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Abstract 

 

This thesis is to study the compression of ECG samples by EZW and Modified 

EZW (MEZW) algorithms, and compare their effectiveness with a wavelet based linear 

prediction (WBLP) method published in a journal paper.  

In EZW algorithm, 3-level decomposition is performed to the original ECG 

samples, and the wavelet coefficients at different sub-band representing the same spatial 

location in the ECG samples are loaded into a spanning tree. Through several dominant 

passes and subordinate passes, significant coefficients are selected and refined 

progressively and encoded following the spanning tree structure.  

MEZW is a method derived from EZW method. The difference between them is 

that only one dominant pass and one subordinate pass are performed in MEZW. The 

dominant pass is to select all the significant coefficients above the threshold at one time 

and they are uniformly quantized in the subordinate pass.  

This thesis also simulates the compression results from WBLP. In this method, 

QRS detection is first conducted to detect the ECG beats, and each beat is period 

normalized and amplitude normalized to create the PAN beats. Discrete wavelet 

transform is performed on the PAN beats and a number of significant coefficients at the 

same index locations across the beats are selected for every beat. These significant 

wavelet coefficients are stacked across the beats to minimize the variance of the data 

sequence before feeding into the linear predication filter. The outputs of the linear 

prediction filter are the residual sequences with further reduced variances.  

 The simulation results show that MEZW has the best compression performance 

among the three. The abnormal ECG signal reconstruction achieved by MEZW at an 

  



 xi

average rate of 230b/s is of high quality. While WBLP is very effective at compressing 

sinus-rhythm ECG signals, when compressing abnormal ECG signals, it has to keep the 

low compression ratios to avoid the big reconstruction errors. MEZW and EZW are good 

substitutes for WBLP at compressing abnormal ECG signals.  

 If the computation time is a concern, both EZW and MEZW, especially EZW 

method, need to be applied to each of the ECG beats in order to break down the 

computational complexity.  
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Chapter 1   Introduction 
 
 
 This thesis presents research on applying 1-D EZW [1] and modified EZW 

(MEZW) algorithms to compress the ECG signals to maximize the compression ratios 

with minimum distortion rates. The thesis simulates the 1-D EZW algorithms applied to 

ECG compression in several different ways and gives results comparable with the those 

from a journal published novel compression method: Wavelet Based Linear Prediction 

[2] (WBLP).  Moreover, it demonstrates the EZW’s superior effectiveness to WBLP. 

This thesis also simulates the results from WBLP algorithm and discusses its advantages 

and disadvantages. 

 

1.1 Motivation 

Compression of electrocardiography (ECG) is necessary for efficient storage and 

transmission of the digitized ECG signals. A typical ECG monitoring device generates a 

large amount of data in the continuous long-term (24-48 hours) ambulatory monitoring 

tasks. For good diagnostic quality, up to 12 different streams of data may be obtained 

from various sensors placed on the patient’s body. The sampling rates of ECG signals are 

from 125Hz to 500Hz, and each data sample may be digitized into 8 to 12 bits binary 

number. Even with one sensor at the lowest sampling rate of 125 Hz and 8-bit encoding, 

it generates data at a rate of 7.5KB per minute and 450KB per hour. For a sampling rate 

of 500Hz and 12-bit encoding recording, it generates data at a rate of 540KB per minute 

and 30MB per hour. The data rate from 12 different sensors totally will generate 12 times 

amount of data and it is enormously big. Besides, recording over a period of time as long 

as 24 hours maybe needed for a patient with irregular heart rhythms. The monitor device 
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such as Holter must have a memory capacity of about 400-800 MB for a 12-lead 

recording, but such a big memory cost may render a solid-state commercial Holter device 

impossible. Thus, efficient ECG data compression to dramatically reduce the data storage 

capacity is a necessary solution. On the other hand, it makes possible to transmit ECG 

data over a telephone line from one cardiac doctor to another cardiac doctor to get 

opinions.  

 

1.2 Research Goals 

The primary goal of this research is to contribute to the fundamental 

understanding of applying of 1-D Embedded Zero Tree and modified 1-D Embedded 

Zero Tree algorithm to compress the ECG signals, and compare their compression 

effectiveness and computational complexities with WBLP method, a known method 

published in a journal paper.  

It will take four steps to accomplish the goals: 1) To detect the QRS complex 

accurately. 2) To simulate the results from WBLP method. 3) To apply the 1-D EZW and 

modified 1-D EZW algorithm to compress the ECG signals. 4) To compute the 

computational complexities of the WBLP method and EZW based method.  

 

1.3 Research Background 

The electrocardiogram (ECG) essentially reads the electrical impulses that 

stimulate the heart to contract, it is probably the most useful tool to determine whether 

the heart has been injured or how it is functioning.  
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Figure 1.1 Standard ECG waves and intervals [7].  

 

As figure 1 shows, the ECG is made up of a number of segments or waves: P 

wave, QRS wave, and T wave, they are diagnostic critical waves. The P wave represents 

the atrial depolarization where the blood is squeezed from the atria to the ventricles. The 

QRS segment is when the ventricles depolarize and squeeze the blood from the right 

ventricle to the aorta; The T wave represents the period of time when the ventricles 

repolarize (get ready for the next heart beat).  

 Exiting data compression techniques for ECG signals fall in three categories: 1) 

the direct data transformation methods, 2) transformation methods, and 3) parameter 

extraction techniques.  

 This thesis uses one of the transformation methods to analyze the spectral and 

energy distributions of the ECG signals and to detect and eliminate the redundancies. The 
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transformation is conducted to each of the ECG beats. ECG beats are delineated by RR 

waves, and one RR wave starts from the peak sample of one QRS complex, and ends to 

the sample right before the peak of the next QRS complex, as figure 1 shows.  

The basic concept of the cycle-to-cycle compression is to represent a periodic 

signal by one cycle period and a count of the total number of cycles, and it is only valid 

for strict periodic signals where all the signal cycles are the same. Though the ECG 

waveforms do not bear such characteristic, ECG is considered a quasi-periodic signal [8], 

especially for a normal ECG as shown in figure 1.  

It is noted that it is very important to accurately detect the QRS complex for cycle 

to cycle compression because it guarantees the adjacent cycles are statistically dependent 

to one another. While it is easier to detect the QRS complex from the normal ECG 

signals, it can be very difficult to accurately detect it from the abnormal ECG signals. 

This thesis uses the technique reported in [3] for the QRS detection, and it applies three 

steps to process the original ECG signals: 1) linear digital filtering, 2) nonlinear 

transformation, 3) decision rule algorithm.  

After the delineation of the QRS complex, both WBLP algorithm and EZW 

algorithm can use the results to conduct cycle-to-cycle compression.  

The WBLP method normalizes the period of each beat by resampling each beat so 

that each beat contains the same number of samples. It also normalizes the amplitude of 

each beat by scaling a factor of maximum amplitude of the beat. Thus, the generated 

period and amplitude normalized (PAN) beats bear more correlations. Next, the 

Daubechies-4 (D4) wavelet is used for representing each PAN beat, and Mallat’s 

pyramidal DWT algorithm is used to compute the wavelet coefficients. To increase the 
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compression ratio, only the residual sequence obtained after linear prediction of the 

significant wavelet coefficients is transmitted to the decoder [2]. At the decoder, the 

original signals are reconstructed by the significant wavelet coefficients.  

In the 1-D EZW algorithm, each ECG beat will be decomposed into several sub-

bands by wavelet transform, and there are wavelet coefficients in different sub-bands that 

represent the same spatial location in the ECG beat. Each coefficient at a lower band will 

have two coefficients from its next higher band as its descents, so it is easy to visualize it 

as a tree structure. The coefficients closer to the root of the tree normally have higher 

magnitudes than coefficients further away from the root. The large compression ratio is 

achieved by conducting dominant passes to select the wavelet coefficients bigger than the 

threshold and encode their positions following the tree’s structure, and the recording of 

the selected significant wavelet coefficients are refined by the subordinate passes.  

Modified the 1-D EZW algorithm is to only conduct one dominant pass, and in 

the subordinate pass, the selected wavelet coefficients are uniformly quantized.  

This thesis also applies 1-D EZW and 1-D modified EZW algorithms directly to 

the ECG samples without the QRS detection. While they bypass the hassle to delineate 

the beats, their worst case computational complexity, especially for 1-D EZW, to too high 

to put them into use if the computation time is a concern.  
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Chapter 2 Algorithms 
 
 
 
 This section will discuss the algorithms to compress the ECG signals. One is the 

journal published algorithm: WBLP [2], the other one is 1-D EZW method. Both of them 

employ wavelet transform to compress the digitized ECG signals.  

 From the generic EZW algorithm, this section derives modified 1-D EZW 

(MEZW) method in order to on one hand reduce the computational complexity of the 

generic EZW method, and on the other hand, achieve higher compression ratios with 

comparable distortion rates.  Because the beat detections involve a lot of extra pre-

processing work, especially it can be very difficult to delineate beats from ECG signals 

with abnormal waves, this section explores direct application of EZW on compressing 

ECG samples without QRS detections.  

 The structure of this section is to first talk about the detections algorithm since it 

is the pre-processing step required for all the cycle-to-cycle compression algorithms. 

Next, this section will lay out all the compression algorithms one by one in details.  

  

2.1       QRS Detections 

QRS detection is the most important pre-processing step for cycle-to-cycle 

compression algorithms. Inaccurate delineations of ECG beats will detriment the inter-

cycle correlations between the beats and result in more information redundancies in the 

compression process.  
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An ECG beat is defined as the signal sample from one R-wave to the next. The 

technique documented in [3] uses non-syntactic approach to detect QRS complex: rely on 

characteristic features of QRS complexes to perform the simple detection. 

The beat detection algorithm can be broken down into three sections: linear digital 

filtering, nonlinear transformation, and decision rule algorithms as the figure 2.1 shows. 

 

 

  

Bandpass 
filter (5Hz-
12Hz) 

d/dt absolute 
value 

MA 
filter 

 
 

Delay 

 Peaks 
T2

T1 
 

 

 

Figure 2.1: Block diagram of QRS detections. 

 

2.1.1 Band-pass filter 

The band-pass filter shown in figure 2.2 is two filters cascaded, one is a low pass 

filter, and the other one is a high pass filter as seen in figure 2.2.  

 

Output 
High pass 
filter (5 Hz) 

Low pass 
filter (12 Hz)

Figure 2.2:  Block diagram of the band pass filter  
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The transfer function of the second-order low pass filter is [3]  

                           .
)1(
)1()( 21

26

−

−

−
−

=
z
zzH                                                                   (2.1) 

and its difference equation [3] is 

                      
).12()6(2              

)()2()(2)(
TnTxTnTx

nTxTnTyTnTynTy
−+−−

+−−−=
                                 (2.2) 

where T is the sampling period. The cutoff frequency is about 12Hz and the gain is 36. 

The filter processing delay is 6 samples.  

The transfer function of the high pass filter is given by [3]  

                       .
)1(

)321()( 1

3216

−

−−

+
++−

=
z

zzzH                                                         (2.3) 

Its difference equation is [3] 

                          
)].32()()([

)16(32)(
TnTxnTxTnTy

TnTxnTy
−−+−−

−=
        (2.4)     

The low cutoff frequency of this filter is about 5 Hz, the gain is 32.  

 

2.1.2 Derivatives 

Differentiation of the filtered signals is to provide the slope information of QRS 

complex since there are quick rise and fall times of the QRS complex in the ECG signals, 

taking the derivative of the ECG would make it easier to detect when the QRS complex 

occur.  

 The transfer function of the five-point differentiation equation is given by [2] 

   ).22)(
8
1()( 2112 zzzzTzH ++−−= −−                                        (2.5) 

Its difference equation is given by [2] 
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 It has 2 samples delay. 

 

2.1.3 Nonlinear transform 

Instead of squaring the output signal from the derivative filter point by point as 

stated in [3], this thesis rectifies the signals by taking their absolute values [9], thus 

reducing the gain sensitivities to improve the performance of the decision rule algorithm 

described in section 2.1.5.  

 The equation of this operation is  

                                  .)()( 2nTxnTy =                                                                        (2.7) 

 

2.1.4 Moving-window integration 

The window size has to be taken properly, neither so wide that merges the QRS 

complex and T wave together, nor so narrow that produces several peaks in the 

integration waveform. The proper window size will give waveform feature information 

besides the R wave. It is calculated from [3]  

                   )].(........))2(())1(()[1()( nTxTNnTxTNnTx
N

nTy ++−−+−−=         (2.8)  

where N is the width of the integration window [3]. This thesis takes N as 30. 

 

2.1.5 Decision rule algorithm  

As seen in figure 2.1, the algorithm sets two thresholds T1 and 
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T2  to make decisions. T1 is set for the filtered ECG, and T2 is set for the signals produced 

by the moving window integration.  

Thresholds T1 and T2 are running estimated from beat-to-beat in order to adapt to 

the rises and falls of R-waves’ peak amplitudes. Processing delays are considered to 

estimate the average R-R intervals. If an R-wave is not detected after the maximum time 

interval, the algorithm will go back to a certain time interval to search for possible R 

wave candidate by using a new set of lower thresholds. 

Paper [3] gives more details about how to set up the two thresholds and outlines 

the steps to implement the decision rules algorithms through Matlab simulation.   

 

2.1.6 Simulation Results 

This thesis uses the ECG signals from MIT-BIH ECG Compression Test 

Database (cdb) and MIT-BIH Normal Sinus Rhythm Database (nsrdb) hosted in 

PhysioBank [4]. Figure 2.3 shows the original ECG signals from 16773, one of the sinus-

rhythm ECG records, and a sequence of linear filtering and nonlinear transform results.   

 ECG 12431_03 is the ECG signals containing some abnormal beats. Figure 2.4 

shows part of the original signal samples, filtering and detection results. 
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a) 

 

b) 

 

c) 

d) 

e) 

 

(f) 

 
 Figure 2.3: (a) Original ECG signal 16773. (b) Output of band-pass filter. (c) 
Output of differentiator. (d) Output of absolute values. (e) Results of moving-window 
integration. (f) Output pulse stream of detected peaks. 

  



 12

 

(a) 

 
 

(b) 

 

(c ) 

 

 

(d) 

 

 (e) 

 

(f ) 

 

Figure 2.4: (a) Original ECG signal from 12431_03 (b) Output of band-pass filter. (c) 
Output of differentiator. (d) Output of absolute values. (e) Results of moving-window 
integration. (f) Output pulse stream of detected peaks. 
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2.2 Wavelet Based Linear Prediction Algorithm 
 

After the beats detections, this algorithm conducts the cycle-to-cycle 

compressions.  

2.2.1 Period and Amplitude Normalizations 

In order to bring more inter-cycle and intra-cycle correlation among the beats, the  

algorithm re-samples each beat to convert beats originally having different periods into 

beats with a constant period. The selected sampling rate should be always higher than 

each beat’s original sampling rate to guarantee no distortion, and the modified sampling 

rate should satisfy Nyquist criteria. The mean beat period (MBP) is estimated from some 

initial cycles of the data being coded [2].  

 Thus, at the encoder side, each original beat will send to an interpolation filter 

with its individual up-sampling factor Li, and at the decoder side, each PAN beat will 

bring back to its original sampling rate by a decimation filter with down-sampling factor 

Mi, and Mi should be equal to Li.  Figure 2.5 given by [2] shows the diagram of this 

process.  

