Chapter 6
Best Linear Unbiased Estimate
(BLUE)



Motivation for BLUE

Except for Linear Model case, the optimal MV U estimator might:
1. not even exist
2. bedifficult or impossibleto find

—> Resort to a sub-optimal estimate
BLUE is one such sub-optimal estimate

Idea for BLUE.:

1. Restrict estimate to be linear in data x

2. Restrict estimate to be unbiased

3. Find the best one (i.e. with minimum variance)

Advantage of BLUE:Needs only 1% and 2"¢ moments of PDF,

Disadvantages of BLUE: F
1. Sub-optimal (in general) Mean & Covariance |
2. Sometimes totally inappropriate (see bottom of p. 134)




6.3 Definition of BLUE (scalar case)

Observed Data x=[x[0] x[1] ... x[N=1]]T

PDF. p(x;#) dependson unknown & -

BLUE constrained to belinear indata: ~ f8Lu = D aX{nl=a'x
n—0

Choosea'stogive: 1. unbiased estimator
2. then minimize variance
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6.4 Finding The BLUE (Scalar Case)
1. ConstraintobelLinear: 6= fanx[n]

2. Constrain to be Unbiased: E{6}

//Us ng linear constraint

Z a,E{x[n]} =6

Q: When can we meet both of these constraints?

A: Only for certain observation models (e.g., linear observations)



Finding BLUE for Scalar Linear Observations

Consider scalar-parameter linear observation:

X[n] =6snj+wn = EXn]} =&§n]

i N-1
Then for the unbiased condition we need: E{6} =6 > a,s[n]=6
n-0 U
Tells how to choosq
weights to use in the Need T 1

BLUE estimator form/<
A N_
G

Now... given that these constraints are met...
We need to minimize the variance!!

Given that C isthe covariance matrix of x we have:

var{éBLU }: Var{aTx}: aTCa Like var{aX} =a2 var{ X} ]
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Goal:

minimizea’™Ca subjectto a's=1

= Constrained optimization

Appendix 6A: Use Lagrangian Multipliers:

Minimize J=a'Ca +A(a's —1)

-------------------------------------
o

Set : 2—i=0 — =—%C1sg\
............ a T; =1 - TC—lsl
.......................................... s C s
= aTs=—£sTC_1s—1 = —i— 1
R W 2 s'CTs
T ~— ~
OpLue =a' x = SSTE_?S‘ var(f) = STé—ls

Appendix 6A shows that this achieves a global minimum




Applicability of BLUE

We just derived the BLUE under the following:
1. Linear observations but with no constraint on the noise PDF
2. No knowledge of the noise PDF other than its mean and cov!!

4 What does this tell us??? )
BLUE is applicable to linear observations

But... noise need not be Gaussian!!!

(aswas assumed in Ch. 4 Linear Modé)
\_ And all we need are the 1** and 2" moments of the PDF!!! J

can often linearize a nonlinear model!!!

[ But... we’ll see in the Example that we ]




6.5 Vector Parameter Case: Gauss-Markov Thm

Gauss-Markov Theorem:
If data can be modeled as having linear observations in noise:

x=HO+w

Known Matrix

arbitrary & unknown)

Known Mean & Cov
(PDF is otherwise

_ ~ —1
Then the BLUE is: OBLUE:(HTC_lH) H'C'x

and its covarianceis: C; = (HTC‘lH)_l

[ Note: If noise iS Gaussian then BLUE iSMVUE ]




Ex. 4.3: TDOA-Based Emitter Location

/ ....... S0).... \
.T.,Tx @ (%sYs)
1
r S U tz)Y St - t;)Y RX,
RX, (x3,y 3)
(Xpyy) ¢ ; (X2’Y2)
vaerb:ola_' Hyperbolat

T =b— th
—_

T,5= t,—t, = constant

-

TDOA = Time-Difference-of-Arrival /

Assume that the i™" Rx can measure its TOA: t.

