3.7 CRLB for Vector Parameter Case

Vector Parameter: 6 = |9, 0, QP]T
Its Estimate: 0 = _él éz ép]T

Assume that estimate is unbiased: E{é}: 0

For a scalar parameter we looked at its variance...
but for a vector parameter we look at its covariance matrix:

var{é}z E{ [é - 9][6 - e]f} =C;

For example: var(x) cov(X,7)  cov(x,2)]

for 6=[x y z]! C, =|cov(y,x) var(p) cov(y,z)

cov(z,X) cov(z,y) var(z) |



Fisher Information Matrix

For the vector parameter case...

Fisher Info becomes the Fisher Info Matrix (FIM) 1(0)
whose mn™ element is given by:

r Evaluate at
52 ln[p(X’ 9)]}_/¥true value of 0

, mmn=172,...,
26, 90, o

[1(9)],,, = —E{




The CRLB Matrix

Then, under the same kind of regularity conditions,
the CRLB matrix is the inverse of the FIM: CRLB =1~ (0)

So what this means is: O'gn = [C@, Lun = [17(0)],, (k)

Diagonal elements of Inverse FIM bound the parameter variances,
which are the diagonal elements of the parameter covariance matrix

_Vaf(?e)k cov(%,7)  cov(X,Z) by ¢ by by
- — — > L
Cy=|cov(y,x)  ivar(y):  cov(y,z) byy by i by |=17(0)
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More General Form of The CRLB Matrix

Cy— ! (0) 1spositive semi - definite

Mathematical Notation for this is:

C,-T1"'(0)=0 (k %)

Note: property #5 about p.d. matrices on p. 573
states that (k k) = (k)



CRLB Off-Diagonal Elements Insight [Not In Book]

Let O =[x, y,]' represent the 2-D x-y location of a
transmitter (emitter) to be estimated.

Consider the two cases of “scatter plots™ for the estimated
location:
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Each case has the same variances... but location accuracy

characteristics are very different. = This 1s the effect of the
off-diagonal elements of the covariance

Should consider effect of off-diagonal CRLB elements!!!



CRLB Matrix and Error Ellipsoids  [Notin Book]

Assume 60=[t, .| is2-D Gaussian w/ zero mean

and a cov matrix Co Only For Convenience

Then 1ts PDF 1s given by:
Let :
A 1
P<9)= exp[ Cgl — A
Quadratic Form!! for ease

(recall: it’s scalar valued)

So the “equi-height contours™ of this PDF are given by the

values of 0 such that: — -
(‘)TAO =k -{Some constantJ

Note: A 1s symmetric so @, =a,, ...because any cov. matrix 1S symmetric
and the inverse of symmetric is symmetric




: . r2 AA A2
What does this look like? [@11X, +2a12X, Y, +adny, =k

An Ellipse!!! (Look it up in your calculus book!!!)

Recall: If a,, = 0, then the ellipse 1s aligned w/ the axes &
the a,, and a,, control the size of the ellipse along the axes

~ _ 1 ]
all O EE— O
a
Note:a;, =0 = ¢;'= = C, = H 1
i O Cl22_ O _—
i s |

A

= x, &y, are uncorrelated

N

Note: a;,#0 = x, &y, are correlated




Error Ellipsoids and Correlation

if x,& y, areuncorrelated

AJ;e A

[Not In Book]

/Choosing k Value \

For the 2-D case...

k=-2In(1-P,)

where P, 1s the prob.
that the estimate will

lie inside the ellipse
\ A /

See posted

paper by
Torrieri




Ellipsoids and Eigen-Structure

Consider a symmetric matrix A & its quadratic form xTAx

— Ellipsoid:

Principle Axes of Ellipse are orthogonal to each other...

x' Ax =k

or

[Not In Book]

<Ax,x>= k

and are orthogonal to the tangent line on the ellipse:

Theorem: The principle axes of the ellipsoid x'Ax = k are

eigenvectors of matrix A.




Proof: From multi-dimensional calculus: gradient of
a scalar-valued function ¢(x,,..., x,) 1s orthogonal to the surface:

4_(/ / Xy
/:Diffqent]
Notations
d(x) _

grad ¢(xq,...,x,) =V 9(X) =

19).

T
_|9% . 97
_|:axl Ox :|

n

See handout posted on Blackboard on Gradients and Derivatives
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For our quadratic form function we have:

o(x; X ;

p(x)=x" Ax = zzay Xi%; ZZ e

o(x.x ) Ox. Ox .
Product rule: —L= = x4 x,—=
Ox, ox, ’ ' Ox, (%)
1 i=k 5
=ik :{0 ik

Using (& es) 1n (&) gives: 99 - Zakaf + Zaikxj

. By Symmetry:
B 2Zaijj { di = A ]
J

V. (x! Ax) = 2Ax

And from this we get:
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Since grad | ellipse, this says Ax is L ellipse:

~
-

- AX
/§ X
<Ax,x> =k

When x is a principle axis, then x and Ax are aligned:

A
L//§x1

X
<Ax,x>: k

- AX = AXx

Eigenvectors are
Principle Axes!!!

< End of Proof >
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Theorem: The length of the principle axis associated with
eigenvalue A; is \/k / 4,

Proof: If x is a principle axis, then Ax = Ax. Take inner product
of both sides of this with x:

(xx)=a(ex) (x)-E = - &

=k
=[x |

< End of Proof >

Note: This says that if A has a zero eigenvalue, then the error ellipse
will have an infinite length principle axis = NOT GOOD!!

So... we’ll require that all A.> 0
= C, must be positive definite
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Application of Eigen-Results to Error Ellipsoids

The Error Ellipsoid corresponding to the estimator covariance
matrix C. must satisfy: |A7 14
0 o' cile=x

Note that the error

. . ellipse 1s formed
Thus finding the eigenvectors/values of ¢;' using the inverse cov

shows structure of the error ellipse

Recall: Positive definite matrix A and its inverse A-! have the

* same eigenvectors
* reciprocal eigenvalues

Thus, we could 1nstead find the eigenvalues of C, = ()
and then the principle axes would have lengths
set by its eigenvalues not inverted

Inverse FIM!!
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Ilustrate with 2-D case: 07 Cglé =k

vV, &V,
Ay & A,y

Eigenvectors/values for C,
(not the inverse!)
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The CRLB/FIM Ellipse

Can make an ellipse from the CRLB Matrix...
instead of the Cov. Matrix

This ellipse will be the smallest error ellipse that an unbiased estimator
can achieve!

We can re-state this in terms of the FIM. ..

Once we find the FIM we can:
* Find the inverse FIM
* Find its eigenvectors... gives the Principle Axes
* Find 1ts eigenvalues... Prin. Axis lengths are then M
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