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Correlation Processing

An Example Application of: 
• Lowpass Equivalent Signal
• DFT-Based Processing
• Decimation
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SIGNAL MODEL
Will Process Equivalent Lowpass signal, BW = B Hz
– Representing RF signal with RF BW = B Hz

Sampled at Fs > B complex samples/sec
Collection Time T sec
At each receiver:

BPF ADC
Make
LPE 

Signal
Equalize

cos(ω1t)

f

XRF(f)

X(f)

f

f

Xf
LPE(f)

B/2-B/2
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Tx Rx

s(t) sr(t) = s(t – τ(t))

R(t)

Propagation Time: τ(t) = R(t)/c

"+++= 2)2/()( tavtRtR o

Use linear approximation – assumes small 
change in velocity over observation interval

)/]/1([)/][()( cRtcvscvtRtsts oor −−=+−=
Time 

Scaling
Time Delay:   τd

For Real BP Signals:

DOPPLER & DELAY MODEL 
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Analytic Signals Model

)]([)()(~ ttj cetEts φ+ω=

Now what?     Notice that v << c   (1 – v/c) ≈ 1
Say v = –300 m/s  (–670 mph)   then v/c = –300/3x108 = –10-6 (1 – v/c)=1.000001

Now assume E(t) & φ(t) vary slowly enough that 

)()]/1([

)()]/1([

ttcv

tEtcvE

φ≈−φ

≈− For the range of v
of interest

DOPPLER & DELAY MODEL (continued)
Analytic Signal of Tx

)}]/1([)]/1([{)]/1([
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ddc tcvtcvj
d

dr

etcvE

tcvsts

τ−−φ+τ−−ωτ−−=

τ−−=
Analytic Signal of Rx

Called  Narrowband Approximation
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τ−φωω−τω−

τ−φ+τω−ω−ω

τ−=

τ−=

Constant
Phase
Term

α= –ωcτd

Doppler
Shift
Term

ωd= ωcv/c

Carrier
Term

Transmitted Signal’s
LPE Signal

Time-Shifted by τd

Narrowband Analytic Signal Model

Narrowband Lowpass Equivalent Signal Model

)(ˆ)(ˆ d
tjj

r tseets d τ−= ω−α

This is the signal that actually gets processed digitally

DOPPLER & DELAY MODEL (continued)
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Problem: Given LPE
for t∈[0,T], compute an estimate of delay τd and doppler ωd.

)()(&)()( 21 d
tjj tseetststs d τ−== ω−α

ESTIMATING DOPPLER & DELAY
Consider C-T view first for simplicity, then switch to D-T
(Note: all signals are LPE signals, but we don’t use “hat”)

To measure θd: Let V2(θ) be V2 rotated clockwise by θ…
and for each θ compute < V1, V2(θ)> = A(θ) as a function of θ.

Note: A(θ) has a maximum at θ = θd, so we measure θd by
finding the peak of A(θ).

θd V2

V1

Motivation: Think about vectors in R2: Note: For 
notational purposes 
we will often use 

s(t) = s1(t) 
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Do the same thing with signals: Let )()( 2, τ+= ω
τω tsets tj

dtetsts

dttsts

tstsA

T
tj

T

∫

∫

ω−

τω

τω

τ+=

=

><=τω

0
21

0
,1

,1

)()(

)()(

)(),(),(

We know from the inner product view that |A(ω,τ)| has a 
maximum at ω = ωd and τ = τd.  Also note:

s

T

dd

T
tj

d
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==⇒
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τω

τττω ωω

ESTIMATING DOPPLER & DELAY (cont.)

Signal Energy
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Find
Peak

Ambiguity Function

τ
ω
ωd

τd

ESTIMATING DOPPLER & DELAY (cont.)

)(1 d
tjj tsee d τωα −=

Delay
τ

Doppler
ω

“Compare”
Signals
For all 

Delays & 
Dopplers

)(1 ts

)(2 ts

LPE Rx
Signals
At Two 

Receivers
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• Consider when τ = τd [ ]∫ ω−ω=τω
T

tjtj
d dteetsA d

0

2)(),(

like windowed FT of sinusoid
where window is |s(t)|2

ωωd

|A(ω,τd)|

width ∼ 1/T

• Consider when ω = ωd ∫ τ+τ−=τω
T

dd dttstsA
0

)()(),(

correlation

|A(ωd,τ)|

ττd

width ∼ 1/BW

ESTIMATING DOPPLER & DELAY (cont.)
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Obviously we can only compute |A(ω,τ)| for discrete values 
of ω and τ:

Need to know a priori values for:
Max/Min Doppler (from largest expected velocity difference)
Max/Min Delay (from largest expected range difference)
Delay Spacing (from expected/measured signal BW)
Doppler Spacing (from observation time T)

