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Review of Probability
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Random Variable
 Definition

Numerical characterization of outcome of a random 
event

Examples
1) Number on rolled dice
2) Temperature at specified time of day
3) Stock Market at close
4) Height of wheel going over a rocky road 
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Random Variable

 Non-examples
1) ‘Heads’ or ‘Tails’ on coin
2) Red or Black ball from urn

But we can make  
these into RV’s

 Basic Idea – don’t know how to completely 
determine what value will occur
– Can only specify probabilities of  RV values occurring.
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Two Types of Random Variables

Random Variable

Discrete RV
• Die
• Stocks

Continuous  RV
• Temperature
• Wheel height
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Given Continuous RV X… 
What is the  probability that X = x0 ?

Oddity : P(X = x0) = 0
Otherwise the Prob. “Sums” to infinity

Need to think of Prob. Density Function (PDF)
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The Probability density function 
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Most Commonly Used PDF: Gaussian

m & σ are parameters of the Gaussian pdf
m = Mean of  RV  X
σ = Standard Deviation of RV  X (Note: σ > 0)
σ2 = Variance of  RV  X
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A RV X with the following PDF is called a Gaussian RV

Notation: When X has Gaussian PDF we say  X ~ N(m,σ 2)
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 Generally:  take the noise to be Zero Mean
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Zero-Mean Gaussian PDF
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pX(x)

x

Area within ±1 σ of mean = 0.683  
= 68.3%

σ σ

x = m

Small σ Small Variability 
(Small Uncertainty)

pX(x)

x

Large σ Large Variability 
(Large Uncertainty)

pX(x)

x

Effect of Variance on Gaussian PDF
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Central Limit theorem (CLT)
The sum of N independent RVs has a pdf
that tends to be Gaussian as N →∞

So What!   Here is what : Electronic systems generate 
internal noise due to random motion of electrons in electronic 
components. The noise is the result of summing the random 
effects of lots of electrons.

CLT applies Guassian Noise

Why Is Gaussian Used?
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Describes probabilities of joint events concerning X and Y.  For 
example, the probability that X lies in interval [a,b] and Y lies in 
interval [a,b] is given by:
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This graph shows a Joint PDF
Graph from B. P. Lathi’s book: Modern Digital & Analog Communication Systems

Joint PDF of RVs X and Y
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When you have two RVs… often ask: What is the PDF of Y if X is 
constrained to take on a specific value.  

In other words: What is the PDF of Y conditioned on the fact X is 
constrained to take on a specific value.  

Ex.: Husband’s salary X conditioned on wife’s salary = $100K?  

First find all wives who make EXACTLY $100K… how are their  
husband’s salaries distributed.  

Depends on the joint PDF because there are two RVs… but it 
should only depend on the slice of the joint PDF at Y=$100K.  

Now… we have to adjust this to account for the fact that the joint 
PDF (even its slice) reflects how likely it is that Y=$100K will 
occur (e.g., if Y=105 is unlikely then pXY(x,105) will be small); so… 
if we divide by pY(105) we adjust for this.  

Conditional PDF of Two RVs
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Conditional PDF (cont.)

Thus, the conditional PDFs are defined as (“slice and normalize”):
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This graph shows a Conditional PDF

Graph from B. P. Lathi’s book: Modern Digital & Analog Communication Systems

“slice and 
normalize”

y is held fixed

x is held 
fixed
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Independence should be thought of as saying that: 

Neither RV impacts the other statistically – thus, the 
values that one will likely take should be irrelevant to the 
value that the other has taken.

In other words: conditioning doesn’t change the PDF!!!
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Independent and Dependent Gaussian PDFs

Independent
(zero mean)

y

x

Contours of pXY(x,y). 

If X & Y are independent, 
then the contour ellipses 
are aligned with either the 
x or y axis

Dependent y

x

Different slices 
give 

different normalized 
curves 

Independent
(non-zero mean)

y

x

Different slices 
give 

same normalized 
curves 
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RV’s X & Y are independent if:
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Here’s why:

An “Independent RV” Result
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Characterizing RVs
 PDF tells everything about an RV

– but sometimes they are “more than we need/know”
 So… we make due with a few Characteristics

– Mean of an RV           (Describes the centroid of PDF)
– Variance of an RV      (Describes the spread of PDF)
– Correlation of RVs     (Describes “tilt” of joint PDF)

Mean = Average = Expected Value

Symbolically:  E{X}



17

Motivation First w/ “Data Analysis View”
Consider RV X = Score on a test     Data:  x1, x2,… xN

Possible values of RV X : V0 V1 V2...  V100
0    1   2  … 100

Ni = # of scores of value Vi

N = (Total # of scores)∑
=
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This is called Data Analysis View
But it motivates the Data Modeling View Probability

Statistics

Motivating Idea of Mean of RV
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Theoretical View of Mean
Data Analysis View leads to Probability Theory:

 This Motivates form for Continuous RV:

Probability Density Function
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Probability Function

Data Modeling

Notation: XXE =}{ Shorthand Notation
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Aside: Probability vs. Statistics
Probability Theory
» Given a PDF Model
» Describe how the 

data will likely behave

Statistics
» Given a set of Data
» Determine how the 

data did behave

There is no DATA here!!!
The PDF models how 
the data will likely behave

There is no PDF here!!!
The Statistic measures how 
the data did behave
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Variance: Characterizes how much you expect the 
RV to Deviate Around the Mean

There are similar Data vs. Theory Views here… 
But let’s go right to the theory!!

