Case Study
TDOA/FDOA Location

e Overview
e Stage 1: Estimating TDOA/FDOA
e Stage 2: Estimating Geo-Location
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TDOA/FEDOA LOCATION
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Classical TDOA/FDOA Emitter Location:

® Stage 1: Estimate TDOA/FDOA
® Stage 2: Estimate the emitter’s location from the info from stage 1.




Stage 1: Estimating TDOA/FDOA



SIGNAL MODEL

® \Will Process Equivalent Lowpass signal, BW =B Hz
— Representing RF signal with RF BW = B Hz

® Sampled at Fs > B complex samples/sec ‘ Xre(f)
® Collection Time T sec /\ {\ :
® At each receiver:
‘ X(f)
Make | f

9

BPF [ ()| ADC || LpE || Equalize |

Signal \/ d\XfLPE(f)

cos(w,t) -B/2] B2 f




DOPPLER & DELAY MODEL

s(t) s;(t) = s(t—(t))
*
\_ R(t) J
Y

Propagation Time: t(t) = R(t)/c

R(t) =R, +vt+(a/2)t* +---
%_J

Use linear approximation — assumes small
change in velocity over observation interval

[For Real BP Signals: ]
S, (t) =s(t—[R, +vt]/c)=s([1-v/c]t—R,/c
(0 =s(t~[R, +Vi]/e) =s(iL-v/c] )

Time Time Delay: Ty
Scaling m
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DOPPLER & DELAY MODEL (continued)

[Analytic Signals I\/Iodel] wsmnal of TX
g(t) _ E(t)ej[wct+¢(t)]

[ Analytic Signal of Rx ]

5 (1) = s([L-v/cJt—1,) Z

_ E([l— V/C]t — T, )ej{wc (A-v/iclt—t4)+d([1-v/c]t—14)}

Now what? Noticethatv<<c = (1-vic)=1
Say v =-300 m/s (-670 mph) then v/c =-300/3x108 = -10¢=» (1 - v/c)=1.000001

Now assume E(t) & ¢(t) vary slowly enough that
E(1-v/clt) ~ EM| [eor the range of v

( S([L—v/clt) ~ ¢(t) | Lo interest
Called Narrowband Approximation
pproximation | gy




DOPPLER & DELAY MODEL (continued)

l Narrowband Analytic Signal Model |

S (t) = E(t -, ) ioat-oeo-outy (-0}
r

— e_jwcrd e_j(Dc (V/C)tejwct E(t _ Td )ej(l)(t_rd )

Constant Doppler  Carrier Transmitted Signal’s
Phase Shift Term LPE Signal
Term Term Time-Shifted by T,

0= —OTy O~ OV/C

[ Narrowband Equivalent Lowpass Signal (ELPS) Model ]
a _ alop—Jogt &

S, (t)=e"e ™ s(t—r1,)
This is the signal that actually gets processed digitallm
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S. Stein, “Algorithms for Ambiguity Function

Stel n ,S C R I_ B fO r TDOA Processing,” IEEE Trans. on ASSP, June 1981

Most well-known form is for the C-T version of the problem:

- _ 1 _<[ “seconds” ] , J' f 2|S(f)|2 df
TDOA= 27[\/5 Brms\/BT X SNReff e I|S(f)|2 df

———————— W) [ Jjors
FDOA = 27z\/§T T \/BT X SNReff e I|S(t)|2 dt

BT = Time-Bandwidth Product (= N, number of samplesin DT)
B = Noise Bandwidth of Receiver (Hz)
T = Collection Time (sec)

Problem with Stein’s CRLBS M. Fowler X. Hu, “Signal Models for TDOA/FDOA
Estimation,” IEEE T. AES, Oct. 2008.

Stein’s paper does not derive these CRLB results... rather they are just
stated.

There is no mention of what signal model is assumed....

And, it turns out that matters very much!!! m
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TDOA/EDOA CRLB History Lesson

1970s 1980s 1990s 2000s

—_—

Sonar-Driven Research Radar/Comm-Driven Research
Hann, Tretter, Knapp, Carter, Stein, Chestnut, Berger, Blahut,
Schultheis, Weinstein, Etc. Torrieri, Fowler, Yeredor, Etc.

