8.6 Order-Recursive LS gn] 4

Motivate this ideawith Curve Fitting
Givendata n=0,1,2,..., N-1

90], 1], . . ., SIN-1]

URN

Want to fit a polynomial to data..,
but which one is the right model ?
= Constant = Quadratic

» Linear = Cubic, Etc.

Try each model, look at J_._ ... which one works “best”
I () Constant

wf‘tic/ Cubic

| | | —>
1 2 3 4
P

(# of parameters in model)



Choosing the Best Model Order

Q: Should you pick the order p that givesthe smallest J.;,7?
A: NO!!I

Fact: J.,(p) IS monotonically non-increasing as order p increases

If you have any N data points...
you can perfectly fit ap = N model to them!!!!

2 points define a... line
3 points define a... quadratic
4 points define a... cubic

N points define... axN+a, xXN-1+...+a,x+a,

[Warning: Don’t “Fit the Noise”!!]




Choosing the Order in Practice

Practice: use smplest model that adequately describes the data
Scheme: Only increase order if cost reduction is“significant”

» Increaseto order ptlonlyif J . (p)—J..(p=1) >¢ user-set
prLonly if Jyin(P) — Jrin(P=1) %thmhold

» Also, in practice you may have some idea of the expected level of error
=> thus have some idea of expected J .

=> use order p such that J.,;,(p) = Expected J_._

Wasteful to independently compute the LS solution for each order

Drives Need for:
Efficient way to compute LS for many models

Q: If we have computed p-order model, can we use it to
recursively compute (p+1)-order model?

A: YES!! — Order-Recursive LS



Define General Order-Increasing Models
Definee H,,=[H h ;] = h; h, h,...

\ _  Etc.
Y
H3

Order-Recursive LS with Orthonormal Columns
If all h, are . = EASY !!

p=1  §=(hjx)hy
p=2  $,=8+(h3x)h,
p=3  $3=5,+(hx)hs




Order-Recursive Solution for General H
If h, are Not L = Harder, but Possible!

Basic Ildea: Given current-order estimate:
_ _ Quotes here because
e map new column of H into an ON version | thisesimateis for the
e use it to find new “estimate,” Qrthogondizw model
* then transform to correct for orthogonalization

| ho
Orthogonalized
version of h,

h,

S = 2-D space spanned
by h; & h,
= Range(H,)

Note: x is not shown here... it is
In ahigher dimensional space!!




Geometrical Development of Order-Recursive LS
The Geomeltry of Vector Space isindispensable for DSP! N

See App. 8A
Current-Order = k for Algebraic
—  H.=[h,h,...h] (notnecessarily 1) | /&P
- . T Y uk!
. _ - Geometry is
el B M, (1,1, ) e

Projector onto S¢ = Range(H, )

Given next column: h,,, Find l~1k .1, whichis 1L to &

l«1'k+1 =hy g —Phyg = (I — Py )hk+1
1
Py

~ 1
hy,1=Pch

h1 LS = hyyq 1§




So our approach is now: project x onto l~1k 1
and then add to s,

Divide by

The projection of x onto Hk L11sgiven by norm to
normalize

- il
usehy g =Pihy g

1
P hy g

UL

Now add thisto current signal estimate:  Si1 = Sk + ASp1

= Hy 0y +Asy



Now we have: . . X" Pihy, | y/ \
Sk1 = Hy Oy + > [Pk it
HPIj_hk-i_l Scdler... \
can move here
........................... . and transpose

T 1

0
.'l.
........................

