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3.7 CRLB for Vector Parameter Case
Vector Parameter: [ ]Tpθθθ !21=θ

Its Estimate: [ ]Tpθθθ ����
21 !=θ

Assume that estimate is unbiased: { } θθ =�E

For a scalar parameter we looked at its variance�
but for a vector parameter we look at its covariance matrix:
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Fisher Information Matrix
For the vector parameter case� 

Fisher Info becomes the Fisher Info Matrix (FIM) I(θ) 
whose mnth element is given by:
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true value of θ



3

The CRLB Matrix  
Then, under the same kind of regularity conditions, 

the CRLB matrix is the inverse of the FIM: )(1 θI−=CRLB

So what this means is: nnnn
n

][][ )(1
�

2
� θICθ

−≥=θσ

Diagonal elements of Inverse FIM bound the parameter variances, 
which are the diagonal elements of the parameter covariance matrix
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More General Form of The CRLB Matrix

definite-semi positive is)(1
� θICθ

−−

0θICθ ≥− − )(1
�

Mathematical Notation for this is:

(!!)

Note: property #5 about p.d. matrices on p. 573 
states that (!!)   ⇒ (!)
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CRLB Off-Diagonal Elements Insight
Let θ = [xe ye]T represent the 2-D x-y location of a 
transmitter (emitter) to be estimated.

Consider the two cases of �scatter plots� for the estimated 
location:

ex�

ey�

ex�

ey�

exex

ey eyey�σ
ey�σ

ex�σ
ex�σ

Each case has the same variances� but location accuracy 
characteristics are very different.   ⇒ This is the effect of the 
off-diagonal elements of the covariance 

Should consider effect of off-diagonal CRLB elements!!!

Not In Book
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CRLB Matrix and Error Ellipsoids Not In Book

Assume [ ]Tee yx ��� =θ is 2-D Gaussian w/ zero mean
and a cov matrix θC � Only For Convenience

Then its PDF is given by:
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Quadratic Form!!
(recall: it�s scalar valued)

So the �equi-height contours� of this PDF are given by the 
values of θ� such that:

kT =θAθ �� Some constant

easefor 

 

  :Let

1
� AC θ =−

Note: A is symmetric so a12 = a21 �because any cov. matrix is symmetric 
and the inverse of symmetric is symmetric
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What does this look like? kyayxaxa eeee =++ 2
2212

2
11 ���2�

An Ellipse!!! (Look it up in your calculus book!!!)

Recall: If a12 = 0, then the ellipse is aligned w/ the axes & 
the a11 and a22 control the size of the ellipse along the axes

Note: a12 = 0  ⇒
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Not In BookError Ellipsoids and Correlation

Choosing k Value
For the 2-D case� 

k = -2 ln(1-Pe)

where Pe is the prob. 
that the estimate will 
lie inside the ellipse

See posted 
paper by 
Torrieri
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Ellipsoids and Eigen-Structure
Consider a symmetric matrix A & its quadratic form xTAx

kT =Axx⇒ Ellipsoid: or k=xAx ,

Principle Axes of Ellipse are orthogonal to each other�
and are orthogonal to the tangent line on the ellipse:

x1

x2

Theorem: The principle axes of the ellipsoid xTAx = k are 
eigenvectors of matrix A.

Not In Book
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Proof: From multi-dimensional calculus: gradient of 
a scalar-valued function φ(x1,�, xn) is orthogonal to the surface:
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See handout posted on Blackboard on Gradients and Derivatives
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For our quadratic form function we have:
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By Symmetry:
aik = aki

And from this we get:
AxAxxx 2)( =∇ T
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x1

x2

Since grad ⊥ ellipse, this says Ax is ⊥ ellipse:

x
Ax

k=xAx ,

When x is a principle axis, then x and Ax are aligned:

x1

x2

x Ax

k=xAx ,

xAx λ=
Eigenvectors are 
Principle Axes!!!

< End of Proof >
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Theorem: The length of the principle axis associated with 
eigenvalue λi is ik λ/

Proof: If x is a principle axis, then Ax = λx.  Take inner product
of both sides of this with x:
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< End of Proof >

Note: This says that if A has a zero eigenvalue, then the error ellipse 
will have an infinite length principle axis  ⇒ NOT GOOD!!

So� we�ll require that all λi > 0
⇒ must be positive definite

θ
C �
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Application of Eigen-Results to Error Ellipsoids
The Error Ellipsoid corresponding to the estimator covariance 
matrix       must satisfy:

θ
C � kT =− θCθ θ

�� 1
� Note that the error 

ellipse is formed 
using the inverse covThus finding the eigenvectors/values of

shows structure of the error ellipse  
1

�
−
θC

Recall: Positive definite matrix A and its inverse A-1 have the 
� same eigenvectors
� reciprocal eigenvalues

Thus, we could instead find the eigenvalues of
and then the principle axes would have lengths
set by its eigenvalues not inverted 

)(1
� θIC
θ

−=

Inverse FIM!!
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Illustrate with 2-D case: kT =− θCθ θ
�� 1

�

v1 & v2
λ1 & λ2

Eigenvectors/values for 
(not the inverse!)
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The CRLB/FIM Ellipse

We can re-state this in terms of the FIM�

Once we find the FIM we can:
� Find the inverse FIM
� Find its eigenvectors� gives the Principle Axes
� Find its eigenvalues� Prin. Axis lengths are then 

Can make an ellipse from the CRLB Matrix� 
instead of the Cov. Matrix

This ellipse will be the smallest error ellipse that an unbiased estimator 
can achieve!

ikλ