Question: How much of the Sonar TDOA/FDOA estimation
work can be carried over to the Radar/Comm arena??

Answer: Not as much as many Radar/Comm
researchers/practitioners think!




M. Fowler X. Hu, “Signal Models

&gnéﬂs SOﬂaI' VS RF for TDOA/FDOA Estimation,”

IEEE T. AES, Oct. 2008.

Two sampled passively-received complex-valued baseband signals:

r[n]=e"s(nT —z,)e""" +w,[n]
I, [ﬂ] — S(nT) + W, [n] Noise Model

o Zero-mean WSS processes

r, » Gaussian
I = » Independent of each other

This much iIs the same for each case...

At least when the narrowband approximation can be used...
which we assume here so we can focus on the impact of

differences in the statistical model.




Signal Models: Sonar vs. RF

M. Fowler X. Hu, “Signal Models
for TDOA/FDOA Estimation,”

» Passive Sonar
— Signal = Sound from Boat
— “Erratic” signal behavior

— Model as Random Process
o Zero-mean WSS
« (Gaussian
 Independent of Noise

— Expected values taken over
signal + noise ensemble

« Estimation accuracy is
average over all possible
noises and signals

IEEE T. AES, Oct. 2008.

- Passive Radar/Comm
— Signal = Pulse Train
— Structured signal behavior

— Model as Deterministic
» Specific pulse shape
* Pulse width & spacing

— Expected values taken over
only noise ensemble

 Estimation accuracy is
average over all possible
noises for one specific signal




PDFs: Sonar vs. RF (o TOOAFDOA Extinaton”

IEEE T. AES, Oct. 2008.

- For both cases the received data vector.. is Gaussian.
But how TDOA/FDOA is embedded is very different.

(This is the key... It Impacts significant differences in: h
 Fisher Info Matrix (FIM) / Cramer-Rao Bound (CRB)
. * ML Estimator Structure )
Passive Sonar PDF: j\ TDOA/FDOA in }
Covariance
r;0) = exp{—r" (C.(0)) 'r
P(10) = o)) p-r" (C.(0)) 'r|
Passive Radar/Comm PDF TDOA/FDOA in
Mean
Do (1;0) = )exp{—(r—se>Hc;1<r—s9>}

det(zC,



- M/CRB Sonar vs. RF M. Fowler X. Hu, “Signal Models

for TDOA/FDOA Estimation,”
IEEE T. AES, Oct. 2008.

* For complex Gaussian case the FIM elements are:

.
[Jgl; =2Re oy C7(0) Mo || tr| C,' 9C, C,' 9C,
% 0o, 006, 0 0.

- Leads to VERY different forms for the two cases:

Passive Sonar FIM: Passive Radar/Comm FIM:

H
,0C, ,0C OS oS
J...].=tr| Ct=—=eCt==¢ J . 1.=2Re|| 20| ct| Lo
[sonar]u ( 0 ael 0 agjj [radar]u 8(9, aHJ

First developed by Bangs.. falls out of general case [

Difficult to assess... usually use “Whittles Theorem” [E)?g]%sng:‘ngr';:#% zfsflzsl.é’.[ructure
Depends on Noise PSD as well as Signal PSD P UGG Sl




- A. Yeredor & E. Angel, “Joint TDOA
CorreCt CR I—B for R F S I gnals and FDOA Estimation: A Conditional
Bound and Its Use for Optimality

Weighted Localization”, IEEE T. SP
~ApnT 201T.

Fowler & Hu = Yeredor & Angel to consider “specific signal” case

“...bounds derived under an assumption of a stochastic source signal are
associated with the “average” performance, averaged not only over noise
realizations, but also over different source signal realizations, all drawn
from the same statistical model.”

“It might be of greater interest to obtain a *““signal-specific’” bound,
namely: for a given realization of the source signal, to predict the
attainable performance when averaged only over different realizations of
the noise. Such a bound can relate more accurately to the specific
structure of the specific signal.”




