7.6 MLE for Transformed Parameters

Given PDF p(x; &) but want an estimate of ¢ =g (&)
What isthe MLE for a 7?

Two cases. (6 )T /
» 0

1. a=g(f)isaoneto-onefunction |

ay Maximizes p(x; g H(«))

. . ﬁ)(@ )
2. a=(0(0) isnot aone-to-one function-

| et
Need to define modified likelihood function: \

pr(x;a) = o Orpz%z} p(x;6)

-/For each o, find all g sthat map to it
ay maximizes pr(x;a) . fﬁigﬁ La:cr%eit value of p(x; @) over




Advantage of ML

Invariance Property of MLE Another Big j
E!

Theorem 7.2: Invariance Property of MLE
If parameter @ is mapped according to o = g(&) then the

MLE of « isgiven by o g(é)
where 6 isthe MLE for @ found by maximizing p(x; &)

Note: when g(&) is not one-to-one the MLE for o maximizes
the modified likelithood function

“Proof”:
Easy to see when g(&) is one-to-one

Otherwise... can “argue” that maximization over 6 inside
definition for modified LF ensures the result.



Ex. 7.9: Estimate Power of DC Level in AWGN
x[n] = A +w[n] noise is N(0,62) & White

Want to Est. Power: a=A? =

pr, (x;) = 2o N2 exp{ =
pr, (X;) = 1 exp 1
T2 (27[0’2)'\”2 20
Then: = | a9 e { p(xiVa), p(ﬁ?‘\/g)}} ’ Demonstration that\
) . Invariance Result
= |arg max p(x;A)}2 Holdsfor this
—o0< A<oo Example

= (A [



Ex. 7.10: Estimate Power of WGN in dB

x[n] =w[n] WGN w/ var = 62 unknown

Recall: P.._ =%

noise
R N -1
Can show that the MLE for varianceis: P = %Z x“[n]
n=0

To get the dB version of @ may recall a T\

the power estimate: result for estimating
variance that divides by N-1

A 1 rather than by N ... that
Pe =1OI091{NZXZ[n]} 4
n=0

estimator is unbiased, this
N _ v estimate is biased (but

U;i ng @mptotically unbi ased)/
Invariance Property !




7.7: Numerical Determination of MLE

Note: Inall previous examples we ended up with a closed-form
expressionfor theMLE: 5 _ ¢y

Ex. 7.11: x[n] =r"+ w[n] noiseis N(0,0%) & white
Estimate r If =1 <r < 0then thissig@

IS a decaying oscillation that
might be used to model:

Tofind MLE: * A Ship’s“Hull Ping”
a1n p(x: 0) o A Vibrating String, Etc./
ol

N-1 r
Ay n-1 No closed-form
= Z(X[n]—r ynr =0 NolutionfortheML;
n=0




So...we can’t always find a closed-form MLE!
But a main advantage of MLE is:

We can always find it numerically!!!

(Not always computationally efficiently, though)

Brute Force Method
Compute p(x; &) on afine grid of &values

Advantage:  Sureto Find maximum

APR(X;9)

(if grid isfine enough)
Disadvantage: Lots of Computation
(especialy w/ afine grid)

VY



Iterative Methods for Numerical MLE
Step #1: Pick some “initial estimate” 4,
Step #2: Iteratively improve it using
6..=f(6,x) suchthat limp(x;6)= max p(Xx;6)

| —00

“Hill Climbing in the Fog”
AP(x;0) Note: A so-caled “Greedy”
: maximization algorithm will
aways move up even
though taking an occasional
2 step downward may be the
better global strategy!

90 él éz

Convergence Issues:

1. May not converge

2. May converge, but to local maximum
- good initial guessisneeded !!
- can use rough grid search to initialize
- can use multiple initializations




Iterative Method: Newton-Raphson MLE
The MLE isthe maximum of the LF... so set derivative to O:

8Inp(x;0)_0 So... MLEisa
00 zero of g(9)

o

A

=9(9)
Newton-Raphson is a numerical method for finding the zero
of afunction... so it can be applied here... Linearize g(&)

da(o ~ Truncated
g(@)zgwm[ e A](e—eu Taylor
g \ =0 / Series
set=0

solve for 6, .4




olnp(x;0)

Now... using our “definition of convenience”: () = s

So then the Newton-Raphson MLE iteration is:

-

2) | —1a| ” ) lterate until
06 00 | criterionis met:

\ |Oki1— 6k K¢

ook Familiar???
Lookslike1(0), except: 1(8) is evaluated at the You get to
true 6, and has an expected value choose!

