858566949564
1	11	.0004295779729214	1		17	0001164668551285
	12	0018016407040473			1.8	.0000935886703202
	13	.0003537137999745	J		19	0000132642028945

From Ch. 6 of I. Daubechies, *Ten Lectures on Wavelets*, SIAM 1992