A. Yeredor & E. Angel

Correct CRLB for RF Signals

nn]=s(nT) +w[n]
_ - N N
L[n]=ae’s(nT —7)e" +w,[n] ¢ —53n37—1
5, [n] )

Signal Model Noise Model

 Deterministic » Zero-mean WSS processes

» Complex Baseband » White (can generalize to colored noise)

o 5[n] itself is UN-Known » Gaussian

—  Must Estimate! * Independent of each other

» Complex Baseband

Define:




Correct CRLB for RF Signals

A. Yeredor & E. Angel

Now using property of DFT:

F is (unitary) DFT matrix:
D is “delay” matrix:

D, Is “doppler” matrix:

_rCH (Pad zeros to account
s, =F"D.Fs for DFT circular nature)
—
1 2T _
F=——exp| —j—-nn' 2
JN p( N j \
na —7+1
DT:diag{exp(—j%-n.r } ;
N i
D, =diag{exp(—j-n-v)} L2 ]

Then get:

n=Ss+V;
_ apnld H
r, = ae EZV[F D,F|s+v,

Unit: “rad/sample”

| Unit: “samples”
(-7, 7) R [Models Doppler] Models Delay ]-J




Correct CRLB for RF Slgnals A. Yeredor & E. Angel
r=S+V,
r,=ae”D [FHD F]s+v2 Recall: Must treat s as Unknown!

A '
:QT,V

Parameters to Estimate: 6=[Re{s} Im{s} a ¢ r v]

A
=7

Data Vector (Gaussian): r= [rf r, ]T

=E{r}= S C,=Cov{r}= A = ol 0
# Ho = | ae”D,|F"D,F s o o Sl

No 0 depe\ndence!
[ ]

--------------------------------------------

.’ .
L

. -
M

H
0 4]0 L,0C, .,0C, | :
[Joly = ZRGH 81;0} C,’ Lgﬂ D + ;tr[Cel 3 HB Cy p gﬂj : This term

/HJ | 1/ i is zero!
ion!
[ Easy Inversion! m 18/42

General Gaussian FIM elements:




Correct CRLB for RF Signals

rL=S+V,
_ npld H
r,=ae”D,| F'D.F|s+v,

A '
:QT,V

y
J, =2 Re[[%} Al [%

0=[Re{s} Im{s} a ¢Vr 11

A. Yeredor & E. Angel

00

00

|

A
=Y

m) -2 o
O,

(1+7a%)]1

naRe{B}

(1+72%)1  nalm{B}
_naRe{BH} —nalm{B" | nRe{GHG}_

. 0ae’Q_ s

oy

B2e Q"G

vy=[a ¢ v V]

Now could get the CRLB matrix for full parameter vector:

CRLB, =J;"

But we really only want w.r.t. y



Correct CRLB for RF Slgnals A. Yeredor & E. Angel

- -
Define: CRLB, = JRE{;{;‘”‘{S} J—l m) CRLB =]
2" .

Then.. use a “math trick” called “Schur Complement” we get

2
J, = P Re| G"G |

Evaluating the elements in G G leads to noting this form:

J, 0 Amplitude parameters virtually
Jy = 0 J¢ always decouple like this!

[So. .. really only need this!}




CorreCt CRLB for RF Slgﬂals A. Yeredor & E. Angel

The final result for the
FIM of interest Is:

rL=S+V,
_ apl? H
r,=ae”D,|F'DF|s+v,
2Q.,
s"'s —s"'s’
\J¢1T,V — _SHSI SrHSr
S"NS  —Re{s'"Q" Ns|

F—iexp(—jz—ﬂ-nnTj
JN N

D_=diag {exp(—j%on-rj}

D, =diag {exp(—j-n-v)}
N =diag{n}

"Ns || [5=Q,,s=D,[F"D,F]s
rHH 22
—Re{s"Qf' N3} -
S"N°3 "N
—
2 So... use all these
. —%+1 boxes to compute this

: J then invert it to get
N the CRLB!




