Correlation Processing

An Example Application of:
 Lowpass Equivalent Signal
 DFT-Based Processing

e Decimation
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MULTIPLE-PLATFORM LOCATION

\S‘// Emitter to be located

Data
Lin

*%
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TDOA/FDOA LOCATION
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SIGNAL MODEL

® Will Process Equivalent Lowpass signal, BW =B Hz
— Representing RF signal with RF BW = B Hz

® Sampled at Fs > B complex samples/sec ‘ Xre(f)

® Collection Time T sec
® At each receiver:

/) A

| f

X(1)

AN

| f

—-l Equalize |—>

Make
BPF Q:Q ADC | PE
Signal
cos(m,t)

\_/ d\XfLPE(f)

-B/21 B/2 f
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DOPPLER & DELAY MODEL

s(t) s, (1) = s(t - (t))
'
\_ R(t) Y,
Y

Propagation Time: t(t) = R(t)/c

R(t) =R, +vt+(al/2)t*+--
H_/

Use linear approximation — assumes small
change in velocity over observation interval

[For Real BP Signals:]

s, (t) =s(t—[R, +vt]/c) = s([\l—y/g]t —w

Time Time Delay: Ty
Scaling
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DOPPLER & DELAY MODEL (continued)

[Analytic Signals Model] %Signal of Tx
§(t) _ E(t)ej[mcHd)(t)]

@nalytic Signal of Rx

5 ()= S([L-v/cl—x,) Z

_ E([l— v/ C]t —T, )ej{wc ([I-v/c]t=tq)+o([1-v/c]t—14)}

Now what? Noticethatv<<c = (1-v/c)=1
Say v =-300 m/s (-670 mph) then v/c =-300/3x108 =-10°%=» (1 - v/c)=1.000001

Now assume E(t) & ¢(t) vary slowly enough that
E([1-v/clt) ~ B [eor the range of v

O([L—v/clt) ~ (t) | LOFnterest
Called Narrowband Approximation |
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DOPPLER & DELAY MODEL (continued)

| Narrowband Analytic Signal Model |

S (t) = E(t — 1, )eltotrectviotzacta ot}
r

— e_jwcrd e_jwc (V/C)tejmct E(t _ Td )ej(l)(t_rd )

#‘#‘#‘*‘—

Constant Doppler  Carrier Transmitted Signal’s
Phase Shift Term LPE Signal
Term Term Time-Shifted by 7,4

0= -0y  O4= OV/C

[ Narrowband Lowpass Equivalent Signal Model ]
S (t)=e’e ' §(t—1,)

This is the signal that actually gets processed digitally
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ESTIMATING DOPPLER & DELAY
Consider C-T view first for simplicity, then switch to D-T

(Note: all signals are LPE signals, but we don’t use “hat”)

Problem: Given LPE S,(t) =s(t) & s,(t) =e e *'s(t-1,)
for te[0,T], compute an estimate of delay z;and doppler wy.

o . . C
Motivation: Think about vectors in R?: Note: For
v, notational purposes

0, we will often use
\£  S()=s() )

To measure 64: Let V,(8) be V, rotated clockwise by 6...
and for each 6 compute <V,, V,(0)> = A(0) as a function of 6.

Note: A(B) has a maximum at 6 = 6,, SO we measure 6, by
finding the peak of A(0).
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ESTIMATING DOPPLER & DELAY (cont.)
Do the same thing with signals: Let s, .(t) = e's, (t + 1)

A(o,T) =<5, (t),s, . (t) >

5,(t)s,,.(t)dt

O'——-.—|

)
= j s, (t)s, (t +t)e 't dt
0

We know from the inner product view that |A(m,t)| has a
maximum at ® = oy and t = t4. Also note:

-
j s(t)s(t—zq +7)e 1@ @)t gy

0
T JSignal Energy

= |A@q.7q)|=[|s) dt=E | —

|A(a),f)| =

0
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ESTIMATING DOPPLER & DELAY (cont.)