Variance: 
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Motivating Idea of Correlation

Consider a random experiment that observes the 
outcomes of two RVs:
Example: 2 RVs X and Y representing height and weight, respectively

y

x

Positively Correlated

Motivate First w/ Data Analysis View

x

y
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Illustrating 3 Main Types of Correlation

Positive Correlation
“Best Friends”

GPA 
& 

Starting Salary

yy −

xx −

Zero Correlation
i.e. uncorrelated
“Complete Strangers”

Height 
& 

$ in Pocket

yy −

xx −

Negative Correlation
“Worst Enemies”

Student Loans
& 

Parents’ Salary

yy −

xx −

Data Analysis View: ∑
=

−−=
N

i
iixy yyxx

N
C

1
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To capture this, define Covariance :

)})({( YYXXEXY −−=σ

If the RVs are both Zero-mean : }{XYXY Ε=σ

If X = Y: 22
YXXY σσσ ==
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Prob. Theory View of Correlation

If X & Y are independent, then:  0=XYσ
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If 0)})({( =−−= YYXXEXYσ

Then… Say that X and Y are “uncorrelated”

If 0)})({( =−−= YYXXEXYσ

Then YXXYE =}{

Called “Correlation of  X & Y ”

So… RVs X and Y are said to be uncorrelated 

if  σXY = 0

or equivalently…  if   E{XY} = E{X}E{Y}
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X & Y are 
Independent

Implies X & Y are 
Uncorrelated

Uncorrelated

Independence

INDEPENDENCE IS A STRONGER CONDITION !!!!
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Independence vs. Uncorrelated

PDFs Separate Means Separate
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Covariance : )})({( YYXXEXY −−=σ

Correlation Coefficient :
YX

XY
XY σσ

σρ =

11 ≤≤− XYρ

Correlation : }{XYE Same if zero mean

Confusing Covariance and 
Correlation Terminology



27

Correlation Matrix :
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Covariance and Correlation For 
Random Vectors…
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Joint PDF for Gaussian
Let x = [X1 X2 … XN]T be a vector of random variables.  These random variables 
are said to be jointly Gaussian if they have the following PDF
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where µx is the mean vector and Cx is the covariance matrix:
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For the case of two jointly Gaussian RVs  X1 and X2 with 

E{Xi} = µi var{Xi} = σi
2          E{(X1 – µ1) (X2 – µ2)} = σ12 ρ = σ12/ (σ1 σ2)

Then…

It is easy to verify that X1 and X2 are uncorrelated (and independent!) if ρ = 0
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Linear Transform of Jointly Gaussian RVs
Let x = [X1 X2 … XN]T be a vector of jointly Gaussian random variables with 
mean vector µx and covariance matrix Cx…  

Then the linear transform y = Ax + b is also jointly Gaussian with
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A special case of this is the sum of jointly Gaussian RVs… which can be 
handled using A = [1  1  1  …  1]
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Moments of Gaussian RVs
Let X be zero mean Gaussian with variance σ2

Then the moments E{Xk} are as follows:
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Let X1 X2 X3 X4 be any four jointly Gaussian random variables with zero mean

Then…   

E{X1X2X3X4} = E{X1X2}E{X3X4} + E{X1X3}E{X2X4} + E{X1X4}E{X2X3}

Note that this can be applied to find E{X2Y2} if X and Y are jointly Gaussian



32

Chi-Squared Distribution 
Let X1 X2 … XN be a set of zero-mean independent jointly Gaussian random 
variables each with unit variance.

Then the RV   Y = X1
2 + X2

2 + … + XN
2  is called a chi-squared (χ2) RV of N 

degrees of freedom and has PDF given by 

( /2) 1 /2
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1 , 0
2 ( / 2)( )
0, 0

N y
N y e y

Np y
y

− − ≥ Γ= 
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For this RV we have that: 

E{Y} = N    and     var{Y} = 2N


	Review of Probability
	Random Variable
	Random Variable
	Two Types of Random Variables
	PDF for Continuous RV 
	Most Commonly Used PDF: Gaussian
	Zero-Mean Gaussian PDF
	Effect of Variance on Gaussian PDF
	Why Is Gaussian Used?
	Joint PDF of RVs X and Y
	Conditional PDF of Two RVs
	Slide Number 12
	Independent RV’s
	Independent and Dependent Gaussian PDFs
	An “Independent RV” Result
	Characterizing RVs
	Motivating Idea of Mean of RV
	Theoretical View of Mean
	Aside: Probability vs. Statistics
	Variance of RV
	Motivating Idea of Correlation
	Illustrating 3 Main Types of Correlation
	Prob. Theory View of Correlation
	Slide Number 24
	Independence vs. Uncorrelated
	Confusing Covariance and Correlation Terminology
	Covariance and Correlation For Random Vectors…
	A Few Properties of Expected Value
	Joint PDF for Gaussian
	Linear Transform of Jointly Gaussian RVs
	Moments of Gaussian RVs
	Chi-Squared Distribution 

