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7.6 MLE for Transformed Parameters
Given PDF p(x;θ ) but want an estimate of α = g (θ )

What is the MLE for α ??

θ
g(θ )Two cases:

1. α = g(θ ) is a one-to-one function

))(;(  maximizes  ˆ 1 αα −gpML x

2.   α = g(θ ) is not a one-to-one function θ
g(θ )

Need to define modified likelihood function:
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• For each α, find all θ’s that map to it
• Extract largest value of p(x; θ ) over  

this set of θ’s
);(  maximizes  ˆ αα xTML p
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Invariance Property of MLE Another Big 
Advantage of MLE!

Theorem 7.2: Invariance Property of MLE
If parameter θ is mapped according to α = g(θ ) then the 
MLE of α is given by

where     is the MLE for θ found by maximizing p(x;θ )

)ˆ(ˆ θα g=

θ̂

Note: when g(θ ) is not one-to-one the MLE for α maximizes 
the modified likelihood function 

“Proof”:  
Easy to see when g(θ ) is one-to-one 

Otherwise… can “argue” that maximization over θ inside 
definition for modified LF ensures the result.
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Ex. 7.9: Estimate Power of DC Level in AWGN
x[n] = A + w[n] noise is N(0,σ2) & White

Want to Est. Power: α = A2 ⇒

A

α = A2

⇒ For each α value there are 2 PDF’s to consider
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Then: Demonstration that 

Invariance Result 
Holds for this 

Example
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Ex. 7.10: Estimate Power of WGN in dB 
x[n] = w[n] WGN   w/ var = σ2 unknown

Recall: Pnoise = σ2
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PCan show that the MLE for variance is:

To get the dB version of 
the power estimate:

Note: You may recall a 
result for estimating 
variance that divides by N–1 
rather than by N … that 
estimator is unbiased, this 
estimate is biased (but 
asymptotically unbiased)
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7.7: Numerical Determination of MLE
Note: In all previous examples we ended up with a closed-form
expression for the MLE: )(ˆ xfML =θ

Ex. 7.11: x[n] = rn + w[n] noise is  N(0,σ2) & white
Estimate r  If –1 < r < 0 then this signal 

is a decaying oscillation that 
might be used to model:
• A Ship’s “Hull Ping”
• A Vibrating String, Etc. 
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To find MLE:

No closed-form 
solution for the MLE
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So…we can’t always find a closed-form MLE!
But a main advantage of MLE is:

We can always find it numerically!!!
(Not always computationally efficiently, though)

Brute Force Method
Compute p(x;θ ) on a fine grid of θ values

Advantage: Sure to Find maximum 
(if grid is fine enough) 

Disadvantage: Lots of Computation 
(especially w/ a fine grid)

p(x;θ )

θ
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Iterative Methods for Numerical MLE
Step #1: Pick some “initial estimate”
Step #2: Iteratively improve it using 

),ˆ(ˆ
1 xii f θθ =+
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such that 

�Hill Climbing in the Fog�
p(x;θ )

θ0̂θ 1̂θ 2̂θ

Note:  A so-called “Greedy”
maximization algorithm will 
always move up even 
though taking an occasional 
step downward may be the 
better global strategy!

Convergence Issues:
1.  May not converge
2.  May converge, but to local maximum

- good initial guess is needed !!
- can use rough grid search to initialize
- can use multiple initializations
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Iterative Method: Newton-Raphson MLE
The MLE is the maximum of the LF… so set derivative to 0:
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Newton-Raphson is a numerical method for finding the zero 
of a function… so it can be applied here…  Linearize g(θ )

So… MLE is a 
zero of g(θ )
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So then the Newton-Raphson MLE iteration is:
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Iterate until 
convergence 
criterion is met:

εθθ <−+ |ˆˆ| 1 kk

Look Familiar???
Looks like I(θ ), except: I(θ ) is evaluated at the 

true θ, and has an expected value
You get to 

choose!

Generally:  
For a given PDF model, compute derivatives analytically…

or… compute derivatives numerically:
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Convergence Issues of Newton-Raphson:
1.  May not converge
2.  May converge, but to local maximum

- good initial guess is needed !!
- can use rough grid search to initialize
- can use multiple initializations

0̂θ
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2θ̂3̂θ
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∂
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θ

Some Other Iterative MLE Methods
1. Scoring Method

• Replaces second-partial term by I(θ )
2. Expectation-Maximization (EM) Method

• Guarantees convergence to at least a local maximum
• Good for complicated multi-parameter cases
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7.8  MLE for Vector Parameter
Another nice property of MLE is how easily it carries over to the 
vector parameter case.

The vector parameter is: [ ]Tpθθθ %21=θ
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Ex. 7.12: Estimate DC Level and Variance
x[n] = A + w[n] noise is N(0,σ2) and white

Estimate: DC level A and Noise Variance σ2 ⇒















=

2σ

A
θ

( )
[ ]













−−= ∑
−

=

1

0

2
2

22

2 ][
2

1exp

2

1),;(
N

n
N AnxAp

σ
πσ

σxLF is:

0
θ
θx setp

=
∂

∂ );(lnSolve:



















−
=

∑ 2)][(1
ˆ

n

ML
xnx

N

x

θ

( ) ( )

( )∑

∑

−

=

−

=

=−+−=
∂

∂

=−=−=
∂

∂

1

0

2
422

2

1

0
2

0][
2

1
2

);(ln

0][1);(ln

N

n

N

n

AnxNp

AxNAnx
A

p

σσσ

σσ

θx

θx

Interesting: For this problem… 
First estimate A just like scalar case
The subtract it off and then estimate variance like scalar case
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Properties of Vector ML
The asymptotic properties are captured in Theorem 7.3:

If p(x;θ) satisfies some “regularity” conditions, then the 
MLE is asymptotically distributed according to

))(,(~ˆ 1 θIθθ −Na
ML

where   I(θ) = Fisher Information Matrix
So the vector ML is asymptotically: 

• unbiased 
• efficient

Invariance Property Holds for Vector Case

If  α = g (θ ), then )ˆ(ˆ MLML g θα =
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Ex. 7.12 Revisited
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which we see satisfies the asymptotic property.

Diagonal covariance matrix shows estimates are uncorrelated:

Error Ellipse is aligned with axes

Ae

2σe

This is why we 
could “decouple” 

the estimates



15

MLE for the General Gaussian Case
Let the data be general Gaussian: x ~ N (µ(θ), C(θ))

Thus ∂ ln p(x;θ)/ ∂θ will depend in general on
θ
θ
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Note: for the �deterministic signal + noise� case:    Terms #1 & #3 are zero

This gives general conditions to find the MLE… 
but can’t always solve it!!!
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MLE for Linear Model Case
The signal model is:  x = Hθ + w with the noise w ~ N(0,C)

So terms #1 & #3 are zero and term #2 gives:

For this case we can
solve these equations!
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Hey! Same as chapter 4’s MVU for linear model

Recall:  the Linear Model is 
specified to have Gaussian noise

For Linear Model:  ML = MVU
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EXACT… 
Not Asymptotic!!
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Numerical Solutions for Vector Case
Obvious generalizations… see p. 187

There is one issue to be aware of, though:

The numerical implementation needs ∂ln p(x;θ)/∂θ

For the general Gaussian case this requires:
θ
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analytically:  
get C-1(θ) 

& then 
differentiate!
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7.9 Asymptotic MLE

Useful when data samples  x[n] come from a WSS process

Reading Assignment Only
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