 

   
↑Li xi (n) 

 Figure 2.5: Period Norm

 

 Through dividing every

value of that beat, amplitud

amplitude as unity. If the M

perfect reconstruction from PA

 

x1(n)
H(z) 

alization Diagram

 signal sample wi

e normalization 

BP is bigger than

N is guaranteed as
x2(n)
↓ Mi yi(n) 

. 

thin the beat by the maximum amplitude 

makes every beat having the highest 

 every original beat’s period, the near 

 Figure 2.6 shows.  
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(a) 

 

(b) 

 

(c ) 

 

(d) 

  

 Figure 2.6 (a) Original ECG beats (b) PAN beats (c ) Reconstructed from PAN  
                             beats  (d) Reconstruction errors. 
 
 It is clear from Figure 2.6(d) that the recovery errors from PAN beat to the 

original beats are in the level of 10-15, so it is negligible and the process can be considered 

perfectly reversible. 

 But for some ECG signals, when some beats have original periods bigger than 

MBP, the reconstructions from PAN beats will not be nearly perfect. For example, in 
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ECG record 12431_03, the 18th and 9th beats originally contain 394 samples and 258 

samples, both of them are bigger than MBP which is 256 samples. The period 

normalization will bring in distortions to these two beats as figure 2.7 (c ) shows.  

 

 

(a) 

 

(b) 

 

(c ) 

 

        Figure 2.7 (a) Original ECG 12431_03; (b) PAN beats; (c) PAN restoration errors. 

 

2.2.2 Significant Wavelet Coefficients 

The algorithm uses Daubechies-4 (D4) wavelet for representing each PAN beat, 

and uses Mallat’s pyramidal DWT algorithm to compute the wavelet coefficients for the 

signal. The algorithm normalizes the beat to be 256 samples long as Mallat’s algorithm 

requires that the number of samples in the sequence be a power of 2.  
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 Because not all the wavelet coefficients are significant, only a fixed set of 

significant coefficients which can keep important rhythm and morphological information 

need to be retained for the beats reconstruction. The algorithm chooses first K beats and 

sorts the absolute values of each beat’s wavelet coefficients in the descending order. The 

final set of NR number of significant coefficients is the union of the Nm number of 

significant coefficients from each beat. The paper [2] reports the NR is 50, K is15 and Nm 

is 30.  

 The simulation result shows that for ECG signal 16265, the locations of the 

retained approximation wavelet coefficients are:  

     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    

21 22    23    24    25    26    27    28    47   116   117 119   120   122   123   124   125   126   

127   128   129 130   131 

and the locations of the retained detail wavelet coefficients are: 

1     2     5   125   126   127   129   130 

Thus, for every PAN beat, only wavelet coefficients at these locations will retain their 

values, all the rest will simply be set as zeros. 

Figure 2.8(a) plots one of the PAN beats having 256 samples in the sequence. 

2.8(b) and 2.8(c) show respectively the plot of approximate coefficients and detail 

coefficients from one PAN beat. Each wavelet transformed PAN beat consists of 131 

approximate and 131 detail coefficients.  
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(a) 

 

(b ) 

 

(c ) 

            Figure 2.8 (a) One PAN beat. (b) Approx. coeffs. (c) Detail coeffs. 
                             
 

Figure 2.9(a) shows the 42 retained approximate coefficients, and all the other 

approximate coefficients are set as zeros. 2.9(b) shows the 8 retrained detail coefficients, 

and the rest detail coefficients are set zeros.  

 

2.2.3 Linear Prediction 
 

In order to further reduce the bit cost to encode the wavelet coefficients, 

wavelet coefficients across the PAN beats at the corresponding scales and locations are 

stacked to form a near-cyclo-stationary sequence.  
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(a)  

 

(b) 

 
 Figure 2.9 (a) Retained 42 approx. coeffs. (b) Retained 8 detail coeffs. 
                           
 
 The expression of the grouped vector sequence is given in [2], figure 2.10 shows 

one group of stacked vectors, they are formed by stacking every PAN beat’s wavelet 

coefficients at scale 4 and location 9. The PAN beats are from original ECG record 

16265.  

 

Figure 2.10 Stacked Wavelet Coeffs at scale 4 and location 9 across  
                   ECG 16265’s PAN beats. 
 

Figure 2.11 shows another beat from ECG record 12431_02. 
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          Figure 2.11 Stacked Wavelet Coeffs. at scale 4 and location 9  
                             across ECG 12431_02’s PAN beats. 
 

The variance of the sequence in figure 2.10 is only 4.0255e-004, and the variance 

of the sequence in figure 2.11 is 0.0263.  

The average variance of the stacked sequences for ECG record 16265 from totally 

96 PAN beats is 0.0084, and if not performing stacking, the average variance is 0.0711. 

The later one is almost 10 times bigger than the former. Stacking the wavelet coefficients 

does help to reduce the variances of the sequence of data processed.  

For the ECG record 12341_02, the average variances are 0.0669 and 0.1205 

respectively from performing stacking and non-stacking. The later one is almost double 

the former one. 

Thus, it is obvious that stacking the coefficients at corresponding scales and 

locations will help reduce the variance of the data sequence, and help reduce the bit cost 

to encode them. 

Differential encoding is performed on the stacked sequences.  Autocorrelation 

method is employed to find the linear predictor coefficients [5], and only the residues, or 

the difference between the samples are encoded [6]. The differencing operation is 

performed without the accumulation of the quantization noise. [5]  
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Figure 2.12 shows the residues of the sequence in figure 2.10. Its variance is  

4.4146e-004.  

 
Figure 2.12: The residues of the sequence in figure 2.10. 

 

Figure 2.13 shows the residues of the sequence in figure 2.11, its variance is 

0.0041, almost 50 times less than that of the data sequence in figure 2.11.  

Figure 2.13: The residues of the sequence in figure 2.11. 

 

 The variance comparison table 2.1 and 2.2 show a clearer picture of the effect of 

linear prediction method on reducing the variances of the sequences from stacked wavelet 

coefficients of ECG 16265 and ECG 12341_02.  

 

ECG  
16265 

Non-stacked 
sequence 

Stacked sequence Residues from stacked-
sequence 

Average 
variances 

    0.0711   0.0084           0.0107 

 
 Table 2.1 Variances comparisons (ECG 16265). 
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ECG  
12341_02 

Non-stacked 
sequence 

Stacked sequence Residues from stacked-
sequence 

Average 
variances 

    0.1205         0.0669           0.0614 

 
 Table 2.2 Variances comparisons (ECG 12341_02). 
  

 The result from table 2.1 indicates for some ECG signals residues may not always 

have smaller variances compared with original stacked data sequence. If the variance 

from the original data sequence is already small enough, the linear prediction method will 

not help to further reduce the encoding cost. But for many other ECG signals in the 

opposite situations, the linear prediction method does generate residues with reduced 

variance as seen in table 2.2.  

 Linear prediction method is effective for compressing ECG records, such as ECG 

12490_02, ECG 12531_03, and ECG 12936_01. Generally speaking, linearly prediction 

is effective on ECG signals containing abnormal beats or non-periodic waveforms.  

Average variance Data sequence of stacked 

coefs. across the beats 

Residues from data sequence of 

stacked coefs. across the beats 

ECG 12490_02    0.2238       0.1740 

ECG 12531_03   1.7345      1.4806 

ECG 12936_01    0.8682      0.2870 

  
     Table 2.3 Variances comparisons from testing three objects. 
 
 
2.2.4 Beat Reconstruction 
 

After passing through the inverse linear prediction filter, the residues are 

processed, and the reconstructed wavelet coefficients across the beats are re-ordered to 
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get the DWT coefficients for each beat.  The reconstructed PAN beats are computed by 

inverse DWT those coefficients, and the original ECG beats’ periods and amplitudes are 

brought back by re-sampling and scaling the parameters discussed in the section 2.2.1. 

The detail schematic diagram of the encoding and decoding is provided in [3]. 

 

2.3   1-D Embedded Zerotree Wavelet (EZW) 
 

The EZW (Embedded Zerotree Wavelet) algorithm is a simple, yet remarkably 

effective lossy image compression algorithm. [6]. It was designed by J.M.Shapiro in 

1993. It generates a progressive compressed bit stream and is one of the highly attractive 

data compression algorithms.  
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Figure 2.14: 1-D wavelet decompos
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EZW is one of the transform based data compression algorithms. Discrete wavelet 

transform is the transform used in EZW algorithm, and it transforms the original signal to 

a joint time-scale domain. The natural ECG signal in general has a low pass spectrum and 

a high pass spectrum, and the high-pass spectrum contains the smallest details. The low 

pass spectrum with greater details can be further split into a low pass spectrum and a high 

pass spectrum. This process can be continued again and again as figure 2.14 shows until 

it reaches the desired number of decomposition bands. 

 Considering the data compression efficiency and computational complexity, this 

thesis uses 3-level decomposition as seen in figure 2.14. The energy in the sub-band 

decreases, thus for a wide class of ECG signals the wavelet coefficients tend to decrease 

in absolute magnitude as ECG signals going to the finer scales, or the higher frequency 

sub-bands.  

Because larger coefficients in the coarse scales contain more information and thus 

are more important, EZW algorithm encodes the larger wavelet coefficients first, and 

through a zero-tree structure, to encode the less significant coefficients.  A zero tree 

structure is a spanning tree that each parent object has 2 children, and each of the children 

in turn acts as a parent to have two children, and so on. The zero tree built from the 3-

level wavelet discomposed 1-D discrete ECG signal shown in the figure 2.15 is not a 

strict spanning tree structure, because the spanning only starts from the second layer of 

the tree. As seen from figure 2.15, the elements at the very top level of the tree are 

approximate wavelet coefficients from the coarsest scale LLL filtering, followed by its 

counterpart detail coefficients after the LLH filtering. It starts to span from the 
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coefficients from the LH filtering and the bottom level resides detail coefficients after the 

most refined filtering.  

 

 

 

         

 

       

 

 

        

                

 LH 

LLH 

LLL  

  H 

Figure 2.15: Wavelet coefficients in the tree structure.  

 

 If the original discrete ECG samples are interpolated into the length of its next 2’s 

power and the interpolated length is N, then the length of the wavelet coefficients from H, 

the most refined scale, is N/2. Accordingly, the lengths for LH, LLH and LLL are N/4, 

N/8 and N/8 respectively. The total number of coefficients in the spanning tree is N. 

Wavelet decomposition does not increase the number of data to compress.  

 The EZW algorithm includes two passes, dominant pass and subordinate pass. In 

the dominant pass, all the coefficient are scanned once by the raster scan sequence shown 

in figure 2.16, and the coefficients whose absolute values are bigger than the threshold 

given in (2.9) is coded either as P or N for its positive or negative sign.  

                                     T                                                             (2.9)              2 max2log C
initial =
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where T initial  is the initial value of the threshold, and Cmax is the largest absolute value of 

the wavelet coefficients in the zero tree. For each dominant pass afterwards, the threshold 

Ti will be half of its old value in the previous pass: 

                                                       .
2
1

1−= ii TT                                                              (2.10)               

If a coefficient and all its children’s absolute values are less than the threshold, the parent 

coefficient is coded as ZR, meaning zero-root. Once a coefficient is coded as ZR, the 

information on all of its children in the tree will be ignored, from which EZW algorithm 

gains its coding efficiency. On the other hand, if an insignificant parent coefficient has a 

significant descendant, and even this descendant is not its immediate child but several 

generations downward, the parent coefficient will be coded as IZ, meaning isolated zero. 

The EZW algorithm gains its coding advantage from the fact that the probability of ZR’s 

occurrence in the tree is much higher than the IZ’s, which is because the magnitudes of 

the wavelet coefficients decrease with finer scales so that in the tree structure, the 

coefficients in the top layers have bigger magnitudes than the layers below them.  

 
    

    

        

                

    

                    Figure 2.16: Raster scan sequence of wavelet coefficients in the tree.  
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The performance of the dominant pass will stop only when Ti is less than Tmin, the 

minimum coefficient value desired to be transmitted.  

 The subdominant pass is to refine the absolute values of the significant 

coefficients. If they are bigger than 1.5 times of the threshold Ti, they are coded as 1, 

otherwise, they are coded as 0.  

 This thesis uses 1-D EZW algorithm to compress ECG signals in two ways. One 

way is to EZW encode the wavelet coefficients from each ECG beats after the QRS 

detections, and the other way is to EZW encode the wavelet coefficients from the entire 

set of discrete ECG samples without QRS detections. The cycle-by-cycle 1-D EZW 

compression can be implemented in two different ways: setting a constant desired 

threshold for all the beats, or setting a same number of significant coefficients for all the 

beats by putting different desired threshold for each beat.  

 

2.3.1 After QRS detections 

Following the QRS detection by the algorithm given in section 2.1, each beat  

is interpolated to its next 2’s power.  For example, if the original beat’s length is 115, the 

interpolated length is 128, likewise, 256 for 220, and 512 for 394, etc. Then, 3-level 

wavelet decomposition is conducted to each beat using the Daubechies-4 function. 

Because ECG signals are micro-electrical signals, their discrete wavelet transform 

coefficients have values of 3 to 4 digits after the decimal points, thus, those wavelet 

coefficients have to be 10000 times amplified and their ceiling integer values are used to 

apply EZW algorithm.  
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2.3.1.1     Constant Threshold 

A constant minimum threshold is set for wavelets coefficients from every beats 

loaded in every tree structure. Each beat will have different number of significant wavelet 

coefficients. The diagram in figure 2.17 tells how to apply the algorithm.  

The compression ratio (CR) has for this method has been computed as follows: 

                    ( )
min

1

TTNumLEZWT

N

i
i

bbbbbN

PK
CR

initial

T

++++
=

∑
= .                                  (2.11) 

 

where K is the number of b/sample in the original signal, Pi is the period of ith beat, NT is 

the total number of beats, bEZW  is the total number of bits from EZW coder for one ECG 

beat, bL, bNum, bTinitial and bTmin are the number of bits used for transmitting the original 

length of one beat, the number of significant coefficients kept for each beat, the value of 

the initial threshold, and the desired minimum threshold for all the beats.  
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                   Figure 2.17: Block diagram of the encoder (constant threshold).  

Original 
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coefficients for each beat 
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encoding 
for each 
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* output bits from EZW coder 
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* Output bits from 
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each beat * T initial for 
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Original 
length 

      Figure 2.18: Block diagram of the decoder (constant threshold).  
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2.3.1.2  Fixed Number of Coefficients 

This way of applying the EZW to each detected beat allows a fixed number of 

significant coefficients be chosen for each beat. The WBLP algorithm described in 

second 2.2 also chooses a fixed number of significant coefficients across all the beats, but 

the difference is in WBLP, they are chosen from every beat at the same index locations, 

while using EZW, they do not have to be from the same index locations.  

To guarantee the same number of significant coefficients be selected for each 

beat, the desired minimum thresholds for each beat’s decomposed wavelet coefficients 

will be different. Figure 2.19 shows the block diagram of how to implement it, suppose 

55 coefficients is the target.  