Correct CRLB for RF Signals

We can interpret some of these FIM terms:

s"s=>"s’[n]

Energy

A. Yeredor & E. Angel

Like RMS BW Term Like RMS Duration Term

Brm

, jf2|5(f)|2df

T [s(haf

, jt2|s(t)|2 dt

[ s()]” dt




Correct CRLB for RF Signals

A. Yeredor & E. Angel

x(t) (chirp pulse case)

x(t) (stationary case)

Real{x(t)}

Imag{x(t)}

Heal{xlﬂ)

20

40

CRB

CRB.: “specific”
CRBg: Fowler-Hu

CRB,: Wax for WSS Gaussian

-0.01

-0.005 0

m

0.005

0.01

-0.05 0 0.05 0.1
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MLE: Sonar vs. Radar/Comm o moaroos csimaion-

IEEE T. AES, Oct. 2008.

+ For general Gaussian case set dlIn{p,,(r;0)}/06, =0

---------------------------------------------------------------------------------------------------------------------

—tr[Caa(;j +Ir-m] G G- ue] - 2Re{[r n ] cal}:o

i . 00
................ .(.j.(.)..\./.é}.iaﬁé.e....S..é.r.].é.l.ﬁvl.fy.......... "I'\'/'I'é'éi"ri"é'é'ﬁ'é'l'fi'\'/'iﬂ/‘
- Passive Sonar - Passive Radar/Comm
— Derived by Weinstein, Wax — Derived by Stein
— Showed trace term =0
L,0C, 0
r"C*—¢C'r=0 s Pt Dol
' 50 2Re{[r s,| C 661} 0

N A

= 0, , =arg max {—r” Cglr} = 0, ., =arg gnax{z Re{r"Cs, | -s{ C‘lse}

[ Seem Very Different... but not as much as you’d think }m
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M. Fowler X. Hu, “Signal Models

MLE: Sonar vs. Radar/Comm o rooarboa estimation,”

IEEE T. AES, Oct. 2008.

+ Both lead to cross-correlation with pre-filtering

—HO— &
ross *|Find Peak
Correlate
—{H()—
* Passive Sonar * Passive Radar/Comm
— Pre-Filters depend on interplay — Pre-Filters depend only on Noise
between Noise PSD & Signal PSD PSD, not on signal structure
— Becomes Std Cross-Correlator — Becomes Std Cross-Correlator
when Noise and Signal are white when Noise is white... regardless
of signal



ML Estimator for TDOA/FDOA

S. Stein, “Differential Delay/Doppler
ML Estimation with Unknown
Signals,” IEEE Trans. on SP, 1993.

Two received CT signals in ELPS form (comp
observed over (0,T):

lex)

v = x(t) + n(® X(t) 1tself iIs unknown! (1a)
y(f) = ax(t + 'r! exp [j2ap(t + 7)] + ny(2). (1b)
Delay

Parameters; | Complex

Doppler Delay

Amplitude

The signal x(t) has bandwidth of B Hz
The time-BW product is assumed larg

e: BT >>1




S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

BT >> 1 yileds a common trick: analysis in freq domain is easier.

CTFET View: Yi(f) = X(f) + Ny(f) (2a)
Yo(f) = oX(f — v) exp (j2%f7) + No(f). (2b)

Now convert this into a DFT view for the DT problem

Recall: X unknown! ]

DFT VleW Ylm = Xm + Nlm (33)
Yo, = aX, rW™ + Ny, (3b)

Af is DFT spacing
Doppler ]/me)q)(jZ'lrfAf)A (3c)

Assume the Doppler shift - - _
is an integer multiple (F) Benefit of converting to Frequency Domain:

of the DFT spacing {N;,}, m=0,1, ...,N-1 are independent RVs!
(Even when noise is correlated in time!!!)