LPE Rx
Signals
At Two <
Receivers

100

g0

“Compare”
Signals
For all

Delays &
Dopplers

[ Ambiguity Function |

Find
Peak
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ESTIMATING DOPPLER & DELAY (cont.)

e Consider when t = 1,
¢ [A(0,7y)

\A width ~ 1/T
AN AN A

‘A((D’ Ty )‘ =

Hs(t)\ze"‘”dt]e‘j‘"tdt
0

e Consider when o = oy

v [A(0g,7)]

(Dd (6))

~ > o
'

like windowed FT of sinusoid
where window is |s(t)[?

‘A(ood ,r)‘ =

]‘S(’[) S(t—ty +1)dt

/&\ width ~ 1/BW
pay AV NN VAR .

\\ J
h'd

[ correlation ]

11/29



COMPUTING THE AMBIGUITY FUNCTION

Obviously we can only compute |A(w,t)| for discrete values
of o and r:
Need to know a priori values for:

Max/Min Doppler (from largest expected velocity difference)
Max/Min Delay (from largest expected range difference)
Delay Spacing (from expected/measured signal BW)
Doppler Spacing (from observation time T)

-
Recall: A((D1 T) — JS]_ (t) 82 (t + T) e_J(Dt dt
0

N\ 7

Viewﬁa FT = Implies Use of DFT
Define “lag-product” signal : f_(t) =s,(t)s,(t + 1)

Thus, for each delay t,, of interest : Alo,t )=8{f (1)}
' m Tm
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COMPUTING THE AMBIGUITY FUNCTION (cont.)
For corresponding D-T signals we need: f [n]=s,[n]s,[n+m]

m = delay index
Sampling Interval sets Delay Spacing
) : s;[n]
—>| ADC |—>| Pre-Processing |—>| TL & Filter

—>| ADC |—>| Pre-Processing |—>| TL & Filter
N J

" Y
Sampling rate chosen  Interpolate to HA(®g,7)]

to match signal BW get desired
according to Nyquist  delay spacing /\\m
pay. A

Ambiguity
Computation

S,[n]

J




COMPUTING THE AMBIGUITY FUNCTION (cont.)

Recall C-T result: For each delay

Thus for D-T: For each delay index m:

Ao, 7,) = 5{F._ (O}

A(k,m) = DFT{f_(n)}

= DFT{s,[n]s,[n + m]}
[ )
So, computing the ambiguity function for M delay indices is
nothing more than doing M N-pt. DFTs, one for each delay index
. J

5,[n]

v fn]

DFT |

- § =

S,[n]

» Zm

S,[n+m]

A(k, m)

Use a Window for all the
same reasons as
frequency estimation

\
ﬁ?Lag-Product Signal
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ach Column = Lag Product s,(n)s, (n+m) for an m value

e

COMPUTING VY __ wioTGUITY FUNCTION (cont.)
N O

4 N I N N I
m=-3 m=-2 m=-1 m=0 m=1 m=2
5,[0]x 0 5,[0]x 0 5,[0]x 0 5,[0]s,[0] 5,[0]s,[1] 5,[0]s,[2]
5,[1]x0 5,[11x0 s,[115,[0] s,[11s,[1] s,[115,[2] s,[1]s,[3]
5,[2]x0 5,[2]s,[0] s,[2]s, 1] s,[2]s,[2] 5,[2]s,[3] 5,[2]s,[4]

5,[3]5,[0]

s,[N =3]s,[N - 6]
s,[N —2]s,[N -5]
s,[N —1]s,[N —4]

\_ J

l DFT
om— 23 )
A[0,-3]
A[1,-3]

A[2,-3]
A[3,-3]

A[N - 3,-3]
A[N - 2,-3]
A[N -1,-3]

= /

s,[3]s,[1]

5,[N ~3]5,[N —5]
S,[N —2]s,[N —4]

s,[N —1]5,[N 3]
)

1 DFT
m= -2 \
A[0,-2]
All1,-2]

A[2,-2]
A[3,-2]