 

 

 Coefs)) 55(min(log
min

22=

Decomposed 
Wavelet 
coefficients from 
one beat 

Set up the 
tree 
structure 

Sorting the coefs.’ 
absolute values 
/ ascending order 

Keep the last 55 
biggest values, 
set the rest as 0s

 T   

binary bits 
for one beat 

Put back the 55 biggest 
coefs. to their original 
locations in the tree 

EZW encoder 

T initial

Transmit / Store 
 Tmin 

N=55 

Figure 2.19   Block diagram for the encoder (fixed number of coefficients).  
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The decoder diagram is pretty much the same as what shows in figure 2.19, but 

the desired minimum threshold from each beat is what needed for EZW decoding each 

beat, instead of the number of coefficients kept from each beat.  

The compression ratio (CR) for this method has been computed as follows: 

                        ( ) NumTTLEZWT

N

i
i

bbbbbN

PK
CR

initial

T

++++
=

∑
=

min

1 .                              (2.12) 

 

where all the symbols in equation 2.12 stand for the same parameters as those in the 

equation 2.11.  

 
 
2.3.2 No QRS Detections 
 

To avoid the hassles of the QRS detections, this method decomposes the entire set 

of discrete ECG samples, and then applies the EZW coding strategy.  

For this method, two wavelet functions are used to represent the ECG signal, one 

is Daubechies, and the other one is Symlets.  Symlets are only the modified Daubechies 

to increase the symmetries. Section 3 of this thesis will show the different compression 

effects from employing these two wavelet functions to decompose the original ECGs.  

The compression ratio (CR) for this method has been computed as follows: 

                            
LTTEZW bbbb

NKCR
initial

+++
×

=
min

.                                             (2.13) 

where N is the total samples in the discrete ECG samples, and the rest symbols stand for 

the same parameters appear in the equation 2.11.  
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2.4       Modified 1-D Embedded Zero-tree Wavelet  

While the EZW algorithm can use several dominant passes to progressively select 

the significant coefficients, and use the subordinate passes corresponding to every 

dominant pass to refine the selected values, the modified EZW algorithm only uses one 

dominant pass to aggressively select all the significant coefficients bigger than the 

desired minimum threshold and code their relative locations within the tree structure. In 

the subordinate pass, all these significant coefficients are one time uniform encoded. In 

the modified EZW algorithm, the initial threshold is set as: 

                                            desiredinitial TT = .                                                      (2.14) 

where T desired is the desired threshold. Note the T desired doesn’t have to be a power of 2’s, 

and it can be any arbitrary integer.  

The step size ∆ is the only parameter needed to be decided for the uniform 

quantizer, and it is given as: 

                                               b2
42 σ×

=∆ .                                                       (2.15) 

where σ is the standard deviation of the data samples need to be quantized, b is the total 

number of bits used in the quantization.  

Likewise, algorithm can be applied to every ECG beat after the QRS detections, 

or directly applied to the entire discrete ECG samples.  

 

2.4.1  After QRS detections 

Again, it can be performed with one constant desired threshold for all the ECG 

beats, or setting different initial thresholds to gain a fixed number of significant 

coefficients for each beat.  
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2.4.1.1            Constant Threshold 

Figure 2.20 shows the diagram of how the algorithm works. 

 

desiredinitial TT =

Discrete ECG 
samples QRS 

detections 
Interpolated to 
2’s power 

3-level wavelet 
decomposition 

Zero 
Trees  

quantization 
bits 

  Original 
     period EZW/ one 

subordinate 
pass 

EZW/ one 
dominant pass 

binary bits 

Number of 
coefs. 

4 σ

Transmit/store

Figure 2.20: Block diagram of the encoder for modified EZW (constant T)  

 

The compression ratio is computed as:  
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LNMEZWT
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∑
=CR .                   (2.16) 

where K is the number of b/sample in the original signal, Pi is the period of ith beat, NT is 

the total number of beats, bMEZW  is the total number of bits output from modified EZW 

encoder, which includes the number of bits used to encode the relative locations of the 

significant coefficients in the zero tree structure, and the total bits used for uniform 
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quantize those coefficients. bT and bL are respectively the number of bits used for encode 

the initial threshold for all the ECG beats and their original periods.  

 

2.4.1.2  Fixed Number of Wavelet Coefficients 

The procedure of defining the initial thresholds is the same that described in 

section of 2.3.1.2., except the value of initial thresholds do not have to be the power of 

2’s. After setting the individual initial threshold for every ECG beat, modified EZW 

algorithm is applied in the same way as that stated in section 2.4.1.2, except that instead 

of transmitting the number of significant coefficients, it transmits the values of the initial 

thresholds for every beat.  

 The compression ratio of this method is computed as: 

                  .                            
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∑
=                                           (2.17) 

where bTi is the number of bits used to encode each initial threshold, and the rest 

symbols stand for the same parameters as stated in equation 2.16.  

 

2.4.2            No QRS Detections 

This is to implement the modified EZW algorithm directly to the entire discrete 

ECG samples. It does not need QRS detections. The compression ratio of this method is 

given as: 

                                        
LTMEZW bbb

NKCR
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×

= .                                          (2.18) 
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where N is the total number of discrete ECG samples, and the rest symbols stand for the 

same parameters appear in (2.17) and (2.13).  

 Once more, it uses both of the Daubechies-4 wavelet and Symlet-4 wavelet 

functions to do the 3- level wavelet decomposition.  
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Chapter 3 Results 
 
 
 This chapter shows the simulation results from the compression algorithms 

explained in the previous chapter. The compression effectiveness is measured by the 

compression ratio, bit rate and the reconstruction error. Chapter 2 has given the equations 

to compute the compression ratio for each algorithm. The bit rate is the average number 

of bits used to encode one ECG beat. The reconstruction errors are measured as follows: 

A.  Normalized Root Mean Square Error (NRMSE) [2] 
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NRMSE                                              (3.1) 

where N is the total number of samples, and x0(i) and xr(i) are the ith sample of original 

and reconstructed ECG, respectively.  

 

B. Normalized Maximum Amplitude Error (NMAE) [2] 

                                            
oioi
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minmax
max

−

−
= .                                           (3.2) 

where NMAEi is the NMAE for ith cycle, and NMAE is obtained by averaging over all the 

cycles.   

The discrete ECG samples used for simulation are from MIT-BIH ECG 

Compression Test Database and from MIT-BIH Normal Sinus Rhythm Database. Most of 

the ECGs originally are sampled at 250Hz and quantized with 12-b resolution. Some 

ECGs originally sampled at 125Hz are re-sampled to 250Hz. Totally 12 ECG records are 

selected to test the algorithm in this thesis, 6 of them are sinus rhythm ECG records: 
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16265, 18184, 16773, 16272, 17052 and 17453; and the rest are from compression test 

database: 12431_03, 12936_01, 12247_04, 12621_02, 11950_05 and 11442_03.  

This chapter uses a large number of plots to show the simulation results. Of all the 

figures with subplots, the top, middle and bottom subplots in each figure are respectively 

the original ECG samples, the reconstructed ECG samples and the reconstruction errors.  

 

3.1                Wavelet Based Linear Prediction 
 

The simulation results show that for some sinus-rhythm ECG signals linear 

prediction method does not help reducing the normalized root mean reconstruction errors, 

but does help for compressing ECG signals containing abnormal beats. The reason lies at 

how the uniform quantizer is designed.  

The step size ∆ of the uniform quantizer is designed by [5] 

                  
M
σ4

=∆ .                                                          (3.1) 

where σ is the standard deviation of the stacked wavelet coefficients feeding into the 

uniform quantizer, and M is the number of equally sized intervals. The mean square error 

(msqe) of the quantization noise is [5] 

     
12

2∆
=msqe .                                                         (3.2) 

substituting (3.1) into (3.2) gives 

     
M3

4 2σ
=msqe .                 (3.3) 
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As it shows in (3.3), the reconstruction error is proportional to the variance σ2 

when M is constant. When stacked wavelet coefficients from sinus-rhythm ECG beats 

have smaller variances than those from the DPCM residues, it is useless for DPCM to 

reduce the reconstruction errors. On the contrary, the stacked wavelet coefficients from 

abnormal ECG beats have larger variances than those from DPCM residues’, thus the 

overall reconstruction errors are reduced by quantizing data sequences with smaller 

variances.  

 
 Figure 3.1 to figure 3.3 show the compression results for ECG record 16265 at 

different compression ratios. DPCM is not used in compressing the ECG record 16265.  

  

Figure 3.1:  ECG 16265 with CR= 22.01, w/o LP 
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 Figure 3.2:  ECG 16265 with CR= 8.42, w/o LP 

 

 

Figure 3.3:  ECG 16265 with CR= 2.10, w/o LP 

 

For ECG record 12936_01 which contains abnormal beats, linear prediction plays 

a good role in reducing the distortion level with the comparable compression ratios as 
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shown from figure 3.4 to figure 3.7. Figure 3.4 shows the result from using LP and 

keeping 155 coefficients for each beat and quantizing them by 5 bits, the compression 

ratio is 3.22 and NRMSE is 6.7%. In Figure 3.5, without using LP, though keeping 160 

coefficients and quantizing them by 5 bits, the compression ratio is 3.19, and the NRMSE 

is almost doubled to 13.98%. Figure 3.6 shows the result from keeping 142 coefficients 

and 4 bits for quantization, and the resulting NRMSE is 13.98%; Figure 3.7 shows the 

result from keeping 148 coefficients and 4 bits for quantization, and the resulting 

NRMSE is 27.22% 

 

 

             Figure 3.4:  ECG 12936_01, CR= 3.22 w/ LP  
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Figure 3.5:  ECG 12936_01, CR= 3.19 w/o LP 

 

 

Figure 3.6:  ECG 12936_01 with CR= 4.21 w/ LP 
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Figure 3.7:  ECG 12936_01, CR= 4.21 w/o LP.   

 

 

On the other hand, the LP method is effective when compressing ECG at high 

ratios, because to achieve high compression ratios, less quantization bits can be used. 

Thus, the residues from DPCM with smaller variances can be restored better. Figure 3.8 

shows the result from using second order LP and keeping 180 coefficients for each beat 

and quantizing them by 2 bits, the compression ratio is 6.34% and NRMSE is 59%. In 

Figure 3.9, without using LP, though keeping 195 coefficients and quantizing them by 2 

bits, the compression ratio is 6.34%, and the NRMSE is 68%. Figure 310 shows the result 

from keeping 250 coefficients and 3 bits for quantization, and the resulting NRMSE is 

26.74%; Figure 3.11 shows the result without DPCM from keeping 250 coefficients and 

3 bits for quantization, and the resulting NRMSE is 33.92% 
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  Figure 3.8:  ECG record 12431_03, CR= 6.34, w/LP 

 

 

                 Figure 3.9: ECG 12431_03 with CR= 6.34, w/o LP 

 

 

  



 43

 

     Figure 3.10:  ECG 12431_03 with CR= 3.26, w/ LP 

 

 

                Figure 3.11:  ECG 12431_03 with CR= 3.54, w/o LP 
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Though it is effective for WBLP to compress sinus-rhythm ECG as seen from 

table 3.1 and table 3.2, which list respectively the best and the average compression 

results, the same good results do not appear at compressing the ECG signals with 

abnormal beats.  Table 3.3 shows the best compression result using WBLP to compress 

the abnormal ECG signal, but when the compression ratio only reaches 5.31, the NRMSE 

is as big as 22.82. Table 3.4 shows the average testing results. 

 

CR bit-rate NRMSE NMAE 
Coefs. 
kept 

Qnan. 
Bits 

1.66 1606 1.09 0.65     250 
   6 

2.77 963 4.27 2.45     230 
   4 

3.8 702 8.46 4.83     220 
   3 

4.62 577 8.5 4.83     180 
   3 

5.52 483 8.6 4.91     150 
   3 

6.25 427 11.58 5.46     132 
   2 

8.94 298 18.16 10.89     130 
   2 

10.06 265 22.25 6.56      80 
   3 

13.2 202 23.81 10.3      88 
   2 

16.26 164 27.38 10.29      70 
   2 

26.5 100 35.3 11      70 
   2 

35.43 75 39.73 11.2      28 
   2 

 

Table 3.1: Best compr. results using WBLP on sinus-rhythm ECG (17052). 
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CR Bit Rate NRMSE NMAE  

2.53 1090 6.08 3.78 

5.42 447 13.84 6.68 

8.91 261 22.95 10.12 

12.44 202 31.81 11.35 

16.49 151 38.17 12.34 

23.48 109 42.72 12.30 
 

         Table 3.2: Average compr. results using WBLP on 6 sinus-rhythm objects. 

 

 

 

CR BIT-RATE NRMSE NMAE Coefs. Kept
Quan. Bits 

1.6 1744 2.97 2.04       250 
       6 

2.94 947 5.86 4       160 
       5 

3.61 773 11.87 8.06       160 
       4 

4.17 668 11.99 8.8       142 
       4 

5.31 525 22.82 16.1       140 
       3 

6.59 424 38.47 40.94       112 
       3 

7.34 380 46.45 43.94       100 
       3 

 

                Table 3.3: Best compr. results using WBLP on abnormal ECG (12936_01) 
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CR   Bit Rate   NRMSE         NMAE 

1.69 1483 16.87 11.69 

2.43 1141 18.95 13.42 

3.35 981 29.86 20.68 

4.26 647 36.52 20.05 

5.36 433 39.99 19.86 

6.52 443 50.54 25.49 

8.43 261 54.14 24.23 

10.92 271 64.78 26.71 
        

                 Table 3.4: Average compr. results using WBLP on 6 abnormal objects. 

. 

  

3.2             1-D EZW Algorithm 
 

The focus of this thesis is to implement the EZW algorithm on compressing 

discrete ECG signals, and to compare the results with those getting from WBLP.  

As described in section 2.3 and 2.4, 1-D EZW algorithm is conducted after 

different preprocessing. The first is after the QRS detection and with constant threshold 

for all the beats, the second is after QRS detections and choosing fixed number of 

coefficients for all the beats, and the third is without QRS detection and directly apply 

EZW to the entire ECG discrete samples.  

After testing on the 6 sets of sinus-rhythm ECG and 6 sets of abnormal ECG, 

the simulation results show that 1-D EZW after QRS detections do not outperform 

  



 47

WBLP method in compressing sinus-rhythm ECG signals, only 1-D EZW without QRS 

detection beats WBLP at higher compression ratios in regarding to NRMSE, but not 

NMAE. Figure 3.12 and figure 3.13 show these results.  

 However, the advantage of using EZW lies in compressing abnormal ECG beats 

as seen in both figure 3.14 and figure 3.15. The plot in figure 3.14 clearly shows that 

EZW without QRS detections generates smallest reconstruction distortions measured by 

NRMSE, followed by EZW with QRS detections but with constant threshold for all the 

beats, which generate comparable NRMSE at lower compression ratios.  

 

 

                      Figure 3.12: NRMSE comparisons for compressing sinus-rhythm ECG.   
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                  Figure 3.13: NMAE comparisons for compressing sinus-rhythm ECG.   

                      

Figure 3.14: NRMSE comparisons for compressing abnormal ECG.   
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             Figure 3.15: NMAE comparisons for compressing abnormal ECG.   
 

