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Power of a Random 
Process

Recall : For deterministic signals…
instantaneous power is x2(t)

For a random signal, x2(t) is a random variable for 
each time t. Thus there is no single # to associate 
with “instantaneous power”. To get the Expected 
Instantaneous Power (i.e., on average) we compute 
the statistical (ensemble) average of x2(t):   
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Power of a Random 
Process

Avg. Power of x(t) : PX(t) = E{ x2(t)}

This is also called the 
“mean square value”
of the process

In general, can depend on time.
But we’ll see it doesn’t for WSS
(& stationary) processes

Often drop the
“Average” terminology 
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Relationship of Power to ACF
Recall: RX(t, t+τ ) = E { x(t) x(t+τ) }

Clearly, setting τ =0 makes this equal to PX(t) 
⇒ PX(t) = RX(t, t)

If the Process is WSS (or SS) RX(t,t) = RX(0)

PX = RX(0)

τ

RX(τ)
PX (Power of process) 

For WSS or SS
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Power vs. Variance

Note: If the WSS process is Zero Mean, then: 

Power & Variance are Equal for Zero mean Process
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Power Spectral Density of a 
Random Process

Recall: PSD for Deterministic Signal x(t) :
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Power Spectral Density of a 
Random Process

For a random Process: each realization (sample
function) of process x(t) has different FT and 
therefore a different PSD.

We again rely on averaging to give the “Expected”
PSD or “Average” PSD…

But… Usually just call it “PSD”.
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Define PSD for WSS RP
We define PSD of WSS process x(t) to be :

This definition isn’t very useful for analysis 
so we seek an alternative form

The Wiener-Khinchine Theorem provides 
this alternative!!!
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<Compare this to PSD for Deterministic Signal>
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Weiner- Khinchine 
Theorem

Let x(t) be a WSS process w/ ACF RX(τ) and w/
PSD SX(ω) as defined in (       )… Then RX(τ) and 
SX(ω) form a FT pair :  

SX(ω) = F{ RX(τ) }

or Equivalently

RX(τ) ↔ SX(ω)
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Proof of WK theorem
By definition : ∫

∞
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Proof of WK theorem(cont’d)

Thus : 

Move E {.} inside integrals :
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Proof of WK theorem(cont’d)

We were almost there… BUT we have one-too-many
integrals.

For convenience define: 
φ(t2 - t1) = RX(t2 - t1) e-jω(t2- t1)
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Proof of WK theorem(cont’d)

Change of Variables = Change of AxesChange of Variables = Change of Axes

Instead of integrating “Row-by-Row” as in 
we integrate “Diagonal-by-Diagonal”. 

Let: τ = t2 – t1 t2 = (τ + λ)/2
λ = t1 + t2 t1 = (λ – τ)/2
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Proof of WK theorem(cont’d)

t1

t2τ = t2 – t1
λ = t2 + t1
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Proof of WK theorem(cont’d)
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From Calculus III
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Proof of WK theorem(cont’d)
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Q: As τ ranges over -T≤τ≤T
how does λ range?

A: For each τ, λ must be restricted to stay inside 
original square – see Figure on next Chart

J
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Proof of WK theorem(cont’d)

t1

t2τ = t2 – t1
λ = t2 + t1
Note: φ(t2 – t1) 
Doesn’t Change
In The Direction
Of t2 + t1 Axis

T/2– T/2

– T/2

T/2
τ = 2 

τ = 4 
τ = 6 

τ = T
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Proof of WK theorem(cont’d)

τ = t2 – t1
t2 = τ + t1

t1= t2 - τ

λ = (τ + t1) + t1 = 2t1 + τ

λ = t2 + (t2 - τ) = 2t2 - τ

When τ > 0 we  need (From Axes Figure):
t2 ≤ T/2                    λ ≤ T - τ
t1 ≥ -T/2                    λ ≥ -T + τ

λ = t2 + t1

Works out similarly for τ < 0 
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Proof of WK theorem(cont’d)
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Some Properties of 
PSD & ACF

(1) The PSD is an even function of ω for 
a real process x(t) 
proof : since each sample function is 
real valued then we know that ⏐x(ω)⏐is 
even.

⇒ ⏐x(ω)⏐2 is even: (even x even = even)
⇒ So is SX(w) ( this is clear from     )
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Some Prop. of PSD & ACF
(2) SX(ω) is real-valued and ≥ 0.

proof : again from (   ) – since ⏐x(w)⏐2 is real-
valued & ≥ 0, so is SX(w) 

(3) RX(τ) is an even function of τ

Also follows from IFT{ Real & Even } = Real & Even  
<Property of the FT> 
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Graphical View of Prop #3
For WSS,  ACF does not depend on absolute 
time only relative time

t- τ t+τ
τ τ

t

t

t

t

Doesn’t matter if you look 
forward by τ or look 
backward by τ
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Computing Power from 
PSD

From it’s name – Power Spectral Density – we 
know  what to expect :
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So let’s Prove this !!!!

