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CRLB Example:  
Single-Rx Emitter Location via Doppler
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• Received Signal Parameters Depend on  Location

– Estimate Rx Signal Frequencies:  f1,  f2,  f3, …, fN

– Then Use Measured Frequencies to Estimate Location

(X, Y, Z, fo)
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Problem Background
Radar to be Located:   at Unknown Location (X,Y,Z)
Transmits Radar Signal at Unknown Carrier Frequency fo

Signal is intercepted by airborne receiver with:

Known (Navigation Data): 
Antenna Positions: (Xp(t), Yp(t), Zp(t))
Antenna Velocities: (Vx(t), Vy(t), Vz(t))

Goal:  Estimate Parameter Vector  x = [X Y Z  fo]T
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Physics of Problem

Receiver

Emitter

v(t)

u(t)Relative motion between 
emitter and receiver 
causes a Doppler shift of 
the carrier frequency:
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Because we estimate the frequency there is an error added:
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u(t) is unit vector 
along line-of-sight
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Estimation Problem Statement
Given: 

Data Vector:

Navigation Info: 
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Estimate:
Parameter Vector: [X Y Z fo]T

Right now only want to consider the CRLB
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The CRLB
Note that this is a “signal” plus noise scenario:

• The “signal” is the noise-free frequency values
• The “noise” is the error made in measuring frequency

Only need the first term in the CRLB equation:
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I use J for the FIM instead of I to avoid confusion with the identity matrix.
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Only Mean Shows 
Dependence on 

parameter x!

Our data vector is distributed according to: 

Assume zero-mean Gaussian noise with covariance matrix C:
• Can use the “General Gaussian Case” of the CRLB
• Of course validity of this depends on how closely the errors  

of the frequency estimator really do follow this 
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Convenient Form for FIM

To put this into an easier form to look at…  Define a matrix H:

Called “The Jacobian” of f(x)
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Then it is east to verify that the FIM becomes:

HCHJ 1−= T



7

CRLB Matrix
The Cramer-Rao bound covariance matrix then is:
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A closed-form expression for the partial derivatives needed for H can be 
computed in terms of an arbitrary set of navigation data – see “Reading Version” 
of these notes (on BlackBoard).  

Given: Emitter Location & Platform Trajectory and Measurement Cov C
• Compute Matrix H
• Compute the CRLB covariance matrix  CCRB(x)
• Compute eigen-analysis of CCRB(x)
• Determine the 4-D error ellipsoid. 

Can’t really plot a 4-D ellipsoid!!!

But…  it is possible to project this 4-D ellipsoid down into a 2-D ellipse so that 
you can see the effect of geometry.
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Projection of Error Ellipsoids
A zero-mean Gaussian vector of two vectors x & y: [ ]TTT yxθ =

The the PDF is:
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The quadratic form in the exponential defines an ellipse:

kT =− θCθ θ
1 Can choose k to make size of 

ellipsoid such that θ falls inside 
the ellipsoid with a desired 

probability

Q: If we are given the covariance Cθ how is x alone is distributed?

A: Extract the sub-matrix Cx out of Cθ

See also “Slice Of Error Ellipsoids”
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2-D ellipse still shows 
the full range of 

variations of x and y

Projection Example
Tzyx ][=θ Tyx ][=xFull Vector: Sub-Vector:

We want to project the 3-D ellipsoid for θ
…down into a 2-D ellipse for x
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Finding Projections
To find the projection of the CRLB ellipse:

1. Invert the FIM to get CCRB
2. Select the submatrix CCRB,sub from CCRB
3. Invert CCRB,sub to get Jproj 
4. Compute the ellipse for the quadratic form of Jproj
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P is a matrix formed from the identity matrix: 
keep only the rows of the variables projecting onto

For this example, frequency-based emitter location:  [X Y Z fo]T

To project this 4-D error ellipsoid onto the X-Y plane:
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Projections Applied to Emitter Location

Shows 2-D ellipses that 
result from projecting 

4-D ellipsoids
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Slices of Error Ellipsoids
Q: What happens if one parameter were perfectly known.  

Capture by setting that parameter’s error to zero
⇒ slice through the error ellipsoid.

Impact:
• slice = projection when ellipsoid not tilted
• slice < projection when ellipsoid is tilted.

Recall:  Correlation causes tilt
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