 
 The success of 1-D EZW to compress ECG 12431_03 is shown in figure 3.16,  
 

 
 
 Figure 3.16: EZW w/QRS and constant T on ECG 12431_03, CR=5.88 
 

  



 50

 The second subplot in figure 3.16 demonstrated much better recovery of ECG 

than that shown in figure 3.10. The NRMSE is only 16.98% with compression ratio CR 

being 5.88. In figure 3.10, using WBLP, the NRMSE is as high as 26.74% with 

compression ratio only being 3.26.  

 The result of compressing ECG 12936_01 using EZW without preprocessing as 

seen in figure 3.17 is another example to show the success of EZW over WBLP. The 

compression ratio is 11.98, and the NRMSE and NMAE are respectively 18.99% and 

16.23%, versus the simulation result from using WBLP as seen in figure 3.18, the 

compression ratio is only 5.93 but the corresponding NRMSE and NMAE already hit 

24.79% and 24.98%.  

   

 
 

Figure 3.17: Direct EZW on ECG 12936_01, CR=11.98 
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                 Figure 3.18:  Compression ECG 12936_01 by WBLP, CR=5.93.  

 

 When using EZW to directly compress the entire set of discrete ECG signals, 

slightly better results are from decomposing ECG via Symlets wavelet function than via 

Daubechies. While in applying EZW after delineating beats, employing these two 

wavelet functions do not generate many differences.  

 Though directly applying EZW generates good results in compressing ECG, its 

possible formidable computational complexity at the worst case, as discussed in chapter 

4, will prohibit it from being considered if compressing time is a concern.  

 

3.3       Modified 1-D EZW Algorithm 

  MEZW is an aggressive compression algorithm. Section 2.4 describes how to 

implement this algorithm. This section shows the simulation results.  

 Owing to its aggressive nature, it achieves best compression results especially for 

compressing abnormal ECG beats.  
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 In compressing ECG 12431_03, as seen from figure 3.19, when CR is 25.22, its 

NRMSE is only 24.39% by setting the threshold as 7500 and using 4 bits to do the 

quantization.  

 Using WBLP to compress ECG 11442_03, as seen from figure 3.20, when the CR 

is only 2.45, the NRMSE and NMAE respectively are as high as 33.13% and 35.16%, 

while using MEZW with QRS detection and constant threshold for all the beats, the 

NRMSE and NMAE are respectively only 14.39% and 16.20% when CR reaching 7.60 

as seen in figure 3.21.  

 

 
    

      Figure 3.19: MEZW w/o QRS on ECG 12431_03. CR=25.22. 
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                  Figure 3.20: WBLP on ECG 11442_03, CR = 2.45. 

 

 

 

    Figure 3.21 MEZW with QRS and cons. T on ECG 11442_03, CR=7.60. 
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MEZW w/o QRS detections outperforms EZW w/o QRS and WBLP in 

compressing both abnormal ECG beats and sinus-rhythm ECG beats as seen in figure 

3.22 and figure 3.23 respectively.  

 

     Figure 3.22: Comparisons between three algorithms on ECG abnormal beats.   

   

 Figure 3.23: Comparisons between three algorithms on ECG sinus-rhythm beats. 
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 MEZW w/o QRS detections outperforms MEZW with QRS detections on both 

ECG signals with abnormal beats and sinus-rhythm ECG signals, as seen in figure 3.24 

and figure 3.25 respectively.  

 

         Figure 3.24: Comparisons between four algorithms on abnormal ECG. 

 

 

          Figure 3.25: Comparisons between four algorithms on sinus rhythm ECG. 
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 Though MEZW without QRS detections is the best, it has higher computational 

complexity than those from MEZW with QRS detections as discussed in chapter 4. The  

next best is MEZW with QRS detection and constant T across all the beats as it breaks 

down the long EZW discrete signals into every ECG beats, thus breaking down the 

complexity. Between EZW with QRS detections and constant T and MEZW with QRS 

detections and constant T, the later one has a better performance as seen in both figure 

3.26 and figure 3.27.  

  

 

         Figure 3.26: Comparisons between two algorithms on abnormal ECG beats. 
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Figure 3.27: Comparisons between two algorithms on sinus-rhythm ECG beats. 
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Chapter 4 Complexity 

 
 

4.1 Wavelet Based Linear Prediction  

 Encoding computational complexity of the WBLP method is as following:  

 

A. Discussions 

Suppose totally there are 
R
N  ECG beats, N is length of re-sampled ECG discrete 

samples, and N is 2’s power. R is the length each original beat re-sampled to, in this 

thesis, R is set as 256. In order to find a fixed set of coefficient positions across all the 

beats, it needs to first sort each beat’s wavelet coefficients, and the total number of 

coefficients from the high pass filter and low pass filter is also R. Using the merge sort 

algorithm, the comparison complexity for sorting is )log( RRO
R
N .  

 

For the worst case, all the beats are chosen for consideration, and want to choose 

m coefficients, m<R, the times of comparisons needed is: 
R

mN .  

 

For the best case, all the R coefficients will be chosen, then no comparison is 

needed. On the other hand, if every beat provide one coefficient’s position index till m is 

met, the total comparison is: 
2

)1( mm+ . Notice, in the best case, the comparison has 
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nothing to do with the length N, which help a lot in reducing the complexity, because N is 

a normally a very big number, such as in the example ECG 16265, N is 24576.  

 

In the amplitude normalization, for each beat, it needs )log( RRO
R
N  times of  

comparisons, and )log( RRO
R
N multiplications.  

 

In the quantization part, since totally 
R

mN  numbers of coefficients need to be 

quantized, and each quantization needs six multiplication, one 2’s power, one adding, so 

totally we need 
R
Nm6  times multiplications, 

R
Nm  times adding, and 

R
Nm  times 2’s power 

calculations.   

To recover from the quantization, we need B
R

Nm  times comparisons. Where B is 

the number of bits used for the quantization.  

 

In the linear predication, this thesis uses second order LP, thus, there is totally 

R
mN )37( + times floating point multiplications, and 

R
mN )25( −  times floating point 

adding, should the Yule-Walker method be used.  
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B: Conclusions:  

Table 4.1 and table 4.2 respectively sum up the computational complexity for the 

worst and for the best case using WBLP method. 

 

Comparison Multiplication Adding 2’s Power 

B
R

mN

RRO
R
N

R
mN

+

+ )log(2

 

R
Nm

R
mN

RRO
R
N

)37(6

)log(

+
++

R
Nm

R
mN )25( −

+  
R

mN  

 

Table 4.1. Worst case computation complexity for 2nd order WBLP method. 

 

 

Comparison Multiplication Adding 2’s Power 

B
R

Nm

RRO
R
N

m
m

+

+
+

)log(2
1

2

 

R
Nm

R
mN

RRO
R
N

)37(6

)log(

+
++

R
Nm

R
Nm )25( −

+  
R

mN  

 

Table 4.2: Best case computation complexity for 2nd order WBLP method. 

 

Thus the computational complexity for LP in the worst case is only 

)log( RRO
R
N + B

R
Nm .   In most ECG record analyzed in this thesis, 

R
N ranges from 1 to 

100, and R is set as 256, and m falls in the range of 150 to 30, and the quantization bits 
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used ranges from 3 to 8. Thus the computational complexity for WBLP even in the worst 

case is quite small.  

 

4.2       1-D EZW encoding 

 

This algorithm looks at 3-level decomposed wavelet coefficients as a special 

spanning tree. The coarsest low pass filtered coefficients are at the very top positions of 

the tree, and its high pass filtered counterparts, with the same number, are right below it. 

From there on, each coefficient has two descendents, and the very bottom coefficients are 

the most refined high pass filtered coefficients, whose number is exactly half of the total 

vertices in this spanning tree.  

In the dominant pass, by using the depth first searching strategy, the very bottom 

coefficients are compared with the threshold and, if they are neither NEG nor POS, they 

will be temporarily marked as ZR, meanwhile, provide the logical reference for helping 

decide their parents’ attributes from either ZR or IZ, depending on their parents’ absolute 

values being smaller or bigger than the thresholds.  
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For example, in the spanning tree listed below:    

                                                                        22 

                                                                        9 

                                 7                                     -3 

              10               -18                   21              -12 

         5    6     12    30          60   50         -5  -4 

   

  Figure 4.1: Spanning tree structure 

 

The sequence is to first compare 5 and 6 respectively with the threshold, and then 

as a pair to return a logical value to decide if their parent 10 is a ZR or IZ, depending on if 

10 being below the threshold or not. Then it comes to 12 and 30 to decide for –18 

likewise, etc. The whole sequence of scanning is: 5, 6, 10, 12, 30, -18, 7, 60, 50, 21, -5, -

4, -12, -3, 9, 22.  

 

In this way, the computational complexity is calculated accordingly. 

 

A.   Dominant pass: 

 

A.1       Marking ZTR, IZ, NEG, POS. Table 4.3 shows the computational complexity 

to mark ZTR, IZ, NEG, and POS for wavelet coefficients.  

 

 

  



 63

 

Pseudo code    Complexity 

Function mark_bottoms_temp ( ) 

{ 

     if abs(B1) > Threshold then 

            if (B1) < 0 then 

                 B1.mark = NEG; 

           Else 

                 B1.mark = POS; 

            End if 

    Else 

          B1.temp_mark = ZTR  %temp mark. 

   End if 

) 

Total coefficients at very bottom: 
2
N  

worst case:   N comparisons and  

                   
2
N  absolute value calculations. 

 

best case:  
2
N comparison. 

                 
2
N  absolute value calculations 

 

 

 

 

Function mark_inner_layers_temp()  

{ 

      if  (abs(in_C) > threshold)  then. 

              if  ((in_C) < 0)  then 

                       in_C.mark = NEG 

             else 

                       in_C.mark = POS 

             end if 

 

Total coefficients at very bottom is  

L

NN
22

− , where L is the decomposition 

levels. In this thesis, L is 3.  

)
22

(3 L

NN
−×  

worst case:  )
22

( L

NN
−×3  comparisons.  
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      else 

             if (its both children’s temporary  

                  marks are ZTR)  then 

                  in_C.temp_mark = ZTR 

             else 

                  in_C.mark = IZ 

    end if  

}        

        )
22

( L

NN
−  absolute value calculations. 

 

best case:  12 −− L

NN comparisons. 

          L

NN
22

−  absolute value calculations. 

 

 

Function mark_toppest_layer_temp() 

{ 

      if (abs(T1)>threshold) then 

            if (T1)<0 then 

                  T1.mark = NEG 

            else 

                  T1.mark = POS 

            end if 

      else 

            if (its child’s temp mark is ZTR) 

                  T1.mark = ZTR 

            else 

                   T1.mark = IZ 

     end if 

}  

Total number of coefficients  L

N
2

. 

worst case:  12 −L

N  comparisons  

            L

N
2

  absolute value calculations.  

 

best case:  12 −L

N  comparisons  

            L

N
2

  absolute value calculations. 
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Function coefficients_index_in_tree( ) 

{ 

     children1. index = 2*(parent.index- 

                     1)+length(parent_generation) 

     children2.index = 2* parent.index 

                      +length(parent_generation) 

} 

 

Minimum numbers of adding: 

LL

NNN
22 1 +− −  

Minimum multiplications: 

LL

NNN
22 1−−  

Function Rid_Redundent_ZTR( ) 

 { 

        if parent.mark == ZTR 

          if  its children’s temp_mark==ZTR 

                    not coding children; 

} 

Indexing computation, worst case: 

Minimum adding: 

LL

NNN
22 1−−  

Minimum multiplications: 

LL

NNN
22 1−−  

 

 Figure 4.2: Pseudo code for counting the computational complexity for 1D-EZW.  

 

For simplicity, we take the worst case in the column II and sum them up, and so 

far, the total complexity is: 
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Comparison Adding Multiplication  Absolute 

value 

L

NN
22

5
−  NL )

2
11( 1−−  NL )

2
11( 1−−  

N 

 

  Figure 4.3. Computational complexity in worst case for 1D-EZW one dominant pass.  

 

B: Subordinate pass: 

 

Function subordinate_pass (  ) 

  {  if abs(coef) > top half threshold 

               result = 1 

        else 

              result = 0 

        end if 

} 

 For each NEG or POS,  

 

Computation for abs:  1 

Compute top half T:  1 add, 1 multi. 

Comparison : 1  

 

 

 

 Figure 4.4: Computational complexity 1D-EZW’s one subdominant case.  

 

C. Best case:  

 

        The best case is to sum up the above computational complexity. It contains only one 

dominant pass and only one subordinate pass. 
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D. Worst case: 

 The worst case is when the threshold is set that each time only one coefficient is 

chosen, as either NEG or POS, for each pair of dominant pass and each subordinate pass, 

and at the end, all the coefficients will be chosen. Then at the first round of dominant 

pass, N coefficients are involved, N-1 for the second round of dominant pass, N-2 for the 

third, and 1 for the last. For the subordinate pass, situation is reversed, first time, 1 

coefficient needs refined, and at last time, N coefficients need to get refined.  

 

E. Conclusion:  

Dominant pass / Worst case: 

 

Comparison Adding Multiplication  Abs. value 

)1()
2

1
4
5( 1 +××− + NNL  )1()

2
1

2
1( +××− NNL  )1()

2
1

2
1( +××− NNL  

)1( +× NN  

 

Figure 4.5: Computational complexity for 1-D EZW dominant passes.  

    Dominant pass / Best case:  

Comparison Adding Multiplication  Absolute value 

L

NN
22

5
−×  )

2
11( 1−−× LN   )

2
11( 1−−× LN  N 

 

   Figure 4.6: Computational complexity for 1-D EZW dominant passes. 
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  Subordinate pass / Worst case: 

 

Comparison Adding Multiplication  Absolute value 

)1( +× NN  )1( +× NN  )1( +× NN  )1( +× NN  

  

       Figure 4.7: Worst case computational complexity for 1-D EZW subordinate passes. 

 

Subordinate pass / Best Case: 

 

Comparison Adding Multiplication  Absolute value 

N N N N 

 

Figure 4.8: Best case computational complexity for 1-D EZW subordinate passes. 

 

Summing up the computational complexity from dominant pass and sub-ordinate 

pass, the computational complexity for 1-D EZW encoding is seen in figure 4.9 and 

figure 4.10, respectively for the worst case and the best case.  

Worst case: 

Comparison Adding Multiplication  Absolute value

NNL ×+×− + )1()
2

1
4
9( 1  NNL ×+×− )1()

2
1

2
3(  NNL ×+×− )1()

2
1

2
3(  

NN ×+× )1(2

 

    Figure 4.9: Worst case computational complexity for 1-D EZW encoding. 
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Comparison Adding Multiplication  Absolute value 

 L

NN
22

7
−×  )

2
11(2 2−−× LN   )

2
11(2 2−−× LN  

2*N 

 

Figure 4.10: Best case computational complexity for 1-D EZW encoding. 

 

F:    Complexity computation for the 1-D EZW decoding. 

 

In the worst case, or at least one of the worst cases, is to correspond to the worst encoding 

process, in that all the wavelet coefficients are encoded eventually, but each dominant 

pass only encode one coefficient above the threshold as seen in figure 4.11. 

               IZ              ZTR             ZTR            ZTR 

               IZ                 

          IZ    ZTR       

POS ZTR               

 

      Figure 4.11:  First round of the dominant pass output from the encoding process. 