Well … this part is not obvious!!
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Computing Power from PSD
We Know:      { }
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Units of PSD Function

∫
∞
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Using Symmetry of SX(w)
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Double to account for the 
-∞ → 0 part of integral
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PSD for DT Processes

SX(Ω) = DTFT { RX[m] }

Periodic in Ω with period 2π

ΩΩ= ∫
−

dSP xx

π

ππ
)(

2
1

Not much changes – mostly, just use DTFT 
instead of CTFT!!

Need only look at -π ≤ Ω < π
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Big Picture of PSD & ACF
i.e. High 
Frequencies 
have Large
power 
contentProcess exhibits 

Rapid fluctuations

Narrow ACF           Broad PSD

Less Correlated
Sample-to-sample

i.e. High 
Frequencies
have Small
power 
contentProcess exhibits 

Slow fluctuations

Broad ACF           Narrow PSD

More Correlated
Sample-to-sample

<<See “Big Picture: Filtered RP” Charts in “V-3 RP Examples” >>
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White Noise
The term “White Noise” refers to a WSS process 
whose PSD is flat over all frequencies

C-T  White Noise

ω

SX(ω)

Convention to 
use this form 
(i.e. w/ 
division by 2)

White Noise 
Has Broadest 
Possible PSD

N /2

ωω ∀=
2

)( N
XS
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C-T White Noise

NOTE : C-T white noise has infinite Power :

Can’t really exist in practice but still a very
useful Model for Analysis of Practical Scenarios
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C-T White Noise
Q : what is the ACF of C-T white Noise ?
A: Take the IFT of the flat PSD : 

{ }

)(

2/)( 1

τδ

τ

2
N

N

=
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xR

x(t1) & x(t2) are uncorrelated
for any t1 ≠ t2

Delta function !
Narrowest ACFRX(τ)

Area = N /2
τ

PX = RX(0) = N /2δ(0) → ∞
Infinite Power.. It Checks!

Also….
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D-T White Noise
PSD is:
SX(Ω) = N /2 ∀ Ω

…but focus on Ω∈[-π,π] 

ACF is:
RX[m] = IDTFT {N /2 }

= N /2 δ [m] 

Delta sequence

x[k1] & x[k2] are uncorrelated for any k1 ≠ k2

Ω

SX(Ω)

-π π

N /2 Broadest 
Possible PSD

Narrowest 
ACF

m

RX[m]

-3 1-2 -1 2 3

N /2
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D-T White Noise

Note:

D-T White Noise has Finite Power
(unlike C-T White Noise)
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Examples of PSD
Example 1:  “BANDLIMITED WHITE NOISE”
This looks like white noise within some bandwidth but its 
PSD is zero outside that bandwidth – hence the name.

Thus:
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Example: BL White Noise
The ACF (using FT pair for rect and sinc) is:

RX(τ) = N B sinc (2πBτ)

Again we see  PX = N B , since RX(0) = N B

Note: For τ > 1/2B …
x(t) & x(t + τ)  are Approximately Uncorrelated

RX(τ)

-3
2B

-2
2B

-1
2B

1 
2B

2
2B

3
2B

N B

τ
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Example #2 of PSD
Example 2 : “SINUSOID WITH RANDOM PHASE”

x(t) = A cos (ωCt + θ)

We examined this RP before: RX(τ) = A2 cos (ωCτ)
2

So using FT Pair for a Cosine gives the PSD:

SX(ω) =  (πA2)/2  [δ (ω + ωC) + δ (ω – ωC)] 

ω

SX(ω)

- ωc ωc

Area = (πA2)/2Area = (πA2)/2
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Example #2 of PSD
Note :  Can get PX in two ways:
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2

<Sifting Property>
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Example #3 of PSD
Example 3: “FILTERED D-T RANDOM PROCESS”

< See Also: Class Notes on “Filtered RPs” > 

D-T Filterx [k]

Zero mean           ⇒ RX[m] = σ2δ[m] (Input ACF)  
White noise 

⇒ SX(Ω) = σ² ∀Ω (Input PSD)

y[k] = x[k] + x [k +1]

SX(Ω)

Ω

σ²
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Example #3 of PSD
For this case we showed earlier that for this filter 
output the ACF is : 

RY[m] = σ² { 2δ[m] + δ[m-1] + δ[m+1] }

So the Output PSD is:

SY(Ω) = σ² [2 + e-jΩ + e-jΩ]

= 2σ² [cos (Ω) + 1]

Use the result for 
DTFT of δ[m] and 
also time-shift 
property

= 2 cos (Ω)  By Euler
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Example #3 of PSD

General Idea…Filter Shapes Input PSD:
Here it suppresses High Frequency power

-2π -π π 2π

Sy(Ω)

Ω

4σ²
Replicas Replicas

SY(Ω) = 2σ² [cos (Ω) + 1]

Remember: Limit View to [-π,π]
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