Generally:
For agiven PDF model, compute derivatives analyticaly...
or... compute derivatives numerically:

oInp(x;0)| _ Inp(x;6y +A0) —Inp(x;6;)
00 |; AG




Convergence Issues of Newton-Raphson:

1. May not converge

2. May converge, but to local maximum
- good initial guessis needed !!
- can use rough grid search to initialize
- can use multiple initializations

dlnp(x; )y
06

/

= —
93 WZQ

Some Other Iterative MLE Methods
1. Scoring Method
* Replaces second-partial term by 1(8)
2. Expectation-Maximization (EM) Method
o Guarantees convergenceto at least alocal maximum
o (Good for complicated multi-parameter cases 10




7.8 MLE for Vector Parameter

Another nice property of MLE is how easily it carries over to the
VECtor parameter case.

Thevector parameter is: o=|o, 6, - 0,
. . o oln p(x;0)
0., iSthevector that satisfies: s =0
[ of (0) |
06, Derivativew.r.t]
of (0) / a vector
of (0) | 90>
o0
of (0)
| 00, .




Ex. 7.12: Estimate DC Level and Variance

X[n] = A+ w[n]

noise is N(0,6%) and white

e
Estimate: DC level A and Noise Variancecs? = 6=
02
: 2 1 1 &) 2 -
LFis.  pxAc?)= &P ——— > [X{n] - A]
ot | 27
O
Solve: 21N p(x;0) s
00
olnp(x:0) 1 "\ N
g'i\x )=622x[n] A)= —2(x A)=0 X -
n=0 ,\//
oln p(x;0) N 1 & f/HML: 1 22
00 297 2g 2 NIZAN=0 N 20019
n= L _
. . )
|nteresting: For this problem...
First estimate A just like scalar case
The subtract it off and then estimate variance like scalar case p

12



Properties of Vector ML

The asymptotic properties are captured in Theorem 7.3:

If p(x;0) satisfies some “regularity” conditions, then the
MLE isasymptotically distributed according to

O\ SN(8,172(0))

where 1(0) = Fisher Information Matrix

So the vector ML isasymptotically:
e unbiased
e efficient

Invariance Property Holds for Vector Case

If a=g (@), then 6y =g Oy )

13



Ex. 7.12 Revisited

A ] _0_2 0 —

It can be shown that: E¢6} - cov{0} =|
(N-D o 2(N -1
0 ( ) 4

. N il ] N 2 |

LA 0_2 0
For large N then : E{0}~| |0 cov{0} ~| N - 17(0)

_0'2_ 0 %04

which we see satisfies the asymptotic property.

Diagonal covariance matrix shows estimates are uncorrelated:

/ fThisiswhy we
\ / €a could “decouple”
the estimates

/ Error Ellipse is aligned with axes

14



MLE for the General Gaussian Case
L et the data be general Gaussian: x ~ N (u(0), C(0))

Thus ¢ In p(x;0)/ 90 will depend in general on 52(;) and %(;’)

Foreachk=1,2,...,p set: 2Inp(x0)
50,

This gives p simultaneous equations, the ki one being:

T -1
- (cl(e) GC“’)J{@”(“)} C(0) [x—n(0)] - %[x—u(e)FFC “”}[x—u(e)]:O

06, 06, 06,

A 7 —

v Y

—
Term#1 Term #2 Term #3

Note: for the “deterministic signal + noise” case: Terms #1 & #3 are zero

This gives general conditions to find the MLE...
but can’t always solve it!!! 15



MLE for Linear Model Case!ﬁ°r thiscasewe@j

solve these equations!

Thesignal model iss. x=HO +w  with the noise w ~ N(0,C)

00

- _/

. . T
So terms #1 & #3 are zero and term #2 gives: {a(He) } s - Hol=0

—H

~ -1
Solving this gives: | Gy =(HTC_1H) H'Cx

Hey! Same as chapter 4's MV U for linear model

[For Linear Model: ML = MVU} Recall: ‘the Linear Model is
specified to have Gaussian noise

0, ~N(0,(H CctH)™)
B (i N0
EXACT...
Not Asymptotic!! .




Numerical Solutions for Vector Case

Obvious generalizations... seep. 187

Thereis one issue to be aware of, though:

The numerical implementation needs oln p(x;0)/06

For the general Gaussian case this requires; € (0)

00
So... we use (3C.2): M
. ...often hard to
oC (0 __ c (o) oC(0) c(0) analytically:
06, —— 86, —— get C-1(0)
f & then
differentiate!
Get \_ /
Analyticaly
Get
Numerically




7.9 Asymptotic MLE

Useful when data samples x[n] come from a WSS process

[ Reading Assignment Only }
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