It has 3 layers. To decode this sequence, it will involve 12
2

−×+ LN
L  times comparisons, 

which is to compare if the symbol is IZ, or ZTR, or NEG or POS. Then, it will compute 

the index positions for the descendents of all those ZTR’s. There will be 

12
2

+×−− LNN L  times multiplications, and 22
2

2 1 +×−− − LNN L  times adding.  
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In the subordinate pass, it only needs to decode 1 coefficient now. So it involves 1 

comparison to compare it lies in the upper half bound with the given threshold. Then it 

involves 1 adding and 1 multiplication for the refined value.  

The output generated by the second round of the dominant pass is shown in the 

figure 4.12. 

               IZ              ZTR             ZTR            ZTR 

               IZ                 

          IZ    ZTR       

&& NEG               

 

Figure 4.12:  Second round of the dominant pass output from the encoding process. 

 

 In this way, the computational complexity for the decoding is shown in figure 

4.13.  
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Figure 4.13: Computation complexity for the worst case decoding, dominant pass. 
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Comparisons 
2

)1( NN +×  

Adding 
2

)1( NN +×  

Multiplications 
 

2
)1( NN +×  

 

Figure 4.14: The worst case for the subordinate pass. 

 

Figure 4.15 shows the best scenario. The decoding only needs one dominant pass 

and one subordinate pass.  
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Figure 4.15: Best case the first round of the dominant pass output. 

 

The total complexity is to sum up the number of the comparisons, adding and 

multiplications from its both dominant and subordinate passes, as seen in figure 4.16.   
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Comparisons   2*N 

Adding   N 

Multiplications   N 

 

 

Figure 4.16. Summary of the best case 1-D EZW.  

 

 Because of N is a very big number, even for the best case in which computational 

complexity is O(N), it still takes a long time to compute. It is necessary to reduce the 

value of N by breaking down it into cycle by cycle. Thus, cycle-to-cycle compression 

does help reduce the complexity, especially for the worst case, computational 

complexity is O(N2).  

 

4.3              1-D Modified EZW 

  The computational complexity of the 1-D MEZW is the best case of 1-D EZW, 

thus, its computational complexity is O(N) as seen in figure 4.16.  
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Chapter 5  Summary and Conclusions 
 
 
 

 The purpose of this study is to use transform compression techniques to compress 

ECG signals and find their compression effectiveness. All of the algorithms simulated in 

this thesis employ wavelet transform and the essence of the compression is to find an 

efficient way to use as few bits as possible to encode, as accurately as possible, the 

locations of the significant wavelet coefficients in the time-frequency domain and their 

magnitudes.  

 This study uses three algorithms to compress ECG. The first is WBLP, a method 

published in a journal, the second is 1-D EZW, and the third is modified EZW (MEZW). 

WBLP method does not only approximate the magnitudes of the significant wavelet 

coefficients from every ECG beats, but also estimates their locations by the 

generalizations from the sample beats. While MEZW shares the same characteristic as 1-

D EZW that both of them accurately encode the locations of the significant coefficients 

for each of the beats, it is different from 1-D EZW in that it conducts uniform 

quantization to all of them at once. 

 The study finds that WBLP is good at compressing sinus-rhythm ECG signals, 

but poor for compressing abnormal ECG signals, especially poor at high compression 

ratios. It overlooks the fact that for abnormal ECG signals, the high frequency spectrum 

and low frequency spectrum do not always appear periodically from beats to beats. Thus, 

evaluating only a limited number of ECG beats to decide a fixed set of locations of the 

significant coefficients for all the beats will certainly cause big distortions at recovering 

those ECG beats who have very different frequency spectrums.  
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 The study uses 12 discrete ECG signal records to test WBLP, and finds when 

compressing sinus-rhythm ECG, in average, the NRMSE and NMAE are respectively 

35.3% and 12% for compression ratio of 25; When compressing abnormal ECG, in 

average, NRMSE and NMAE are respectively 38.47% and 40.94% for compression ratio 

of 7.  

 1-D EZW algorithm is a progressive compression algorithm. Attribute to the 

energy degradation feature in the wavelet decompositions, and with the help of the 

spanning tree structure, the locations of the significant coefficients are encoded by four 

symbols: P, N, IZ and ZR. The more ZR occurs in the spanning tree, the higher 

compression ratios it can achieve. In this study, 1-D EZW is applied in two different 

ways: direct implementation and cycle-to-cycle implementation. 

 This study reports, by averaging the testing results, that for compressing sinus-

rhythm ECG, WBLP outperforms 1-D EZW direct implementation at smaller 

compression ratios, but not at high compression ratios. WBLP beats 1-D EZW cycle-to-

cycle implementation for compressing sinus-rhythm ECG at any compression ratio. In 

compressing abnormal ECG beats, 1-D EZW of both implementations outperform WBLP 

at any compression ratio.  

 In average, when compressing sinus-rhythm ECG using 1-D EZW directly 

implementation, the average NRMSE and NAME of are respectively 26.5% and 18% 

corresponding compression ratio of 20; when compressing abnormal ECG, the average 

NRMSE and NMAE are 28.5% and 23.8% with compression ratio of 20. Though 1-D 

EZW direct implementation has the better compression result, its formidable 

computational complexity will prohibit it from being used if the computational time is a 
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concern. Thus, 1-D EZW cycle-to-cycle compression with a constant threshold to all the 

beats is the substitute for compressing abnormal ECG and the testing results show that 

the average NRMSE and NMAE respectively are: 40% and 25.5% for compression ratios 

of 15.  

 MEZW algorithm is used to further increase the compression ratio and to reduce 

the computational complexity. It one time chooses all the significant coefficients over the 

threshold, encode their locations in the spanning tree structure, and uniformly quantize 

their magnitudes. This approach, implemented in both direct and cycle-to-cycle ways, 

outperforms WBLP and 1-D EZW in compressing both sinus-rhythm and abnormal ECG 

signals. The study reports that the average NRMSE and NMAE for its direct 

implementation for compressing sinus-rhythm ECG are respectively 24.5% and 12.2% at 

compression ratio of 28; for compressing abnormal ECG are respectively 20.5% and 

22.5% respectively at compression ratio of 25.  

 Though the computational complexity of MEZW direct application has been 

greatly reduced compared with its counterpart of 1-D EZW, its complexity can still be so 

high that it needs to be implemented cycle by cycle. MEZW cycle-to-cycle with constant 

desired threshold for all the beats outperforms both its counterpart in 1-D EZW and 

WBLP in compressing abnormal ECG, its average NRMSE and NMAE respectively are: 

25.05% and 38.5% at compression ratio of 23; And its average NRMSE is better than that 

from WBLP in compressing sinus-rhythm ECG as 30.05% at compression ratio of 20, but 

worse in average NMAE than WBLP as 21% at compression ratio of 23.  

 The conclusions from the study are that WBLP is very good at compressing sinus-

rhythm ECG. But by using WBLP, this thesis does not get results as good as those from 
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[2]. Though the testing results from some particular sinus-rhythm ECG objects are as 

good as shown in [2], the average NRMSE and NMAE from recovering sinus-rhythm 

ECG in this thesis are about double those from [2]. The discrepancy is caused probably 

by using different set of sinus-rhythm ECG from [2] for the testing.  However, the paper 

[2] does not discuss applying WBLP to compress abnormal ECG signals. This thesis also 

shows using EZW and MEZW on compressing sinus-rhythm ECG generates comparable 

results with those in [2]. The true superior of EZW and MEZW is at compressing 

abnormal ECG, and WBLP is not effective in this category. On the other hand, MEZW 

and 1-D EZW direct implementation are good at compressing both sinus-rhythm ECG 

and abnormal ECG when the computational time is not a concern, and they bypass the 

QRS detection difficulties.  
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Chapter 6 Recommendations for Future Research 
 
 
 This study did the simulation of the several ECG transform compression 

techniques. More ECG records can be selected for testing and simulation. In this thesis, 

all the ECG are original sampled at 250Hz and digitized in 12 bits, future research can 

test ECG records with different original sampling rate and different resolution levels.  

 For the WBLP to compress abnormal ECG signals, when deciding a fixed set of 

index locations of the significant wavelet coefficients, sample beats should be taken from 

different part of the ECG signal sequence to guarantee abnormal beats’ unique features 

are considered.  

 For 1-D EZW and MEZW, the future study can try different decomposition levels 

and different wavelet functions to see the compression results.  
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Appendix 1  ECG Signal Records 
 
 
 The ECG waves shown in Appendix 1 are those used for the algorithm simulation 

and ECG compressing testing in this thesis. Their wave forms are not shown in the 

previous parts of the thesis.  

 

                          Figure A1.1   Sinus-rhythm ECG 16272 waveform 
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                      Figure A1.2   Sinus-rhythm ECG 18184 waveform  
 

 
                        Figure A1.3   Sinus-rhythm ECG 17052 waveform  
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                           Figure A1.4   Sinus-rhythm ECG 17453 waveform  
 

 
                             Figure A1.5   Abnormal ECG 12247_04 waveform 
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                       Figure A1.6   Abnormal ECG 12621_02 waveform 

 
                       Figure A1.7   Abnormal ECG 11950_05 waveform 
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                       Figure A1.8   Abnormal ECG 11950_05 waveform 
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A2.1      Simulation of Wavelet Based Linear Prediction Algorithm  
 
 
% Program file: WBLP.m 
% Author: Xiaohua Zhou 
% Time: March, 2003 
% Program purpose: To simulate the wavelet based linear prediction method.  
 
clear all; 
close all; 
 
% Sinus-rhythm ECG signals 
%ecg_normal=load('C:\matlabR12\work\ecg_data\16265.txt'); 
%ecg_normal=load('C:\matlabR12\work\ecg_data\16773.txt'); 
%ecg_normal=load('C:\matlabR12\work\ecg_data\16272.txt'); 
%ecg_normal=load('C:\matlabR12\work\ecg_data\18184.txt'); 
%ecg_normal=load('C:\matlabR12\work\ecg_data\17052.txt'); 
% ecg_normal=load('C:\matlabR12\work\ecg_data\17453.txt'); 
% end of Sinus-rhythm ECG 
 
% ECG containing abnormal beats. 
ecg_normal=load('C:\matlabR12\work\ecg_data\11442_03.txt'); % good example to show LP 
%ecg_normal=load('C:\matlabR12\work\ecg_data\11950_05.txt');  % very good for LP 
%ecg_normal=load('C:\matlabR12\work\ecg_data\12247_04.txt'); % good for lP 
%ecg_normal=load('C:\matlabR12\work\ecg_data\12431_03.txt'); %excellent for LP 
%ecg_normal=load('C:\matlabR12\work\ecg_data\12621_02.txt'); % very good one for lP 
%ecg_normal=load('C:\matlabR12\work\ecg_data\12936_01.txt'); % excellent one, should use it 
% end of ECG containing abnormal beats 
 
% to resample the original signals to 250Hz if it is not.  
t1=ecg_normal(:,1); 
dt=t1(6)-t1(5); 
 
if (dt~=0.004) 
    t_start = t1(1); 
    t_end = t1(end); 
    duration = length(t1); 
    t=t_start:0.0040:(2*duration-1)*0.004; 
    ecg1=ecg_normal(:,2); 
    ecg=resample(ecg1,2*length(ecg1),length(ecg1)); 
     
else 
    ecg=ecg_normal(:,2); 
    t=ecg_normal(:,1); 
     
end 
dt = t(6)-t(5); 
 
delay = ceil(0.2/dt); 
 
%low pass filtering starts 
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A=[1 0 0 0 0 0 -2 0 0 0 0 0 1]; 
B=[1 -2 1]; 
ylow=filter(A,B,ecg); 
 
  
%high pass filtering starts 
A=[1 zeros(1,15),32,zeros(1,15),-1]; 
B=[1,1]; 
yhigh=filter(A,B,ylow); 
 
% Getting the derivatives 
A=[1 2 0 -2 -1]; 
A=A./8; 
B=[1]; 
ydev=filter(A,B,yhigh); 
 
% Getting the absolute value 
ydev_abs = abs(ydev); 
 
%moving average filtering 
N=30; 
A=ones(1,N)./N; 
B=1; 
mov_avrg_sqr=filter(A,B,ydev_abs); 
 
%find RR waves 
[QRS,peaks, RR] = find_peaks1(mov_avrg_sqr,dt);  
 
% post processing to get RR waves more accurately 
L_QRS=length(QRS); 
 
if peaks(1)>50 
    pks(1)= peaks(1)-45; 
    [v,p]=max(ecg(1:(peaks(1)+10))); 
    pks(1)=p; 
else 
    [v,p]=max(ecg(1:50)); 
    pks(1)=p; 
end 
 
for i=2:L_QRS 
    pks(i)=peaks(i)-45; 
    range = pks(i)-15:pks(i)+15; 
    [v,p]=max(ecg(range)); 
    pks(i)=range(p); 
end 
 
pks = unique(pks); 
L_pks = length(pks); 
 
figure,plot(ecg); title('ECG peaks detected & marked with o'); 
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ylabel('amplitude'); 
xlabel('samples'); 
hold on; 
 
for i=1:L_pks 
    plot(pks(i),ecg(pks(i)),'ro'); 
end 
 
L_ecg = length(ecg); 
 
intv(1)= pks(1); 
for i=2:L_pks 
    intv(i) = pks(i)-pks(i-1); 
end 
intv(L_pks+1)=L_ecg - pks(L_pks); 
L_intv = length(intv); 
 
%find the largest interval,  
% then upgrade signals to its next 2's power 
MBP = 2^ nextpow2(max (intv));   
 
% period normalization of the first beat 
ecg_beats(1).samples = ecg(1:pks(1)); 
ecg_rsmpld(1).samples=resample(ecg_beats(1).samples,MBP,intv(1),0); 
 
% period normalization to the beats 
for i=2:L_pks 
     ecg_beats(i).samples=ecg(pks(i-1)+1:pks(i)); 
    ecg_rsmpld(i).samples=resample(ecg_beats(i).samples,MBP,intv(i),0); 
end 
ecg_beats(L_pks+1).samples = ecg(pks(L_pks)+1:L_ecg); 
 
% period normalization of the last beat 
ecg_rsmpld(L_intv).samples=resample(ecg_beats(L_intv).samples,MBP,intv(L_intv),0); 
 
% amplitute normalization 
[PAN,ecg_scale] = ecg_AmN (ecg_rsmpld);  
 
% to see if PAN can be reconstructed perfectly 
% [a,b]= PAN_beats_rec(PAN,intv,ecg_scale, MBP); 
 
clear ecg_r  ; 
clear  y3 x2  x2 y  ecg_normal  t x; 
 
% try to select fixed position set from middle 
% buddle of the coefficients. 
middle= floor(L_pks /2); 
lower_middle = floor(middle / 2);   
higher_middle = L_pks - middle;     
 
% choose any of pan beat, just want to know  
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%the length of the filtered coefficients 
 
[app, deta]=mallat(PAN(2).samples);   
                                      
L_wvltCoef = length(app);                                     
 
% get fixed coefficient position set. 
coefKept=110; % how many coefficients to keep 
[s_Pos_a, s_Pos_d]=Get_fixed_coefs(PAN,lower_middle,higher_middle,coefKept, L_wvltCoef); 
 