A[N —.3,—2]
A[N - 2,-2]
A[N -1,-2]

s1[3s,[2]

s,[N —3]s,[N —4]
s,[N —2]s,[N -3]
S [N —-1]s,[N - 2]

l DFT

m = —1 m =20
A[0,-1] A[0,0]
A[1,-1] A[1,0]
A[2,-1] A[2,0]
A[3,-1] A[3,0]
A[N - 3,-1] A[N - 3,0]
A[N - 2,-1] A[N - 2,0]
A[N —1,-1] A[N -1,0]

—

L\ )

$1[3]s,[3]

s,[N —3]5,[N —3]
s, [N —2]s,[N -2]
S [N -1]s,[N 1]

l DFT

s,[3]s,[4]

s;[N —3]s,[N -2]
s, [N —2]s,[N -1]
1[N -1]x0

l DFT

m=1
A[0 1]
A[11]
A[2 1]
A[3.1]

A[N _ 3.1]
A[N - 21]
A[N —11]

\ /

5,[3]s,[5]

5,IN ~3]5,[N —1]
s,[N-2]x0

s,[N -1]x0

l DFT

m = 2
A[0,2]
All1,2]
A[2,2]
Al3,2]

A[N ;3,2]
A[N - 2,2]
A[N -1,2]

\ /

Each Column = Ambiguity Function A(k,m) for an m value)J29




COMPUTING THE AMBIGUITY FUNCTION (cont.)

Problems

1. We end up computing as many doppler bins as there
are signal samples — this gives too many doppler bins

2. This usually requires a VERY large FFT

3. The range of doppler bins is from —Fs/2 to Fs/2, which
Is a far wider range than necessary.

4. The doppler spacing is too coarse: could fix with zero
padding, but the FFT is already TOO long
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COMPUTING THE AMBIGUITY FUNCTION (cont.)

Example: Signal RF BW =2 MHz; Center Freq = 10 GHz;
F. = 2.4 MHz; Collect for T = 0.1 sec; Max Velocity, v =300 m/s

* DFT Frequency Range = —-F/2 to F /2 = [-2.4/2 , 2.4/2] MHz
= Freq Range =[-1.2,1.2] MHz

o |fy| = f.(Jv|/c) < 101°%300/(3 x 10%) =10 kHz
=> max doppler = +10 kKHz (Less Than 1% of Freq Range!!!)

e N=F,T=(2.4 MSPS)(0.1 sec) = 240,000 samples
= # Samples = 240,000 => FFT size =28 =262,144

* DFT Spacing = F/FFT Size = 2.4 x 106/262144
=>» doppler bin spacing =9.2 Hz (Need =~ 1 Hz spacing)
Could get that using zero-padding but that would make an

(2.4 x 108/(8x262144) = 1.1 Hz
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COMPUTING THE AMBIGUITY FUNCTION (cont.)

5

x 10 Assuming Zero Doppler

ACE )l / \

., lZAF =20 Hz

[N

-100 -80  -60 -40  -20 0 20 40 60 80 100

Doppler Axis: f (Hz)
Doppler Spacing of 9.2 Hz is not sufficient
Need about 1 Hz spacing to get 5 DFT points near peak
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COMPUTING THE AMBIGUITY FUNCTION (cont.)
Alw,Tg)] ]

The lag-product signal f_(n) is a near-sinusoid that
Lis WAY over-sampled =» Decimate before DFT

Original Freqg Range =[-1.2 , 1.2] MHz

max doppler =10 kHz =» Digital Freq: n(10kHz/1.2MHz)
=>» Doppler Range = [-0.008x , 0.0087] rad/sample

-
So we could filter f_(n) to [-0.01x , 0.01x]
and then decimate by M =100 (100 ==/ 0.01m)
kNew Rate: Fs = 2.4MHz/100 = 24 kHz

J
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COMPUTING THE AMBIGUITY FUNCTION (cont.)
[Decimate before computing the DFT]

Sl L1, 1] ) Ak, m)
ﬁ—» FIR = YM [—| DFT
s,[n] (s n+m] )

New # Samples after Decimating by 100: N = 240,000/100 = 2400
= New # Samples = 2400 =>» FFT size = 212=4096

DFT Spacing = New F/FFT Size = 24 x 103/4096 =5.9
=» doppler bin spacing =5.9 Hz (Still not 1 Hz!!)
But...Now CAN correct using zero-padding
=>» zero-pad to 16384 point FFT:
spacing = 24 x 103/16384 = 1.5 Hz
Can live with that spacing
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COMPUTING THE AMBIGUITY FUNCTION (cont.)
[ Decimation Filter Design ]

Could use standard design approach — but it Is possible to use
a very simple filter/decimation approach®. This approach
gains efficiency at the cost of performance, but the
performance has been found to be satisfactory in most cases.