- Covariances: C, =2diag{P,,P,,...,Py,}, =12
m 27142




S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

Because of the independence (due to the DFT trick) it Is easy to
write the PDF of the two observed signals’ vectors

p(Y,, ,|X, 7, v, @) = Cexp (-——L,% (4a)
Minimize!
where:
= : p, =11 P, i=1,2  (4b)
JZT‘PI "P21 i m !.m . LA
[Yim = Xal® | [ Yom — oX, _FW"‘IT
L —_ Z |: m m ¥ m m 4C
! m le P2m ( )
- _ 2 2 ) —
Re-write L: L =3 l:|Y1m| N | Yy o+ Fl ]A No Parm or Signal in her.e!
m le Pz,m+F X only in here!
| 2
R | Ep———
m Py, Py, P2,m+F
where: % Y. 2| Other Parms
1 _ | + |a|? + Z P, im + Ot*(W*)m+F 2,m+ F . only in here!
P, P, P2.m+F m le P2.m+F




S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

Remember we need to estimate the signal DFT X too!
It only shows up in second term in L:

2

1
1
m P,

X,— P, [h + a*(W*)m+F§s_’_"_t_£
le P2,m+F

This is minimized (to 0) by choosing the signal estimate to be

7, Ylm F YZ m+F
Xm = Pm |:_ + a*(W*)m+ — | (8)
le P2,m+F
———

“Undo” Doppler and delay to align!

When we plug into (8) the ML estimates for delay,
Doppler, amplitude we get a signal estimate

S0...
 First term of L, Is not needed
« Second term of L, led to signal estimate
e Third termof L, ... look at now!
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S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

Third term of L, ... look at now!

2
Yim | owaym -7 Jame £

1m P2.m+F

_ Z{[Nlmlz + |a|2 |Y2,m+F|2]/{ 1 + |°f|2 iH
m le PZ,m+F le P2,m+F

where: D Uit FPTY) 7Y
m PZ,m+F + |0£| Pim

2. P,

It follows that we need to maximize |K]|... equivalent to maxmizing

_1 H exp (—j25f)Y{(f — N (f)
T Py(f) + |a|*Pif — »)

For white noise the denominator is constant and this becomes

|

1
R(r, ») = ’} § exp (—j 27 YT (f — vity(f) df’-
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ML Estimator for TDOA/FDOA

S. Stein, “Differential Delay/Doppler
ML Estimation with Unknown

LPE Rx
Signals

At Two < Delay | | Doppler
Recelvers

Signals,” IEEE Trans. on SP, 1993.

“Compare”™ A

?zlgnallls . Peak
ora of

Delays & A7)
Dopplers ’

-
Alw,7) = j s, (t)s, (t+7)e 1 dt
0

[ Ambiguity Functlon ]




COMPUTING THE AMBIGUITY FUNCTION

Direct computation based on the equation for the ambiguity
function leads to computationally inefficient methods.

In Prof. Fowler’s EECE 521 notes it is shown how to use
decimation to efficiently compute the ambiguity function



Stage 2: Estimating Geo-Location



TDOA/FDOA LOCATION

Centralized Network of P

e “P-Choose-2" Pairs

» “P-Choose-2” TDOA Measurements
» “P-Choose-2” FDOA Measurements

* Warning: Watch out for Correlation
\é» Effect Due to Signal-Data-In-Common

Data Link



TDOA/FDOA LOCATION

Pair-Wise Network of P

e P/2 Pairs
> P/2 TDOA Measurements
> P/2 FDOA Measurements

» Many ways to select P/2 pairs

» Warning: Not all pairings are equally
good!!!  The Dashed Pairs are Better




TDOA/FDOA Measurement Model

Given N TDOA/FDOA measurements with corresponding 2x2 Cov. Matrices

(51,‘71), (?2,172), ,(fN ,13|\| ) Assume pair-wise network, so...

C,Cy, ... ,Cy TDOA/FDOA pairs are uncorrelated }

For notational purposes... define the 2N measurementsr(n) n=1, 2, ..., 2N

;
—> r=[n rp - Lyl

&n, n=12..., N \_ -
Y

Data Vector

hn1=7n, N=12,...,N

on

Now, those are the TDOA/FDOA estimates... so the true values are notated as:

(z1,v1), (z2,v2), ... (TN VN)

Son—1 = Tn> n=l,2,...,N

;
>  s=[s; s; -+ SpN]

SZn:Vn, n:1,2,...,N \\ v /

“Signal” Vector
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TDOA/FEDOA Measurement Model (cont.)