% LP flag for if conducting linear prediction or not 
LP_flag=1; 
 
%quantization bits 
bits=7; 
if LP_flag ~= 1 
    LP_order = 0; 
else 
    LP_order = 2; 
end 
 
% encoder 
[a_residue_hat,a_coef,a,d_residue_hat,d_coef,d,lc]= encoder_quantize(PAN, s_Pos_a, s_Pos_d, 
LP_flag,LP_order,bits); 
 
% decoder 
PAN_rec = PAN_decoder(a_residue_hat,a_coef, LP_flag, LP_order,s_Pos_a, 
s_Pos_d,lc,d_residue_hat,d_coef,a,d, MBP); 
  
% recover from the pan beats 
[ecg_rec,ecg_r] = PAN_beats_rec(PAN_rec,intv,ecg_scale, MBP); 
 
L_ecg = length(ecg); 
fprintf('LP_flag = %d  ',LP_flag); 
  
 Nt=L_pks-1; % total number of beats 
 Nr=coefKept; % number of wavelet coefficients 
 Aa=8; %bits for the scale factor 
 Ap=8; % for intervals 
 p=LP_order; 
 bp=bits; %quantiation bits 
 bnz=8; % use 8 bits to transmit the s_Pos 
 bap=2; % use 2 bits for MBP  
 baa=0; % AASF 
  
 % the last 8 bits for encoding  
 % how many coefficients kept. 
CR = (L_ecg*12)/((Nt*(Nr*bp+Aa+Ap)+Nr*(p*bp+bnz)+bap+baa) + 8) ;  
  
 fprintf('CR = %f  ', CR); 
 bit_rate =((Nt*(Nr*bp+Aa+Ap)+Nr*(p*bp+bnz)+bap+baa) + 8)/(Nt); 
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 fprintf('bit_rate = %f\n', bit_rate); 
 
nrmse = sqrt( sum((ecg-ecg_rec).^2)/ sum(ecg.^2)); 
fprintf ('NRMSE = %f  ', nrmse); 
 
peaks_errors = (ecg(pks(2:end-1))-ecg_rec(pks(2:end-1))); 
 
s=0; 
t=0; 
t1=0; 
for i=2:L_pks-1 
     t=max(abs(ecg_r(i).samples - ecg_beats(i).samples)); 
     t1=max(ecg_beats(i).samples)-min(ecg_beats(i).samples); 
     s=s+t/t1; 
 end 
  
 NMAE = s/(L_pks-2); 
  
 fprintf ('NMAE= %f ', NMAE); 
  
 fprintf('NMPE= %f  ', NRMSE_Peak ); 
 fprintf ( 'C /%d , B %d \n', coefKept, bits); 
  
figure(3); 
subplot(3,1,2),plot(ecg_rec); title('reconstructed ecg'); 
ylabel('Amplitute'); 
% axis([6000,6900,-3.5,3.5]);  
subplot(3,1,1),plot(ecg);  
% axis([6000,6900,-3.5,3.5]); 
title('original ECG signals'); 
ylabel('Amplitude') 
subplot(3,1,3),plot(ecg-ecg_rec); 
% axis([6000,6900,-1.2,1.2]); 
title('Reconstruction errors'); 
xlabel('samples'); 
ylabel('Amplitude'); 
 
i=10; 
ab=ecg(pks(i)+1:pks(i+1)); figure(4),plot(ab); 
plot(pks(i)+1:pks(i+1), ab); 
title('one cycle interpreted according to the original paper'); 
 xlabel('samples'); 
 ylabel('amplitute'); 
 
figure(5); 
plot(pks(2:end-1),peaks_errors,'r*'); 
hold on; 
plot(ecg-ecg_rec); 
title('ecgs samples recovery errors with peaks errors marked by *'); 
xlabel('samples'); 
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ylabel('amplitute'); 
 
fprintf('\n\n'); 
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A2.1.1      QRS detections 
 
% Program: find_peaks.m 
% Author:  Xiaohua Zhou 
% Time:     March, 2003 
% Program purpose:   A real-time QRS detection algorithm [3] 
% Parameters:   ecg_intg     ECG signals after the preprocessing 
%               delta_t      Sampling interval 
%               QRS          Output every QRS wave 
%               peaks        Output every location of R wave  
%               RR           output every RR wave  
 
intv1000 = 250; % one second interval, for 250Hz sampling rate; 
 
RR = [250,250,250,250,250,250,250,250]; % intial RR interval contains 8 1 second interval; 
 
nBuffer =zeros(1,8); % initial 8 noise buffers as 0 
 
% initial 8 signal buffers 
for i=1:8 
    distance = ((i-1)*250+1):i*250; 
    sBuffer(i)=max(ecg_intg (distance)); 
end 
 
PEAKI = max(ecg_intg); 
intv200 = 50; % for 250 Hz sampling rate, the 200 ms interval regards to 50 samples. 
intv360 = 90; % for 250 Hz sampling rate, the 360 ms interval regards to 90 samples. 
 
SPKI = 0.125*PEAKI + 0.875 * mean(sBuffer); 
NPKI = 0.125* PEAKI + 0.875 * mean(nBuffer); 
 
T1 = NPKI + 0.25*(SPKI - NPKI); 
T2= 0.5*T1; 
 
delay= 50; 
k=1; 
 
ACPT_HIGH = max(RR); 
RR_MISS= 1.16*mean(RR); 
ACPT_LOW = 90; 
 
delay= ceil(0.3/delta_t); 
k=1; 
ACPT_HIGH = ceil(0.8/delta_t); 
RR_MISS= ACPT_HIGH; 
ACPT_LOW = 0.2/delta_t; 
flag = 0; 
 L=length(ecg_intg); 
 T1min = T1; 
 T2min = T2; 
pos=find (ecg_intg(1:RR_MISS) > T1); 
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if ((length(pos)==0) ) 
    flag = 1; 
   pos=find (ecg_intg(1:RR_MISS) > T2); 
   if (length(pos)==0) 
      [val,pos]=max(ecg_intg(1:RR_MISS)); 
   end 
end 
 
% find the whole range of one peak's family 
[p1,lf,rg]=shift_left_right_QRS(pos,ecg_intg,1);  
 
pos = pos(p1)-lf:pos(p1)+rg; 
 
group = filter([1,-1],1,pos); 
 
s= find( group(2:end) > delay -5); 
 
if (length(s)==0) 
    s=pos(end); 
else 
    s=group(s); 
end 
 
j=1; 
 
QRS(j).samples = group(1):s(1); 
 
ecg_range = (QRS(j).samples(end)+delay):(QRS(j).samples(end)+delay+RR_MISS); 
 
if QRS(j).samples(1)==1 
    NPKI = 0; 
else 
    NPKI = mean (ecg_intg(1:QRS(j).samples(1)-1)); 
end 
 
if flag ==1 
    SPKI = 0.25*PEAKI+0.85*SPKI; 
    flag = 0; 
else 
    SPKI = 0.125*PEAKI+0.875*SPKI; 
end 
    
jj=1; 
sBuffer(jj)=SPKI; 
SPKI = mean(sBuffer); 
 
while (ecg_range(end)< (L) & length(pos) ~=0 ) 
     
    NPKI = 0.125*PEAKI + 0.875*NPKI; 
    T1= NPKI + 0.25*(SPKI-NPKI); 
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    T1=0.8*T1; 
     
    T2=1/2*T1; 
     
    if T2min >T2 
        T2min =T2; 
    end 
     
    pos = find(ecg_intg(ecg_range) > T1); 
    pos = ecg_range(pos);  
    if (length(pos)==0 ) 
         flag = 1; 
         pos = find(ecg_intg(ecg_range)>T2); 
         if (length(pos)~=0)  
             pos=ecg_range(pos); 
         else 
             pos = find(ecg_intg(ecg_range)>T2*0.8); 
             if (length(pos)~=0)  
                  pos = ecg_range(pos); 
             else 
                 [val,pos]=max(ecg_intg(ecg_range)); 
                  pos=ecg_range(pos); 
                 while (val<0.8*T2) &  (ecg_range+75 < L) 
                       ecg_range = ecg_range+75; % extend the searching range 
                       [val,pos]=max(ecg_intg(ecg_range)); 
                       pos = ecg_range(pos); 
                 end 
             end 
         end 
     end 
      
    if (length(pos)~=0) 
        [p1,lf,rg]=shift_left_right_QRS(pos,ecg_intg,ecg_range(1)); 
         
        pos=pos(p1)-lf:pos(p1)+rg; 
        group = filter([1,-1],1,pos); 
        s= find(group(2:end) > delay -5); 
        if (length(s)~=0) 
            s=group(s); 
        else 
            s=pos(end); 
        end 
        j=j+1; 
        QRS(j).samples = group(1):s(1);   
        [a,p1]=max(ecg_intg(QRS(j).samples)); 
        ecg_range = QRS(j).samples(end)+delay:QRS(j).samples(end)+delay+RR_MISS; 
        RR(j-1)=QRS(j).samples(1)-QRS(j-1).samples(end); 
        if (RR(j-1)<ACPT_HIGH & RR(j-1)>ACPT_LOW) 
            RR2(k)=RR(j-1); 
            k=k+1; 
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        end 
         
        if k>8 
            RR_AVG2 = floor(mean(RR2(k-8:k-1))); 
            RR_LOW = floor(0.92*RR_AVG2); 
            RR_HIGH= floor(1.16*RR_AVG2); 
            RR_MISS = floor(1.16*RR_AVG2); 
            for i=1:7 
                RR2(i)=RR2(i+1); 
            end 
            k=k-1; 
        end 
         
         if (j>8) 
             RR_AVG(j-8)= floor(mean(RR(j-8:j-1))); 
         end 
       
        SPKI = mean (ecg_intg(QRS(j).samples)); 
        NPKI = max (ecg_intg(QRS(j-1).samples(end)+1: QRS(j).samples(1)-1)); 
         
        if flag == 1 
            SPKI = 0.25*PEAKI + 0.75*SPKI; 
            flag = 0; 
        else 
          SPKI = 0.125*PEAKI+0.875*SPKI; 
        end 
 
        jj=jj+1; 
        if jj<=8 
            sBuffer(jj)=SPKI; 
        else 
            for q = 1:7 
                sBuffer(q)=sBuffer(q+1); 
            end 
            sbuffer(8)=SPKI; 
        end 
         
       SPKI = mean(sBuffer); 
             
             
    end 
end 
 
if (L-ecg_range(1)>0.5*RR_MISS) 
 
    ecg_range = ecg_range(1):L; 
    [val, pos]=max(ecg_intg(ecg_range)); 
    pos= ecg_range(pos); 
    [p1,lf,rg]=shift_left_right_QRS(pos,ecg_intg,L); 
    pos=pos(p1)-lf:pos(p1)+rg; 
    j=j+1; 
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    QRS(j).samples =pos; 
end 
 
for i=1:j 
    AVG_QRS(i)= mean(ecg_intg(QRS(i).samples)); 
end 
 
AVG=mean(AVG_QRS)*1/10; 
 
AVG_QRS(1); 
 
AVG; 
 
t=1; 
for i=1:j 
  if  AVG_QRS(i) > AVG 
      QRS1(t).samples = QRS(i).samples; 
      t=t+1; 
  end 
end 
 
QRS=QRS1; 
 
figure 
L_QRS = length(QRS); 
plot(ecg_intg);  
hold on; 
v=0; 
hold on; 
for i=1:L_QRS 
[v(i),p]=max(ecg_intg(QRS(i).samples)); 
peaks(i)=QRS(i).samples(p); 
 
plot(peaks(i),ecg_intg(peaks(i)),'ro'); 
end 
 
meanV = mean(v); 
 
if ecg_intg(peaks(1))<0.4*meanV 
    QRS2=QRS(2:end); 
    QRS = QRS2; 
end 
 
if ecg_intg(peaks(L_QRS))<0.4*meanV 
    QRS2=QRS(1:end-1); 
    QRS=QRS2; 
end 
 
L_QRS = length(QRS); 
 
peaks = 0; 
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% first one treated specially 
i=1; 
[v(i),p]=max(ecg_intg(QRS(i).samples)); 
    peaks(i)=QRS(i).samples(p); 
     
    if peaks(i)<0.6*meanV 
        N=70; 
    else 
        N=20; 
    end 
    range = 1:peaks(1)+N; 
    [val, pos ] = max(ecg_intg(range)); 
    if val > ecg_intg(peaks(i)) 
        peaks(i)=range(pos); 
        QRS(i).samples=peaks(i)-10:peaks(i)+10; 
    end 
 
% doing the left and right shift adjustment to find the real peaks 
for i=2:L_QRS-1 
    [v(i),p]=max(ecg_intg(QRS(i).samples)); 
    peaks(i)=QRS(i).samples(p); 
    RR(i-1)=peaks(i)-peaks(i-1); 
    RRM = mean(RR); 
     if ecg_intg(peaks(i))<0.6*meanV 
        N=ceil(1/2*RRM); 
    else 
        N=20; 
    end 
    range = peaks(i)-N:peaks(i)+N; 
    [val, pos ] = max(ecg_intg(range)); 
    if val > ecg_intg(peaks(i)) & ((range(pos)-peaks(i-1)) > RRM)  
        peaks(i)=range(pos); 
        QRS(i).samples=peaks(i)-10:peaks(i)+10; 
    end 
end 
     
 if val > ecg_intg(peaks(i)) 
        peaks(i)=range(pos); 
        QRS(i).samples=peaks(i)-10:peaks(i)+10; 
    end 
 
    peaks = unique(peaks); 
    lp = length(peaks); 
% last one treated specially 
i=i+1; 
[v(i),p]=max(ecg_intg(QRS(i).samples)); 
    peaks(i)=QRS(i).samples(p); 
     if peaks(i)<0.4*meanV 
        N=70; 
    else 
        N=20; 
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    end 
    range = peaks(i)-N:length(ecg_intg); 
    [val, pos ] = max(ecg_intg(range)); 
    if val >1.5* ecg_intg(peaks(i)) 
        peaks(i)=range(pos); 
        QRS(i).samples=peaks(i)-10:peaks(i)+10; 
    end 
 
    peaks = unique(peaks); 
    lp = length(peaks); 
     
   
    if peaks(1)<10 
        QRS_temp(1).samples = 1:peaks(i)+10; 
        start = 2; 
    else 
        start = 1; 
    end 
      
     
    if peaks(end)>L-10 
        QRS_temp(lp).samples = peaks(end)-10:L; 
        fini = lp-1; 
    else 
        fini=lp; 
    end 
        
    for i=start:fini 
        QRS_temp(i).samples = peaks(i)-10:peaks(i)+10; 
    end 
    QRS=QRS_temp; 
    L_QRS = length(QRS); 
     
for i=1:L_QRS-1 
    RR(i)=peaks(i+1)-peaks(i); 
end 
 
if (L-peaks(L_QRS))>mean(RR) 
    range = QRS(L_QRS).samples(end)+75:L; 
    [val,p]=max(ecg_intg(range)); 
    if val > 0.6*meanV 
        QRS(L_QRS+1).samples=range(p); 
    end 
end 
 