A simple length-L FIR LPF is made by having all coefficients
setto 1s: 1, n=012..L-1
h(n) _{

0, otherwise
The output is simply computed as the sum of L input samples:

y(n) =Y x(n-1) 4'\'0 N“”e‘;!}(i%“ﬂ

=0

L see Seymour Stein, “Algorithms for Ambiguity Function Processing,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, June 1981, pp. 588 — 599. 21/29




COMPUTING THE AMBIGUITY FUNCTION (cont.)

Now, for a given length L, what is the frequency response
of this filter? Well, that is nothing more than the DTFT
of a rectangular window of length L, which we have seen

to be: sin(OL /2
HL(O) — ( )
sSin(6/2)

This has See Table in Harris’s Paper

—Firstnullsat 8 = tFJ/L Hz = 167
F — 3 dB points at 6 = (0.89/2) F/L Hz }Mb‘”k

See #2 on p. 167 of textbook

— Stopband height at first lobe iIs —13. 5 dB —
— Stopband rolls off at —6 dB/octave Harris’s Paper j

We’ll pick L =M =100 to get a 3-dB passband to cover
the doppler range: (0.89/2) 2.4 x 10° /100 = 10.7 kHz
\Pre-w[r)ec F,
Post-Dec F. [ M = Dec Factor ]
22/29




COMPUTING THE AMBIGUITY FUNCTION (cont.)
This looks like this for a length of L =100

Frequency Response of “100 1's” Filter

10

0
10
o
Z
= -20 A f
)
L
5'-30 Al My,
fs)
o
AN
-50
-60
-600 -400 -20C 0 200 400 60C
. Frequency (kHz) V4
Y

Shown over a very limited part of [-1.2 MHz, 1.2 MHZz]
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COMPUTING THE AMBIGUITY FUNCTION (cont.)

Zoom In to see passband better...

20 log, (IHE)I) (dB)
Lo

© & M o w

NN .
AT NG - S T )

W W
w O

-36

-39
-6C -50 -4C -3C -2C -1C

Frequency Response of “100 1's” Filter

I
I H
H

|
|
H

U

V

Passband Covers Doppler Range

Frequency (kHz)

0 10 20 3C 40 5C ©6C
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COMPUTING THE AMBIGUITY FUNCTION (cont.)
Now we decimate by factor M = 100 and what happens?

We get the part of the signal that goes through the stopband
aliased into the passband (see Eqg. (12.14) in the book). To get a
rough idea of what impact this has we can look at the filter’s
stopband response “aliased” back into the passband.

This corresponds to plotting the frequency shifted versions
H((0 — 2zm)/M) for integer m on top of H(O) — again, see Eq.
(12.14) in the book.

In Hz, these shifts are integer multiples of When M = L
FJ/M = 2.4 MHz/100 = 24 kHz %]

When we do this we see that This Particular filter has a nice

property that shifts the nulls to the center of the passband, thus

minimizing the impact of aliasing, even though this filter is not
really a very good lowpass filter!!
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COMPUTING THE AMBIGUITY FUNCTION (cont.)

Frequency Response of “100 1's” Filter

/

\

A\

© & W O w

\

(B
N
\

\

=
a1
N

20 log, 4(IHO)]) (dB)

R R &

//

T~
—

1 1
N
~

@
S

w
w

|

8 It

-39

\
|

-6C + -50 -4C ' -30 -2C

-1C

0 1C' 2C' 3C

Frequency (kHz)

4C

5C

60

From this we see that in the middle of the doppler band we have very little impact

from the aliasing, but at the edges of the doppler band there can be some severe

aliasing. Can we live with that?