Each of these measurements r(n) has an error g(n) associated with it, so...
F=S+¢&
Because these measurements were estimated using an ML estimator (with

sufficiently large number of signal samples) we know that error vector ¢ is a
zero-mean Gaussian vector with cov. matrix C given by:

C, 0 O
Assumes that
C=diag{C{,C,, ... ,Cy}=/ 0 . O TDOA/FDOA
pairs are
0 0 Cyj| uncorrelated!!! )

The true TDOA/FDOA values depend on:
Emitter Parms: (X,, Y., Z,) and transmit frequency f, X, =[X, V. z, f.]
Receivers’ Nav Data (positions & velocities): The totality of it called X,

r = S(X ' X ) + & « Deterministic “Signal” + Gaussian Noise
e  “Signal” is nonlinearly related to parms

To complete the model... we need to know how s(x.;X,) depends on x,and X,
Thus we need to find TDOA & FDOA as functions of X, and X, I
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TDOA/EDOA Measurement Model (cont.)

Here we’ll simplify to the x-y plane... extension is straight-forward.

Two Receivers with: (Xy, Y1, VX, Vy,) and (X,, Yo, VX,, VY,)
Emitter with: (x,, Y,)
(Let R; be the range between Receiver i and the emitter; c is the speed of light.)

The TDOA and FDOA are given by:

R, —R
S1(Xe» Ye) =712 = 1C £
1
:E(\/(Xl_xe)z # (1 Ve )2 (%2 —xe 2+ (¥ —ye)zj
fo d
SZ(Xe,ye,fe)=V12=TeE(R1_R2)

fo| (X=X WXy + (Y1 = Ve My1 (%o = Xe VX +(yp = Ve MYy
CL Vb % Pr(n-veP (k%o P +(ys - yol
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CRLB for Geo-Location via TDOA/EDOA

Recall: For the General Gaussian Data case the CRLB depends on a FIM that
has structure like this:

]
REMOYTPEPRE™() 1 | 90 0C () ~q,o OCx(0)
[J(e)]nm—{ 56, } Cx (e){—aem } + Ztr{cx (6) ) C(0) 20 }

variability of mean w.r.t. parms variability of cov. w.r.t. parms

Here we have a deterministic “signal” plus Gaussian noise so we only have the
15t term... Using the notation introduced here gives...

. 1
Ccri(Xe) = Fs (Xe) ct as(xe)} (%)

Called the “Jacobian” ... for the 3-D location with
TDOA/FDOA will be a 2N x 4 matrix whose columns

are derivatives of s w.r.t. each of the 4 parameters.




CRLB for Geo-Loc. via TDOA/FDOA (cont.)

051 (X ) 051 (X ) 051 (X ) 051(Xe)
OXe Ye o4 e
aSZ(Xe) 532(Xe) aSZ(Xe) 532(Xe)

H 2 = & e 0z, o

Ospn (Xe)  OSpn (Xe)  OSpn (Xe)  OSpn (Xe)

Jacobian can be computed for any desired Rx-Emitter Scenario
Then... plug it into (%) to compute the CRLB for that scenario:

Ccrip (Xe) = [HTC_lHF




CRLB for Geo-Loc. via TDOA/FDOA (cont.)

Geometry and TDOA vs. FDOA Trade-Offs

LBoth Important ] [ FDOA Important ] [ TDOA Important ]

S
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Estimator for Geo-Location via TDOA/FDOA

Because we have used the ML estimator to get the TDOA/FDOA
estimates the ML’s asymptotic properties tell us that we have
Gaussian TDOA/FDOA measurements

Because the TDOA/FDOA measurement model is nonlinear it is
unlikely that we can find a truly optimal estimate... so we again
resort to the ML. For the ML of a Nonlinear Signal in Gaussian we
generally have to proceed numerically.

One way to do Numerical MLE is ML Newton-Raphson (need vector

version):
-1
~ ~ 6% In p(x;0) | Jlnp(x;0)
O =0y - T
0000 00 .
A 02
[ Hessian: pxp matr}a Gradient: px1 vector ]

However, the “Hessian” requires a second derivative...
This can add complexity in practice... Alternative:
Gauss-Newton Nonlinear Least Squares based on linearizing the model.
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