L_QRS=length(QRS); 
 
hold on; 
 
for i=1:L_QRS 
[v(i),p]=max(ecg_intg(QRS(i).samples)); 
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peaks(i)=QRS(i).samples(p); 
plot(peaks(i),ecg_intg(peaks(i)),'bo'); 
end 
 
lp=length(unique(peaks)); 
 
hold off; 
 
 
 
 
 
 
 
 
A2.1.2         Get a fixed set of locations for significant wavelet coefficients  
 
function [s_Pos_a, s_Pos_d]=Get_fixed_coefs(PAN,p1,p2, Nc, L_wv); 
% Program: Get_fixed_coefs.m 
% Author: Xiaohua Zhou 
% Date: March 2003 
% Program purpose: To simulate the algorithm used for deciding the set of  
%                  locations of significant wavelet coefficients to be retained  
%                  in each cycle [2]. 
% Parameters:    PAN     PAN beats 
%                        p1            starting point  
%                        p2            ending point 
%                        Nc           number of coefficients to keep 
%                        L_wv       Total number of wavelet coefficients 
%                        s_Pos_a   Locations for significant approximate coefs. 
%                        s_Pos_d   Locations for significant detail coefs. 
 
if p2>p1 
    size_PAN = p2-p1+1; 
else 
    size_PAN = p1-p2+1; 
end 
 
%the dwt coefficients after the db4 mallat algorithm will be  
%L_wv approximate coefs. and L_wv detail coefs. 
ca=zeros(size_PAN, L_wv);   
cd = zeros(size_PAN, L_wv); 
c=zeros(size_PAN,L_wv*2); 
caa = zeros(size_PAN, L_wv*2); 
c_K =c; 
dummy=c; 
 
signals=PAN(p1).samples; 
for i=p1+1:p2 
    signals = [signals;PAN(p1).samples]; 
end 
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j=1; 
for i = p1:p2  
   [ca1,cd1]=mallat(PAN(i).samples); 
    ca(j,:)=ca1'; 
    cd(j,:)=cd1'; 
    caa(j,:)=[ca(j,:),cd(j,:)]; 
    %if lots of negative compoenents, then compare absolute values 
    c(j,:)=abs(caa(j,:));   
 
    [dummy(j,:) ,c_K(j,:)]=sort(c(j,:));    %sort gives a descending order 
    c_K(j,:)=c_K(j,end:-1:1);    % reverse the descending order to ascending order 
    j=j+1; 
end 
 
N=1;   
s_Pos=[c_K(1,1:N)]; 
s_P=zeros(1,Nc); 
l_set = length(s_Pos); 
 
while (l_set < Nc) 
     
    for i=2:size_PAN 
        l_set = length(s_Pos); 
        if l_set < Nc 
            s_Pos = union(s_Pos,c_K(i,N));  % get the first set of N biggest  
        else 
            i=size_PAN + 1; 
        end 
    end 
     
    if (l_set<(Nc)) 
       if (N<L_wv*2) 
           N=N+1;  
           s_Pos = union(s_Pos,c_K(1,N)); 
           l_set = length(s_Pos); 
      else 
          l_set = Nc+1; % to end the while loop 
      end  
    end  
end 
l_set = length(s_Pos); 
 
j=1; 
t=1; 
for i=1:l_set 
    if s_Pos(i) > L_wv 
        s_Pos_d(j)=s_Pos(i); 
        j=j+1; 
    else 
        s_Pos_a(t)=s_Pos(i); 
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        t=t+1; 
    end 
end 
 
s_Pos_d= s_Pos_d - L_wv; 
function [QRS, peaks,RR]=find_peaks (ecg_intg, delta_t) 
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A2.1.3       WBLP Encoder  
 
function [a_residue_hat,coef_a,a,d_residue_hat,coef_d,d,lc]= encoder_quantize(PAN, s_Pos_a, 
s_Pos_d, LP_flag,LP_order,quan_bits) 
% Program: Encoder_quantize.m 
% Author: Xiaohua Zhou 
% Time:  March, 2003 
% Program purpose: To encode the selected significant coefficients after stacking them 
%                  accross the beats 
% Input Parameters: PAN         Period and Amplitute normalized beats 
%                   s_Pos_a     Locations of approximate coefs. 
%                   s_Pos_d     Locations of detail coefs. 
%                   Lp_flag     Linear prediction flag 
%                   LP_Order    Linear Prediction order 
%                   quan_bits   Quantization bits 
% 
% Output Parameters: a_residue_hat  Quantized LP residues for wvlt. approx. coefs. 
%                    coef_a         LP coefs. for approximate wavelet coefs. 
%                    a              2D array, storing stacked wvlt. approx. coefs.  
%                    d_residue_hat  Quantized LP residues for wvlt. detail. coefs. 
%                    coef_d         LP coefs. for detail wavelet coefs. 
%                    d              2D array, storing stacked wvlt. detail. coefs. 
%                    lc             length of wavelet coefficients for each beat 
 
 
    v=1; 
    L_s_Pos_a = length(s_Pos_a);  %the length of the approximate coeffs. 
    L_s_Pos_d = length(s_Pos_d);  %the length of the detail coeffs. 
    lg_PAN = length(PAN); 
    d = zeros(lg_PAN, L_s_Pos_d); 
    d_residue_hat=zeros(lg_PAN,L_s_Pos_d); 
 
    for r=1:lg_PAN 
        s=PAN(r).samples; 
        ls=length(s); 
        [ca1, cd1]=mallat(s); 
        lc=length(ca1); 
        c1=zeros(1,lc); 
        d1= zeros(1,lc); 
        L_cd1=length(cd1);  
         
        % stacking up the detail coefficients 
        for i=1:L_s_Pos_d 
            d(r,i)=cd1(s_Pos_d(i)); 
            d1(s_Pos_d(i)) = cd1(s_Pos_d(i)); 
        end 
        % end of stacking up the detail coefficients 
        
        % stacking up the approximate coefficients 
        for i=1:L_s_Pos_a 
            a(r,i)=ca1(s_Pos_a(i)); 
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            c1(s_Pos_a(i))=ca1(s_Pos_a(i)); 
        end 
        % end of stacking up the approximate coefficients. 
    end 
     
B=quan_bits; 
 
if (LP_flag ==1)  % linear prediction quantization of the detail coefficients. 
    for i=1:L_s_Pos_d 
        [d_residue_hat(:,i),coef_d(:,i)]=Get_LP_error(d(:,i),LP_order,B); 
    end 
else 
    for i=1:L_s_Pos_d  % direct quantization of the detail coefficients. 
        coef_d(:,i)=0; 
        d_residue_hat(:,i)=quant_ee523(d(:,i),B,4*sqrt(var(d(:,i),1))); 
    end 
end 
%     hold on; 
%     figure (1), plot(d_residue_hat(:,3),'ro'); 
 
if (LP_flag == 1)    % Linear prediction quantization for approximate coefficients. 
    for i=1:L_s_Pos_a 
        [a_residue_hat(:,i),coef_a(:,i)]=Get_LP_error(a(:,i),LP_order,B); 
    end 
else 
     for i=1:L_s_Pos_a % direct quantization for the approximate coefficients. 
        coef_a(:,i)=0; 
        a_residue_hat(:,i)=quant_ee523(a(:,i),B,4*sqrt(var(a(:,i),1))); 
    end 
end 
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A2.1.4        Recover the PAN beats from residues  
 
function PAN_rec= PAN_decoder(a_hat, coef, LP_flag, 
LP_order,s_Pos_a,s_Pos_d,lc,d_hat,coef_d,a,d, MBP) 
 
% Program:   PAN_decoder 
% Author:    Xiaohua Zhou 
% Time:      March, 2003 
% Program Purpose: To decode the PAN beats from residue sequences 
% Input Parameters:  a_hat         Residues of approx. wvlt. coefs.  
%                    coef          LP coefs. of approx. wvlt. coefs.  
%                    LP_flag       LP flag 
%                    LP_order      LP order 
%                    s_Pos_a       Locations of approx. coefs. 
%                    s_Pos_d       Locations of detail. coefs. 
%                    lc            length of the wvlt. coefs. 
%                    d_hat         Residues of detail. wvlt. coefs. 
%                    coef_d        LP coefs. of detail. wvlt. coefs. 
%                    a             storing the recovered stacked approx. coefs. 
%                    d             storing the recovered stacked detail coefs. 
%                    MBP           Mean beat period [2].  
 
% Output Parameters:  PAN_rec      Recovered PAN beats. 
 
[row,col]=size(a_hat); 
[r,c]=size(d_hat); 
 
if LP_flag==1 
     
    for i=1:col 
        u_r(:,i)=LP_decoder(LP_order, coef(:,i),a_hat(:,i)); 
    end 
     
    for i=1:c 
        d_r(:,i)=LP_decoder(LP_order,coef_d(:,i),d_hat(:,i)); 
    end 
else 
    u_r=a_hat; 
    d_r=d_hat; 
end 
 
    L_s_Pos_d = length(s_Pos_d); 
    L_s_Pos_a = length(s_Pos_a); 
for r=1:row 
    d1=zeros(1,lc); 
    c1=zeros(1,lc); 
    ls=MBP; 
    [Lo_R, Hi_R]=wfilters('db4','r'); 
     
 
    for i=1:L_s_Pos_d 
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        d1(s_Pos_d(i)) = d_r(r,i); 
    end 
     
    tempo1=dyadup(d1); 
    tempo1=conv(tempo1,Hi_R); 
    d11=wkeep(tempo1,ls); 
   
     
    for i=1:L_s_Pos_a 
        c1(s_Pos_a(i))=u_r(r,i); 
    end 
     
    tempo1=dyadup(c1); 
    tempo1=conv(tempo1,Lo_R); 
    a11=wkeep(tempo1,ls); 
     
    PAN_rec(r).samples=(a11+d11)'; 
 
end 
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A2.2     EZW encoding and decoding  
 
function [ecg_rec, output]=ecg_cmpr_ezw (s, T) 
 
%   Program: ecg_cmpr_ezw.h 
%   Author:  Xiaohua Zhou 
%   Time:    August, 2003 
%   Program purpose:   To conduct EZW encoding to the wavelet coefficients of the  
%                      input discrete ECG signal. 
%   Input Parameters:  s   Input discrete ECG signal, either a beat or the whole set 
%                      T   Desired threshold for EZW encoder and decoder 
%   Output Parameters: ecg_rec  Reconstructed ECG signals magnitudes.  
%                      output   Output symbols 
% 
len_s = length(s); 
[L(1).samples, H(1).samples]=dwt(s,'db4'); 
N=3;  % three level decomposition 
 
for i = 2 : N 
    [L(i).samples, H(i).samples]=dwt(L(i-1).samples,'db4'); 
end 
input = L(N).samples; 
 
for i=N:-1:1 
input =[input; H(i).samples]; 
end 
 
input = 10000.*input; % amplify the coefs.  
input = ceil(input); % take the ceiling integer value 
 
[output,symout] = EZWencoder2(input',T);  % EZW encode 
 
ReWC = EZWdecoder1(output,T);  % EZW decode 
 
for i=1:N 
    len_L(i)=length(L(i).samples); 
end 
 
% recovering coefs. at different levels from the decoder output  
 
ReWC = ReWC./10000; 
L_r(N).samples = ReWC(1:len_L(N)); 
H_r(N).samples= ReWC(len_L(N)+1:len_L(N)*2); 
L_r(N-1).samples = idwt(L_r(N).samples', H_r(N).samples', 'db4', len_L(N-1)); 
sP = len_L(N)+len_L(N); 
 
for i=N-1:-1:2 
    H_r(i).samples = ReWC(sP+1:sP+len_L(i)); 
    sP=sP+len_L(i); 
    L_r(i-1).samples= idwt(L_r(i).samples, H_r(i).samples', 'db4', len_L(i-1)); 
end 
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H_r(1).samples=ReWC(sP+1:end); 
ecg_rec = idwt(L_r(1).samples, H_r(1).samples', 'db4', len_s); 
e=sum((s-ecg_rec).^2)/length(input); 
 
 
 
 
A2.3       Modified EZW Algorithm (MEZW) 
 
                
A2.3.1   MEZW Encoder 
  
            Apart from the subordinate pass is modified to uniform quantize all the selected 
significant coefficients, the rest code is the same with the code from the generic EZW algorithm.   
  
function [output,symout] = EZWencoder2(in,T, quan_bits) 
% Program file: EZWencoder2.m 
%  
% Program Purpose:  Simulate Embedded Zerotree wavelet (EZW) encoder, modified the 
subdominant   
                                   pass of the generic EZW algorithm.  
 
% Input Parameters:  in                 3 level decomposed wavelet coefficients 
%                               T                  desired threshold 
%                               quan_bits     quantization bits for the uniform quantizer 
% Output Parameters:  Output      quantized magnitudes of the wvlt. coefs.   
%                                  symout      output EZW symbols.  
 
 
global EnFifo; 
EnFifo=[]; 
global EnList; 
EnList=[]; 
global output; 
output=[]; 
 
  
% These describe the coding parameters 
CodingParms.min_element_type  =-inf;        
CodingParms.max_element_type  = inf; 
CodingParms.input_length      = length(in); 
 
 
% Code Alphabet 
 
CodeAlphabet.ZERO = 0; % binary 0 
CodeAlphabet.ONE  = 1; % binary 0 
CodeAlphabet.ZTR  = 2; % binary 00 
CodeAlphabet.POS  = 3; % binary 01 
CodeAlphabet.NEG  = 4; % binary 11 
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CodeAlphabet.IZ   = 5; % binary 10 
 
InWC = in; 
 
% Initiate the threshold 
%Threshold = 2^floor(log2(max(abs(InWC))));  % Change 
  
Threshold = T; % add change 
% Write the file header to output 
output = [output CodingParms.input_length Threshold]; 
symout = []; 
 
% Define some statistics 
zeros = 0; 
ones  = 0; 
output_byte = 0; 
 
% Do the EZW coding 
 
while (Threshold>=T) 
    % Dominant Pass 
    [InWC,EnList,EnFifo,output,symout]=... 
        dominant_pass(InWC, Threshold,EnList,EnFifo,output,symout); 
     
    % Subdominant Pass 
   [output,symout]=subordinate_pass... 
                       (Threshold,EnList,output,T,symout, quan_bits); 
     
    Threshold = Threshold/2; 
end 
 
 
% Some functions used for the encoder 
 
% Performs one complete dominant pass. Dominant-pass-codes are sent to the  
% output stream and the subordinate list is updated 
% 
function [InWC,EnList,EnFifo,output,symout]... 
     =dominant_pass(InWC,Threshold,EnList,EnFifo,output,symout) 
  global CodeAlphabet; 
  CodeAlphabet.ZERO = 0; % binary 0 
  CodeAlphabet.ONE  = 1; % binary 0 
  CodeAlphabet.ZTR  = 2; % binary 00 
  CodeAlphabet.POS  = 3; % binary 01 
  CodeAlphabet.NEG  = 4; % binary 11 
  CodeAlphabet.IZ   = 5; % binary 10 
  s=zeros(2,1);  % Define a vector, [x; code]  
  min_x=0; 
  max_x=0; 
  len=length(InWC); 
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  for i=0:3 
       s(1)=i; 
       [InWC,EnList,s]=process_element(InWC, Threshold,EnList,s); 
       EnFifo=put_in_fifo(s,EnFifo); 
  end 
   
   
  while (~isempty(EnFifo)) 
     [s,EnFifo]=get_from_fifo(EnFifo); 
     %if (~isempty(EnFifo)) 
     [output,symout]=output_code(s(2),output,symout); 
     %end 
      if ((s(2)~=CodeAlphabet.ZTR)) 
        if(s(1)>=4) 
          min_x = s(1)*2; 
          max_x = min_x+1; 
          if ((max_x<=len)) 
                  for x=min_x:max_x 
                     Ps=zeros(2,1); 
                     Ps(1)=x; 
                    % fprintf('x= %d, min_x = %d, max_x = %d ',x, min_x, max_x); 
                   %  fprintf('InWC_len = %d\n', length(InWC)); 
                     [InWC,EnList,s]=process_element(InWC, Threshold,EnList,Ps); 
                      