That is a design decision: we must trade computation vs. performance!!!
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COMPUTING THE AMBIGUITY FUNCTION (cont.)
Now what impact does using this filter have on computing the
ambiguity function? Recall how filtering is done for
decimation: you move the filter coefficients ahead by M to get
each decimated output. But for our case, the filter is length M
so there is no overlap between consecutive placements of the

coefficients:
For Illustration: Use M = 4‘{ Sma“'\/'f”]
[llustration!!
X[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15]
1 1 1 1 Non-Overlapping
l 1 1 1 1 Blocks
X[0] l 1 1 1 1
X[l] l 1 1 1 1
M -1 X[2] l
X[n]= > X[nM +1] 3]
1=0 27/29




COMPUTING THE AMBIGUITY FUNCTION (cont.)

4 )

m=-3
5,[0]x0 Z
s,[1]x0 >
s,[2]x 0

s13]5,[0] | 3°
: —

4 )

m=-2
s,[0]x0 Z
s,[1]x0 |=—>
5,[2]5,10]
s[EIs,| 3
: —

4 )

m=-1
5,[0]x0 Z
s,[1]s,[0] [—>

s,[2]s,[1]
s,[3]s,[21| 3
: —

m=0
5,[0]s,[0]
si[1]s,[1]
5,[2]s,[2]
$,[3]s,[3]

2
%

4 )

4 )

m=1
$,[0]1s,[1]
s1[1]s,[2]
5,[2]s,[3]
s1[3]s,[4]

™

/

m=2
5.[0]5, 2]
s,[1s,[3]

s,[2]s,[4])

5 [3]s,[5]

S
Z,
z,

s,[N —3].32[N -6])

s,[N —3]'32[N —-5]

s,[N —3].SZ[N —4]

s,[N —3].32[N —-3]

s,[N —3]'SZ[N -2]

s,[N —3]'32[N 1]

s,[N —2]s,[N -5] s,[N —2]s,[N —4] s, [N —2]s,[N -3] s, [N —2]s,[N -2] s,[N —2]s,[N —1] s, [N -2]x0
s,[N —1]s,[N —4w s,[N —1]s,[N -3] s,[N —1]s,[N - 2] s,[N —1]s,[N -1] s, [N -1]x0 s,[N —1]x0
- I\ 2 RN RN LA J
DFT DFT DFT DFT DFT
/mz— \ /m:—z\ / m=—1\ / m:O\ / mzl\ / m:2\
A[0,-3] A[0,-2] A[0,-1] A[0,0] A0 1] A[0,2]
A[1,-3] A[l,-2] A[1,-1] A[1,0] A[1,1] A[1,2]
A[N——1—3] A[N——l,—2] A[N——l,—l] A[N——l,O] A[N——l,l] A[N——1,2]
\M UM LM JoN MM LM J
é : )
ﬂ * Form matrix w/ columns of lag products
mm) | - Break into M-pt subblocks along columns
mm) | « Sum elements in each subblock
— - Take DFT of each column of subblock sums P
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COMPUTING THE AMBIGUITY FUNCTION (cont.)

Without Decimation

With Decimation

A(k,m) = DFT{f_(n)}

Z

~ f (n) ejZTtkn/N

Il
o

n

A(k,m) ~ DFT{f, (n)}

— (N/ZM)TAZI f (M +1)

n=0 =0

:|ej2nkn/N

Example:

Computation per Delay Bin is:

« 2,097,152 point FFT

Example:
Computation per Delay Bin is:
e (N/M) M-pt sums:
» 2400 100-pt sums
e 16,384 point FFT

Using Eg. (5.23) and (5.24) for FFT Counts

Without Decimation
For Each Delay Bin:

With Decimation
For Each Delay Bin:

 # Real Multiplies = 79,691,780  # Real Multiplies = 393,220

» # Real Additions = 127,926,274

» # Real Additions = 1,135,362

Decimation Reduces Counts to < 1% of “No Dec” Values
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