Chapter 8
| east-Squares Estimation



8.3 The Least-Squares (LLS) Approach

All the previous methods we' ve studied... required a
probabilistic model for the data: Needed the PDF p(x;0)

For a Signal + Noise problem we needed.
Signal Model & Noise Model

Least-Squares is not statistically based!!!
— Do NOT need a PDF Model
— Do NEED a Deterministic Signal Model
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Least-Squares Criterion

. D N

x[n] 7
—— ] Minimize the LS Cost
~ N-1 N-1 ,
J(0) =Y &°[n] =Y (x[n] - s[n;0])
n=0 n=0
g J

Choose the

: ... to make thisj
Estimate. .. “residual” small

Ex. 8.1: Estimate DC Level x[n] =4 + ¢[n] = s[n;0] + e[n]

N-1 - \
J(4) = Z (x[n] - 4)* Same thing we've
n=0 gotten before!
~ N-1
S@téi[cA)zzo = fiz—ELZELxDﬂ::XE Note:
To Minimﬁ oA N If e[n] isWGN,
then LS=MVU_/ 3




Weighted LS Criterion

Sometimes not all data samples are equally good:
x[0], x[1], ..., x[N-1]

Say you know x[10] was poor in quality compared to other data...

Y ou’d want to de-emphasize its importance in the sum of squares;

N-1
J(0) =Y w,(x[n] - s[n;0])°
n=0 \

@et this small to de—j
emphasize a sample




3.4 Linear Least-Squares

A linear |east-squares problem is one where the parameter
observation model islinear: _s=H x=HO+e

@3/

\ Nxp Known Matrix Pl \@ = Order of the model ]

We must assume that H isfull rank... otherwise there are multiple
parameter vectors that will map to the same s!!!

Note: Linear LS does NOT mean “fitting alineto data’ ... although
that is a special case: - 7
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Kinding the LSE for the Linear Model
N-1
For the linear model the LS costis:  J(8)= D (x[n] - s[n;0])
n=0

L : =(X—H0)T(X—HO)
Now, to minimize, first expand.:

..................................................

................................................

o Mo Sealar = seal T So...
= —2x "  HO+0" H' H
x xi—2x HO+9 B\QTHTX =(0TH'x)"=x"HO

Now setting a‘g_g’):o gives —2H x+2H HO =0

Cadlled the
‘ HTHé —H x J_S Normal Equations’

Because H isfull rank we know that H’H isinvertible:

~ 1 . ~ il
) OLS:(HTH) H x| o) sLS:HBLS:H(HTH) H x




Comparing the Linear LSE to Other Estimates

Model
x=HO+e

No Probability Model Needed

x=HO+w

" PDF Unknovm

x=HO+w

" PDF Gaussim

x=HO+w

" PDF Gaussim

Estimate

0, = (HTH) H' x

BBLUE (HTH) HTX

01/ = (HT H) H' x

7o

—1
0,,, = (HT H) H' x

If you
assume
Gaussian &
apply
these...
BUT you
are
WRONG...
you at least
get the

\ LSE!




The LS Cost for Linear LS

For the linear LS problem...
what istheresulting LS cost for using g, ¢ = (HTH)_lHTx?

Jin =~ 10 1 | (x — 1O 5 )= (x - H(HT H)_lHT X)T(x - H(HT H)_lHT xj

Properties of = ( I _xT H(HT H)_lHT j(x - H(HT H)_lHT x)
Transpose
—x!|1-x! H(HT H)_lHT I- H(HT H)_lHT X
[F actor out X ’S% -
. . M ’
Easily Verified! =(I—H(H HT H )
Note: if AA = A then A is called idempotent

4 O
T Ter iy T 1
Jin = X (I—H(H H) H" x ‘ Jminszx—xTH(HTH) H'x

) 0< /., <|x|]

/




Weighted LS for Linear LS

Recall: de-emphasize bad samples importance in the sum of
squares.

N-1
J(0) =Y w, (x[n] - s[n;0])*
n=0

For thelinear LS case we get: 7 (9) = (x — HO)' W(x — HO)

‘ Diagonal Matrix

Minimizing the weighted LS cost gives:

0WLS = (HTWH) HTWX J min = XT(W — WH(HTWH) HTij

Note: Even though there is no true L S-based reason... many
people use an inverse cov matrix astheweight: W =C_ *

This makesWLS ook like BLUE!!!!



3.5 Geometry of Linear LS
* Provides different derivation _ Order Recursive
e Enables new versionsof LS — Sequential §\v

- e — 2
Recall the LS Cost to be minimized: J(0) = (x - HO)' (x - HO) =|x — Ho|

Thus, LS minimizes the length of the error vector between the
dataand the signal estimate: ¢=x —s

But... For Linear LS we have s:Hﬂzié’ihi Hz[h1 h, - h]

i=1

™

Range (H) c RV

s liesin subspace of RY
x can lieanywhere in RN/ 0




LS Geometry Example N=3p=2
Notation a bit different from the book

X=§+e

“noise’ takess out of
Range(H) and into RV

H columnslieinthis
plane = * subspace”
spanned by the columns 1
of H=%

(S in genera)

,ﬁ
=
N
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LS Orthogonality Principle v vk

[ The LS error vector must be L to all columns of H ]

=)

e H=0"

or

Hig=0

Can use this property to derive the LS estimate:
H'¢e=0 = H'(x-H0)=0

~ 1
- H'HI=H'x = BLS:(HTH) H' x
\—

_J/

Y
Same answer as before. ..

but no derivatives to worry about!

Range (H) c RV

(HTH)LHT <Acts like an inverse from RY back to
Re... called pseudo-inverse of H 12




LS Projection Viewpoint

From the R3 example earlier... we seethat s must lie
“right below” x

S

“Projection” of x onto Range(H)

(Recall: Range(H) = subspace spanned by columns of H)

~ ~ -1
From our earlier resultswe have: s =HO; ¢ = [H(HTH) HT:|X

. J
'

A Py

X — S | “Projection Matrix onto Range(H)”
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Aside on Projections

If something is*on the floor” ... its projection onto the floor = itself!

If ze Range(H), then Pz =1z

Now... for agiven x in the full space... Pyx isaready in Range(H)
... 0 Py(Pyx) = Pyx

Thus... for any projection matrix P, we have: Py Py =Py

P2 _pP Projection Matrices
H™"H are |dempotent

Note also that the projection onto Range(H) Is symmetric:

Py = H(HTH)_1HT Easily Verified
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What Happens w/ Orthonormal Columns of H

~ -1
Recall the general Linear LS solution: 0, ¢ = (HTH) H' x

(hyhg)  (hphy) oo (hghy)

(ha.hy)  (hphp) - (hp,h,)
where HTH =

_<hp,h1> (h,.hp) - <hp,hp>_

If the columns of H are orthonormal then <h,,h>=95, = H'H =1
\

Easy!! No Inversion

0, = H! x Needed!!
Recall Vector Space

Ideas with ON Basis!!

_




Geometry with Orthonormal Columns of H

_ _ _ A T Inner Product Between ith
Re-writethisLS solutionas: @; =h; x Column and Data Vector

. A ~ p - p
Then we have: S=HO = 29 Z(hTX) h;

'

Projection of x
onto h; axis

When the columns of H areJ_\
we can first find the projection
onto each 1-D subspace
independently, then add these
independently derived results.

Nice! %

$=(h{x)hy +(h3x)h,
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