                     EnFifo=put_in_fifo(s,EnFifo); 
                  end                  
          end 
      else 
          Ps=zeros(2,1); 
          Ps(1)=s(1)+4; 
          [InWC,EnList,s]=process_element(InWC, Threshold,EnList,Ps); 
          EnFifo=put_in_fifo(s,EnFifo); 
      end 
    end 
      
   end 
    
     
  % Perform one subordinate pass 
function [output,symout]=subordinate_pass(Threshold,EnList,output,T,symout, quan_bits) 
 
    y = quant_ee523(EnList, quan_bits, 4*sqrt(var(EnList,1))); 
    y=ceil(y); 
    output= [output,y]; 
   
% Builds a dominant pass EZW element from a matrix element and a threshold 
     
function [oInWC,oEnList,os]=process_element(InWC, Threshold,EnList,s) 
   
  global CodeAlphabet; 
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  CodeAlphabet.ZERO = 0; % binary 0 
  CodeAlphabet.ONE  = 1; % binary 0 
  CodeAlphabet.ZTR  = 2; % binary 00 
  CodeAlphabet.POS  = 3; % binary 01 
  CodeAlphabet.NEG  = 4; % binary 11 
  CodeAlphabet.IZ   = 5; % binary 10 
   
  if (s(1)+1)<=length(InWC)  
     temp=InWC(s(1)+1); 
 end 
 
  if (abs(temp)>=Threshold) 
      if (temp>=0)  
          s(2)=CodeAlphabet.POS; 
      else  
          s(2)=CodeAlphabet.NEG; 
      end 
  else  
      if (zerotree(InWC,s(1),Threshold)==1)  
          s(2)=CodeAlphabet.ZTR; 
      else  
          s(2)=CodeAlphabet.IZ; 
      end 
  end 
 
   
  if ((s(2)==CodeAlphabet.POS)|(s(2)==CodeAlphabet.NEG)) 
      EnList=[EnList,abs(temp)]; % put only coefficient magnitude in list, 
                                 % sign is already coded 
      InWC(s(1)+1)=0; 
  end 
 
  oInWC=InWC; 
  os=s; 
  oEnList=EnList; 
   
           
 % Return 1 if descendance tree is a zerotree 
  
function id = zerotree (InWC, x, Threshold) 
  global CodeAlphabet; 
  CodeAlphabet.ZERO = 0; % binary 0 
  CodeAlphabet.ONE  = 1; % binary 0 
  CodeAlphabet.ZTR  = 2; % binary 00 
  CodeAlphabet.POS  = 3; % binary 01 
  CodeAlphabet.NEG  = 4; % binary 11 
  CodeAlphabet.IZ   = 5; % binary 10 
  min_x=0; 
  max_x=0; 
   
  temp=0; 
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  maxvalue=0; 
  stop=0; 
  len=length(InWC);   
   
  if (x<=3)    %  The coarsest subband 
      temp=InWC(x+1); 
      x=x+4;  
      if (abs(InWC(x+1))>=Threshold) 
          stop=1; 
      else 
         ret1=zerotree(InWC, x,Threshold); 
         stop=~ret1; 
      end 
  else 
     min_x=x*2; 
     max_x=(x+1)*2; 
     if (min_x==len) 
         id=1; 
         return; 
     end 
      
     maxvalue=0; 
     while (max_x<=len); 
          CCC = abs(InWC((min_x+1):max_x)); 
          III = find(CCC>=Threshold); 
          if (~isempty(III)) 
              stop=1; 
              break; 
          end 
          min_x=min_x*2; 
          max_x=max_x*2;        
     end 
  end    
     if (stop==1)  
         id=0; 
     else  
         id=1; 
     end 
           
% Puts dominant-pass and subordinate-pass codes in the output stream  
 function [output,symout]=output_code(code,output,symout) 
   global CodeAlphabet; 
   CodeAlphabet.ZERO = 0; % binary 0 
   CodeAlphabet.ONE  = 1; % binary 0 
   CodeAlphabet.ZTR  = 2; % binary 00 
   CodeAlphabet.POS  = 3; % binary 01 
   CodeAlphabet.NEG  = 4; % binary 11 
   CodeAlphabet.IZ   = 5; % binary 10 
   
   switch (code)  
    case CodeAlphabet.ZERO 
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        output=[output, 0]; 
        symout=[symout,' ZERO']; 
    case CodeAlphabet.ONE 
        output=[output, 1]; 
        symout=[symout,' ONE']; 
    case CodeAlphabet.POS 
        output=[output,0,1]; 
        symout=[symout,' POS']; 
    case CodeAlphabet.NEG 
        output=[output,1,1]; 
        symout=[symout,' NEG']; 
    case CodeAlphabet.ZTR 
        output=[output,0,0]; 
        symout=[symout,' ZTR']; 
    case CodeAlphabet.IZ  
        output=[output,1,0]; 
        symout=[symout,' IZ']; 
    otherwise 
        disp('Coding Wrong'); 
        return; 
    end 
         
 %  Add a new element FIFO buffer, "first in first out" buffer     
 function EnFifo=put_in_fifo(s,EnFifo); 
     EnFifo=[EnFifo,s]; 
      
      
  %  Get a element from FIFO buffer     
 function [s,EnFifo]=get_from_fifo(EnFifo); 
     Len=size(EnFifo,2); 
     s=EnFifo(:,1); 
     EnFifo=EnFifo(:,2:end); 
 
 
 
A2.3.2   MEZW Decoder 
 
             Apart from the while loop at the main function is modified to decode the uniform 
quantizer to generate all the selected significant wavelet coefficients, the rest code is the same 
with the code from the generic EZW algorithm. 
 
 function ReWC = EZWdecoder(inputstream,T) 
 % Program file:  EZWdecoder.m 
%  Program Purpose:  Simulate Modifed Embedded Zerotree wavelet M(EZW) decoder 
 % Input Parameter:    Inputstream             The data sequence generated by the encoder. 
%                                                 T              The desired threshold 
%  Output Parameter:  ReWC                    The recovered wavelet coefficients.       
   
global EnFifo; 
EnFifo=[]; 
global EnList; 
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EnList=[]; 
global output; 
output=[]; 
 
% Code Alphabet 
 
CodeAlphabet.ZERO = 0; % binary 0 
CodeAlphabet.ONE  = 1; % binary 0 
CodeAlphabet.ZTR  = 2; % binary 00 
CodeAlphabet.POS  = 3; % binary 01 
CodeAlphabet.NEG  = 4; % binary 11 
CodeAlphabet.IZ   = 5; % binary 10 
output = inputstream; 
 
% Read the file header to get the height, width and image of the image 
 
Threshold = output(2); 
Length    = output(1); 
output    = output(3:end); 
 
% Create a empty reconstruction matrix 
ReWC = zeros(1,Length); 
 
% Define some statistics 
zeros = 0; 
ones  = 0; 
input_byte = 0; 
pixels = 0; 
 
% Do the EZW decoding 
while (Threshold>=T) 
    % Dominant Pass 
    [ReWC,EnList,EnFifo,output,pixels]=... 
        dominant_pass(ReWC,Threshold,EnList,EnFifo,output, pixels); 
    d=0; 
    if (Threshold>=T) 
        for i=1:pixels 
            d=EnList(:,i); 
            temp=ReWC(d+1);           
           if (temp < 0) 
               ReWC(d+1)=-1*output(i); 
           else 
               ReWC(d+1)=output(i); 
           end 
            
        end 
    end 
    Threshold = Threshold/2; 
end 
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% Some functions used for the decoder 
 
% Performs one complete dominant pass. Dominant-pass-codes are sent to the  
% output stream and the subordinate list is updated 
% 
function [ReWC,EnList,EnFifo,output,pixels]=... 
    dominant_pass(ReWC,Threshold,EnList,EnFifo,output,pixels) 
  global CodeAlphabet; 
  CodeAlphabet.ZERO = 0; % binary 0 
  CodeAlphabet.ONE  = 1; % binary 0 
  CodeAlphabet.ZTR  = 2; % binary 00 
  CodeAlphabet.POS  = 3; % binary 01 
  CodeAlphabet.NEG  = 4; % binary 11 
  CodeAlphabet.IZ   = 5; % binary 10 
   
  s=zeros(2,1);  % Define a vector, [x; y; code]  
  min_x=0; 
  max_x=0; 
  len=length(ReWC); 
   
  for i=0:3 
      s(1)=i; 
      [ReWC,s,output,EnList]=input_element(ReWC,Threshold,s,output,EnList); 
      EnFifo=put_in_fifo(s,EnFifo); 
  end 
  
   
  while (~isempty(EnFifo)) 
     [s,EnFifo]=get_from_fifo(EnFifo); 
      
     if ((s(2)==CodeAlphabet.POS)|(s(2)==CodeAlphabet.NEG)) 
           pixels = pixels+1;  
     end      
      
      if (s(2)~=CodeAlphabet.ZTR) 
          if (s(1)>=4) 
          min_x = s(1)*2; 
          max_x = min_x+1; 
          if (max_x<=len) 
               for x=min_x:max_x 
                     Ps=zeros(2,1); 
                     Ps(1)=x; 
                     [ReWC,s,output,EnList]=... 
                         input_element(ReWC,Threshold,Ps,output,EnList); 
                     EnFifo=put_in_fifo(s,EnFifo); 
               end 
          end 
      else 
              Ps=zeros(2,1); 
              Ps(1)=s(1)+4; 
              [ReWC,s,output,EnList]=... 
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                  input_element(ReWC,Threshold,Ps,output,EnList); 
              EnFifo=put_in_fifo(s,EnFifo); 
      end 
     end 
   end 
    
     
  % Perform one subordinate pass 
function [ReWC,output,pixels]=... 
    subordinate_pass(ReWC,Threshold,EnList,output,pixels,T) 
     global CodeAlphabet; 
     CodeAlphabet.ZERO = 0; % binary 0 
     CodeAlphabet.ONE  = 1; % binary 0 
     CodeAlphabet.ZTR  = 2; % binary 00 
     CodeAlphabet.POS  = 3; % binary 01 
     CodeAlphabet.NEG  = 4; % binary 11 
     CodeAlphabet.IZ   = 5; % binary 10 
      
    d=0; 
    if (Threshold>=T) 
        for i=1:pixels 
            d=EnList(:,i); 
            temp=ReWC(d+1); 
            [output, code]=input_code(output,1); 
            if (code==CodeAlphabet.ONE) 
                if (temp<0) 
                    ReWC(d+1)=temp-Threshold/4*3; 
                else 
                    ReWC(d+1)=temp+Threshold/4*3; 
                end 
            end 
        end 
    end 
   
 %  Add a new element FIFO buffer, "first in first out" buffer     
 function EnFifo=put_in_fifo(s,EnFifo) 
     EnFifo=[EnFifo,s]; 
      
  %  Get a element from FIFO buffer     
 function [s,EnFifo]=get_from_fifo(EnFifo) 
     s=EnFifo(:,1); 
     EnFifo=EnFifo(:,2:end); 
 % 
 %  Builds a matrix element from dominant pass and a threshold 
 % 
 function [ReWC,s,output,EnList]=input_element(ReWC,Threshold,s,output,EnList) 
   global CodeAlphabet; 
   CodeAlphabet.ZERO = 0; % binary 0 
   CodeAlphabet.ONE  = 1; % binary 0 
   CodeAlphabet.ZTR  = 2; % binary 00 
   CodeAlphabet.POS  = 3; % binary 01 
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   CodeAlphabet.NEG  = 4; % binary 11 
   CodeAlphabet.IZ   = 5; % binary 10 
    
   d=s(1); 
   [output,code]=input_code(output,2); 
    
   if (code==CodeAlphabet.POS) 
       ReWC(s(1)+1) = 1; %add change 
       EnList=[EnList, d]; 
   elseif (code==CodeAlphabet.NEG) 
   %    ReWC(s(1)+1)=-1*Threshold; % change 
       ReWC(s(1)+1) = -1; % add change  
       EnList=[EnList, d]; 
   end 
   s(2)=code; 
  
  % Read a code from the input stream 
    
function [output, code]=input_code(output,count) 
    
   global CodeAlphabet; 
   CodeAlphabet.ZERO = 0; % binary 0 
   CodeAlphabet.ONE  = 1; % binary 0 
   CodeAlphabet.ZTR  = 2; % binary 00 
   CodeAlphabet.POS  = 3; % binary 01 
   CodeAlphabet.NEG  = 4; % binary 11 
   CodeAlphabet.IZ   = 5; % binary 10 
  
   temp=0; 
   temp1=0; 
   temp=output(1); 
   output=output(2:end); 
   
   if (temp==0)  
         if (count==1) 
             code = CodeAlphabet.ZERO; 
         else  
             temp1=output(1); 
             output=output(2:end); 
             if (temp1==0) 
                 code = CodeAlphabet.ZTR; 
             else  
                 code = CodeAlphabet.POS; 
             end 
         end 
   elseif (temp==1) 
         if (count==1) 
             code = CodeAlphabet.ONE; 
         else  
             temp1=output(1); 
             output=output(2:end); 
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             if (temp1==0) 
                 code = CodeAlphabet.IZ; 
             else  
                 code = CodeAlphabet.NEG; 
             end 
         end 
   else  
         disp('Something wrong in the input stream'); 
         return; 
   end 
    
   function [output, code]=input_code_change(output,count) 
    
   global CodeAlphabet; 
   CodeAlphabet.ZERO = 0; % binary 0 
   CodeAlphabet.ONE  = 1; % binary 0 
   CodeAlphabet.ZTR  = 2; % binary 00 
   CodeAlphabet.POS  = 3; % binary 01 
   CodeAlphabet.NEG  = 4; % binary 11 
   CodeAlphabet.IZ   = 5; % binary 10 
  
   temp=0; 
   temp1=0; 
   temp=output(1); 
   output=output(2:end); 
   
   if (temp==0)  
         if (count==1) 
             temp = output(1); 
         else  
             temp1=output(1); 
             output=output(2:end); 
             if (temp1==0) 
                 code = CodeAlphabet.ZTR; 
             else  
                 code = CodeAlphabet.POS; 
             end 
         end 
   elseif (temp==1) 
         if (count==1) 
             code = CodeAlphabet.ONE; 
         else  
             temp1=output(1); 
             output=output(2:end); 
             if (temp1==0) 
                 code = CodeAlphabet.IZ; 
             else  
                 code = CodeAlphabet.NEG; 
             end 
         end 
   else  
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         disp('Something wrong in the input stream'); 
         return; 
   end 
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