
1

Chapter 8
Least-Squares Estimation
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8.3 The Least-Squares (LS) Approach
All the previous methods we’ve studied… required a 
probabilistic model for the data:   Needed the PDF p(x;θ)

For a Signal + Noise problem we needed:  
Signal Model & Noise Model 

Least-Squares is not statistically based!!!   
⇒ Do NOT need a PDF Model   
⇒ Do NEED a Deterministic Signal Model

signal 
model ∑ ∑

x[n] = strue[n;θ] + w[n]

= s[n;θ] + e[n]

model & 
measurement error

+

δ[n] 
model 
error

w[n] noise 
(measurement 

error)

+ +

Similar to 
Fig. 8.1(a) 

s[n;θ]
+

strue[n;θ]
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Least-Squares Criterion
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Choose the 
Estimate…

… to make this 
“residual” small
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Minimize the LS Cost

Ex. 8.1: Estimate DC Level x[n] = A + e[n] = s[n;θ] + e[n]

xnx
N

A
A
AJSet

AnxAJ

N

n

N

n

==⇒=
∂

∂

−=

∑

∑
−

=

−

=

1

0

1

0

2

][1ˆ0)(

)][()( Same thing we’ve 
gotten before!

Note: 
If e[n] is WGN, 
then LS = MVUTo Minimize…
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Weighted LS Criterion
Sometimes not all data samples are equally good:  

x[0], x[1], … , x[N-1]

Say you know x[10] was poor in quality compared to other data…

You’d want to de-emphasize its importance in the sum of squares:
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set this small to de-
emphasize a sample
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8.4 Linear Least-Squares
A linear least-squares problem is one where the parameter 
observation model is linear:     s = Hθ x = Hθ + e

p×1
N×1

p = Order of the modelN×p Known Matrix

We must assume that H is full rank… otherwise there are multiple 
parameter vectors that will map to the same s!!!

Note: Linear LS does NOT mean “fitting a line to data”… although 
that is a special case:
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Finding the LSE for the Linear Model
( )

( ) ( )HθxHθx

θθ
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2];[][)(For the linear model the LS cost is:

Now, to minimize, first expand:

HθHθHθxxx

HθHθxHθHθxxxθ
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Scalar = scalarT So…
θTHTx = (θTHTx)T = xTHθ

0
θ
θ

=
∂

∂ )(JNow setting gives 0θHHxH =+− ˆ22 TT

Called the 
“LS Normal Equations”xHθHH TT =ˆ

Because H is full rank we know that HTH is invertible:

( ) xHHHθ TT
LS

1ˆ −
= ( ) xHHHHθHs TT
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Comparing the Linear LSE to Other Estimates
Model Estimate

eHθx += ( ) xHHHθ TT
LS

1ˆ −
=

No Probability Model Needed

( ) xHHHθ TT
BLUE

1ˆ −
=

wHθx += 

PDF Unknown, White

( ) xHHH TT
ML
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=θ

wHθx += 

PDF Gaussian, White

( ) xHHHθ TT
MVU

1
 ˆ −
=

wHθx += 
PDF Gaussian, White

If you 
assume 

Gaussian & 
apply 

these� 
BUT you 

are 
WRONG� 
you at least 

get the 
LSE!
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The LS Cost for Linear LS
For the linear LS problem… 

what is the resulting LS cost for using ( ) ?ˆ 1
xHHHθ TT
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Properties of 
Transpose

Factor out x�s

Easily Verified!
Note: if AA = A then A is called idempotent
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Weighted LS for Linear LS
Recall: de-emphasize bad samples’ importance in the sum of 
squares:
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( ) ( )HθxWHθx −−= TJ )(θFor the linear LS case we get:

Diagonal Matrix

Minimizing the weighted LS cost gives:
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
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1

min( ) WxHWHHθ TT
WLS
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Note: Even though there is no true LS-based reason… many 
people use an inverse cov matrix as the weight:  W = Cx

-1

This makes WLS look like BLUE!!!!



10

8.5 Geometry of Linear LS
• Provides different derivation
• Enables new versions of LS

Recall the LS Cost to be minimized: ( ) ( ) 2)( HθxHθxHθxθ −=−−= TJ

ŝ
– Order Recursive
– Sequential

Thus, LS minimizes the length of the error vector between the 
data and the signal estimate: sxε ˆ−=
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hHθs θ [ ]phhhH '21=But… For Linear LS we have

N×p

θ s
Range (H) ⊂ RN

N > pRNRp

s lies in subspace of RN

x can lie anywhere in RN
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LS Geometry Example N = 3 p = 2
Notation a bit different from the book

x = s + e
“noise” takes s out of 
Range(H) and into RN

h1

h2
H columns lie in this 
plane = “subspace” 
spanned by the columns 
of H = S2

(Sp in general)

x

2211ˆ hhs θθ +=s

e sxε ˆ−= ihε ⊥
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LS Orthogonality Principle
The LS error vector must be ⊥ to all columns of H

TT 0Hε = 0εH =Tor

( )

( ) xHHHθxHHθH

0HθxH0εH

TT
LS

TT

TT

1ˆ −
=⇒=⇒

=−⇒=
Can use this property to derive the LS estimate:

θ
s

RNRp

θ̂

H

x

(HTH)-1HT

Same answer as before…
but no derivatives to worry about!

Range (H) ⊂ RN

Acts like an inverse from RN back to 
Rp� called pseudo-inverse of H
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LS Projection Viewpoint
From the R3 example earlier… we see that      must lieŝ
“right below” x

= “Projection” of x onto Range(H)ŝ

(Recall: Range(H) = subspace spanned by columns of H)

From our earlier results we have: ( ) xHHHHθHs

HP

"" #"" $%
∆=

−


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== TT

LS
1ˆˆ

x

xPs H=ˆ

sxε ˆ−= “Projection Matrix onto Range(H)”
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Aside on Projections
If something is “on the floor”… its projection onto the floor = itself!

zzPHz H =∈     then,)Range(  if

Now… for a given x in the full space… PHx is already in Range(H)
… so PH(PHx) = PHx

Thus… for any projection matrix PH we have:  PH PH = PH

HH PP =2 Projection Matrices 
are Idempotent

Note also that the projection onto Range(H) is symmetric:

( ) TT HHHHPH
1−

= Easily Verified



15

What Happens w/ Orthonormal Columns of H

( ) xHHHθ TT
LS
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=Recall the general Linear LS solution:
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where

If the columns of H are orthonormal then <hi,hj> = δij ⇒ HTH = I

xHθ T
LS =ˆ

Easy!! No Inversion 
Needed!!

Recall Vector Space 
Ideas with ON Basis!!
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Geometry with Orthonormal Columns of H 
Inner Product Between ith
Column and Data VectorxhT

iiθ =ˆRe-write this LS solution as:
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)(ˆˆˆ "#"$% hxhhθHs θThen we have:

Projection of x
onto hi axis

h1

h2

2211 )()(ˆ hxhhxhs TT +=

22 )( hxhT

11 )( hxhT

x

When the columns of H are ⊥
we can first find the projection 

onto each 1-D subspace 
independently, then add these 
independently derived results. 

Nice! 
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