We won’t worry about
“how” they do that.

\

Also...

there are TDOA

Then...

Then...

from the set of TOASs... compute TDOAS

from the set of TDOAS... estimate location (X,Y.)

systems that never
actually estimate TOA

gl

g
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TOA Measurement Model

Assume measurements of TOAs at N receivers (only 3 shown above):

ty, U, ... 0t
| Therearemeasure/rm 0 ™1 N-1

TOA measurement model:
T,= Timethe signal emitted
R = Range from TX to Rx
¢ = Speed of Propagation (for EM: ¢ = 3x108 m/s)

lt=T +Ric+s  i=0,1,...,N-1]

W, variance o2, independent (but PDF unknown) |
(variance determined from estimator used to estimate t;’ s)

Now use: R =[ (X,—X)?+ (Ys-V¥,)? ]2

1 Nonlinear
i =1(Xs:¥s) =To +E\/(Xs_xi)2+(3’s_yi)2 +& { Model
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Linearization of TOA Model

So... we linearize the model so we can apply BLUE:
Assume some rough estimate is available(xn y.)

Xg = X+ OXg + OY,

= G ot
estimate estimate

Now use truncated Taylor seriesto linearize R (X, Y,):

........................................................

...................

Apply to TOA: =t ——_T +—§xS 5ys=+g,

‘ known known

[Three unknown parameters to estimate: T, oYy, SyS]




TOA Model vs. TDOA Model

Two options now:
1 Use TOA to estimate 3 parameters. T, 8y, 6yS

....................................................................................................................................................................

....................................................................................................................................................................

General ly the fewer parameters the better ...
Everything else being the same.
But... here “everything else” is not the same:
Options 1 & 2 have different noise models
(Option 1 has independent noise)
(Option 2 has correlated noise)

In practice... we' d explore both options and see which is best.
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Conversion to TDOA Model %T—l TDOAs rathi
~ o~ than N TOASs
-TDCMMEZ]Zik—ﬁ_L i:isz.th—l

— A B -B_
= Ai A‘ 15XS-I— ! ! 15ys+ g — &
C C —
~ g h ~ g correlated noise
known known

In matrix form: x=HO +w

X= [T1 72 TN—1]T 0= [5Xs 5YS]T
(AL —Ap) : (Bi-By) | | &1-&
1| (Aa—A) 5 (B2 —By) £ — &1
H:E : : : W= : e

(An-1—An-2) (BNlBNzy | EN-1EN-2 /\
See book for structuﬁ

C,, =cov{w} = c2AAT of matrix A
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Apply BLUE to TDOA Linearized Model

A~ . —1 . T ~-1 —1
OpLUE = (HTCle) H'Cx Co= (H CWH)

1 1 1 1 \1
= (HT (AAT) Hj H' (AAT) X = JZ(HT (AAT) Hj
4
Dependence on ¢2 E;i bes how Iarga
cancels out!!! the location error is

Things we can now do:

1. Explore estimation error cov for different Tx/Rx geometries
e Plot eror dlipses

2. Analytically explore smple geometries to find trends
e Seenext chart (more details in book)
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Apply TDOA Result to Simple Geometry

Al x
R ....... R ...........
a9 a Ra ar- R
[¢— d—>{¢—d—>
F g -
> 0
2C0s" a
Then can show: |C; = o°c?
3/2
0 —
i (1-sina)” |
A S
Diagonal Error Cov = Aligned Error Ellipse
And... y-error always bigger than x-error

-
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c /co

c /co or

0% 10 20 30 A0 50. 60 70 80 90
o (degrees)
2T
Used Std. Dev. toshow unitsof X & Y | " =
Normalized by co... get actual values by R L o R R
multiplying by your specific co value ‘ & X% af e X3

For Fixed Range R: Increasing Rx Spacing d Improves Accuracy

For Fixed Spacing d: Decreasing Range R Improves Accuracy
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