Recall: dtetstsA
T

tj∫ ω−τ+=τω
0

21 )()(),(

View as a FT  Implies Use of DFT

Define “lag-product” signal : )()()( 21 τ+=τ tststf

Thus, for each delay τm of interest : )}({),( tfA
mm τ=τω F

COMPUTING THE AMBIGUITY FUNCTION
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][][][ 21 mnsnsnfm +=For corresponding D-T signals we need:

m = delay index
Sampling Interval sets Delay Spacing

Ambiguity
Computation

s1[n]

s2[n]

|A(ωd,τ)|

τ

ADC Pre-Processing ↑L &  Filter

ADC Pre-Processing ↑L &  Filter

Sampling rate chosen 
to match signal BW 
according to Nyquist

Interpolate to 
get desired 
delay spacing

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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Recall C-T result: For each delay τm: )}({),( tfA
mm τ=τω F

Thus for D-T: For each delay index m:

}][][{DFT

)}({DFT),(

21 mnsns

nfmkA m

+=

=

So, computing the ambiguity function for M delay indices is 
nothing more than doing M N-pt. DFTs, one for each delay index 

COMPUTING THE AMBIGUITY FUNCTION (cont.)

z m
DFT

][1 ns

][2 ns

),( mkA

][2 mns +

][nfm

Lag-Product Signal

Use a Window for all the 
same reasons as 

frequency estimation
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COMPUTING THE AMBIGUITY FUNCTION (cont.)
Each Column = Lag Product s1(n)s2

*(n+m) for an m value 

Each Column = Ambiguity Function A(k,m) for an m value
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Problems
1. We end up computing as many doppler bins as there 

are signal samples – this gives too many doppler bins

2. This usually requires a VERY large FFT

3. The range of doppler bins is from –Fs/2 to Fs/2, which 
is a far wider range than necessary.

4. The doppler spacing is too coarse: could fix with zero 
padding, but the FFT is already TOO long

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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• DFT Spacing = Fs/FFT Size = 2.4 × 106/262144 
doppler bin spacing = 9.2 Hz (Need ≈ 1 Hz spacing)    

Could get that using zero-padding but that would make an 
8× longer FFT having 2,097,152 points !!!!!!

(2.4 × 106/(8×262144) = 1.1 Hz

Example: Signal RF BW = 2 MHz;  Center Freq = 10 GHz; 
Fs = 2.4 MHz; Collect for T = 0.1 sec; Max Velocity, v = 300 m/s

• DFT Frequency Range = –Fs/2 to Fs/2 = [–2.4/2 , 2.4/2] MHz
Freq Range = [–1.2 , 1.2] MHz

• |fd| = fc(|v|/c) ≤ 1010×300/(3 × 108)  = 10 kHz
max doppler = ±10 kHz (Less Than 1% of Freq Range!!!)

• N = Fs T = (2.4 MSPS)(0.1 sec) = 240,000 samples
# Samples = 240,000 FFT size = 218 = 262,144

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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-1000 -800 -600 -400 -200 0 200 400 600 800 1000
0

0.5

1

1.5

2

x 10
5

Doppler Axis: f (Hz)

|A( f ,τd)|

Assuming Zero Doppler

20         40        60         80        100-100      -80       -60        -40       -20

≈2/T = 20 Hz

COMPUTING THE AMBIGUITY FUNCTION (cont.)

Doppler Spacing of 9.2 Hz is not sufficient
Need about 1 Hz spacing to get 5 DFT points near peak 
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ω

|A(ω,τd)|

ωs/2Doppler 
Range

The lag-product signal fm(n) is a near-sinusoid that
is WAY over-sampled Decimate before DFT

Original Freq Range = [–1.2 , 1.2] MHz
max doppler = 10 kHz Digital Freq: π(10kHz/1.2MHz)

Doppler Range = [–0.008π , 0.008π] rad/sample

So we could filter fm(n) to [–0.01π , 0.01π] 
and then decimate by M = 100   (100 = π/ 0.01π)
New Rate: Fs = 2.4MHz/100 = 24 kHz

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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z m
DFT

][1 ns

][2 ns

),( mkA

][2 mns +

][nfm
FIR ↓M

Decimate before computing the DFT

New # Samples after Decimating by 100: N = 240,000/100 = 2400 
New # Samples = 2400 FFT size = 212 = 4096

DFT Spacing = New Fs/FFT Size = 24 × 103/4096 =5.9
doppler bin spacing = 5.9 Hz (Still not 1 Hz!!)    

But…Now CAN correct using zero-padding
zero-pad to 16384 point FFT: 

spacing = 24 × 103/16384 = 1.5 Hz
Can live with that spacing

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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Decimation Filter Design

Could use standard design approach – but it is possible to use 
a very simple filter/decimation approach1.  This approach 
gains efficiency at the cost of performance, but the 
performance has been found to be satisfactory in most cases.

1. See Seymour Stein, “Algorithms for Ambiguity Function Processing,” IEEE Transactions  
on Acoustics, Speech, and Signal Processing, June 1981, pp. 588 – 599.

A simple length-L FIR LPF is made by having all coefficients 
set to 1’s:

⎪⎩

⎪
⎨
⎧ −=

=
otherwise,0

1,,2,1,0,1
)(

Ln
nh

…

The output is simply computed as the sum of L input samples:

∑
−

=

−=
1

0
)()(

L

l
lnxny No Multiplies 

Needed

COMPUTING THE AMBIGUITY FUNCTION (cont.)



22/29

Now, for a given length L, what is the frequency response 
of this filter?  Well, that is nothing more than the DTFT 
of a rectangular window of length L, which we have seen 
to be:

)2/sin(
)2/sin()(

θ
θ

=θ
LH L

COMPUTING THE AMBIGUITY FUNCTION (cont.)

See #2 on p. 167 of textbook 

This has 
– First nulls at θ = ±Fs/L Hz

See Table in Harris’s Paper 

– 3 dB points at θ = (0.89/2) Fs/L Hz
See #4 on p. 167 

of textbook 

– Stopband height at first lobe is –13.5 dB
See Table in 

Harris’s Paper – Stopband rolls off at –6 dB/octave

Pre-Dec Fs

Post-Dec Fs

We’ll pick  L = M = 100 to get a 3-dB passband to cover
the doppler range: (0.89/2) 2.4 × 106 /100 = 10.7 kHz

M = Dec Factor
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This looks like this for a length of  L = 100

Shown over a very limited part of [-1.2 MHz, 1.2 MHz]

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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Frequency Response of  “100 1's” Filter
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Zoom in to see passband better…

Passband Covers Doppler Range

-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600
-39

-36

-33

-30
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-24

-21

-18

-15

-12

-9

-6

-3

0

3

Frequency (kHz)

20
 lo

g 10
(|H

( θ
)|)

  (
dB

)

Frequency Response of  “100 1's” Filter

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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Now we decimate by factor M = 100 and what happens?

We get the part of the signal that goes through the stopband 
aliased into the passband (see Eq. (12.14) in the book).  To get a 
rough idea of what impact this has we can look at the filter’s 
stopband response “aliased” back into the passband.

This corresponds to plotting the frequency shifted versions 
H((θ – 2πm)/M) for integer m on top of H(θ) – again, see Eq. 
(12.14) in the book.  

In Hz, these shifts are integer multiples of 
Fs/M = 2.4 MHz/100 = 24 kHz

When we do this we see that This Particular filter has a nice 
property that shifts the nulls to the center of the passband, thus 
minimizing the impact of aliasing, even though this filter is not 
really a very good lowpass filter!!

COMPUTING THE AMBIGUITY FUNCTION (cont.)

When M = L
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From this we see that in the middle of the doppler band we have very little impact 
from the aliasing, but at the edges of the doppler band there can be some severe 
aliasing.  Can we live with that?  

That is a design decision: we must trade computation vs. performance!!!
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Frequency Response of  “100 1's” Filter
COMPUTING THE AMBIGUITY FUNCTION (cont.)
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Now what impact does using this filter have on computing the 
ambiguity function?  Recall how filtering is done for 
decimation: you move the filter coefficients ahead by M to get 
each decimated output.  But for our case, the filter is length M
so there is no overlap between consecutive placements of the 
coefficients:

1      1      1     1

]1[x̂
1     1      1      1

]2[x̂
1       1        1       1 

]3[x̂

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15]

1      1      1     1

]0[x̂

For Illustration: Use M = 4

∑
−

=

+=
1

0
][][ˆ

M

i
inMxnx

COMPUTING THE AMBIGUITY FUNCTION (cont.)

Non-Overlapping 
Blocks

A Small M for 
Illustration!!
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######
######

• Form matrix w/ columns of lag products
• Break into M-pt subblocks along columns
• Sum elements in each subblock
• Take DFT of each column of subblock sums

COMPUTING THE AMBIGUITY FUNCTION (cont.)
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DFT DFT DFT DFT DFT
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Without Decimation

Example: 
Computation per Delay Bin is:

• 2,097,152 point FFT

∑ ∑
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With Decimation

Example: 
Computation per Delay Bin is:

• (N/M) M-pt sums:
2400  100-pt sums

• 16,384 point FFT

COMPUTING THE AMBIGUITY FUNCTION (cont.)

Using Eq. (5.23) and (5.24) for FFT Counts
Without Decimation
For Each Delay Bin:

• # Real Multiplies =   79,691,780
• # Real Additions =  127,926,274

With Decimation
For Each Delay Bin:

• # Real Multiplies =    393,220
• # Real Additions =  1,135,362

Decimation Reduces Counts to < 1% of “No Dec” Values
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