Write out ||.[[? and use
that P, - is idempotent

scalar... define asb for convenience

Write out P,

Flna”y gk = Hkék + hk—i—lb_ Hk(H-lek)_lH;l(-hk—i-lb

— A

Tg \-1gT |
0y — (HHy) "Hyhy 4o

=Hy 1 b

\—

\|

Y
Clearly thisis 0,



Order-Recursive LS Solution

9k+1 -

T pl
hy 1 P x

o Ter \-lygT

0y — (HiHy) Hkhk+1( ]
hya P hyy

T pl

hy g P x

T ol
hy 1 P by

J

Drawback: Needs Inversion Each Recursion

See Eq. (8.29) and (8.30) for away to avoid inversion

Comments:

1. Ifh,, L H = simplifies problem aswe’ve seen
(This equation simplifiesto our earlier result)

2. Note: P+, x aboveisresidual of k-order model

= part of x not modeled by k-order model
= Update recursion works solely with this

Makes Sensel !l




8.7 Sequential LS Yo v
In Last Section: In This Section: received
o Data Stays Fixed e DataLength Increases new data

e Model Order Increases e Model Order Stays Fixed samplel

Say we have [N —1] based on {x[0], . . ., X[N-1]}

If we get X[N]... can we computed[N] based on o[N -1 and x[N]?
(w/o solving using full data set!)

Wewant... 0[N]= f (0[N —1],x[N])

Approach Here:
1. Derivefor DC-Levdl case
2. Interpret Results
3. Write Down Genera Result w/o Proof
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Sequential LS for DC-Level Case

N-1
We know this: A_1 = % > X
n=0

andthis & _ 1 < 1 |1
= N+1Zx[n]_ N+1[N(N Zx[n])+x[N]]

old estimate prediction of
the new data

~ ~ 1 -~
— W S g T S )

prediction error




Weighted Sequential LS for DC-Level Case

Thisis an even better illustration... w[n] has unknown PDF
but has known time-
Assumed model: x[n]= A+w{n] var{w{n]} =2 N S
Nz‘lx[ ]
2

o A _n=00
Standard WLS gives: Ay =2=0-"

Zi

n=09n

With manipulations similar to the above case we get:

~ ~

Av= Ay (4N - Ay-y)

N
, 1 —
old estimate E ? prediction error kN isa“Gain” term that
| n=00n | reflects “goodness” of

O /—I _ newdata
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Exploring The Gain Term

1

Weknow that  var(Ay 4)=—

; ..andusingitinky...
e
n=0\"'n “poorness’ of
current estimate
...we get that Kn = A e 2 “poorness’ of
var
(AN_l) " Zﬁa new data j

variance of
the new data

Note: O0<K[N]<1

— Gain depends on Relative Goodness Between:
o Current Estimate

o New Data Point
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Extreme Cases for The Gain Term

AIN]= AIN -1] + K[N] (x[N] - AIN -1])

old estimate predictivon error

Good Estimat

|

Bad Data
N

If  var(A[N -1]) << o2

= K[N] =0

— New Data Has Little Use
— Make Little" Correction" Based on New Data

|

Bad Estimate

Good Data
K

If  var(AIN —1]) >> o2 —
— K[N]~1

= New Data Very Useful

= Make Large " Correction" Based on New Data

|
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General Sequential LS Result = SeeApp. 8C for derivation ]

At time index N-1 we have: Diagonal h
Covariance
X1 =|XO0 X1 o Xn-=-1
1 =[X0] X1 [n-1]" St LS
_ _di 2 2 2 requires this)
Xp1=Hp10+wW, 4 C,,=diag{og,01, 00 1} J

N

0., LSEstimateusingx,_;

X1 écov{én_l} quality measure of estimate

At time index N we get X[N]:

H,
n-1 Tack on I’OW\
xpn=H,0+w,= 0+wp, at bottom to
h! - show how 0

- - maps to X[ n]/
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Iterate these Equations:

Given the Following: 6n_1 X1 Xn] h, of

Update the Estimate:

Compute the Gain:

Update the Est. Cov.:

2

On zﬂn—l"'kn (X[n] _h-rl; 0n—1)
H_J

N

En—lh n

k. —
" Gr%"'hll_zn—lhn

N

Prediction of x[n]
using current
parameter estimate

T
Zn — (I — knhn) Zn—l

e

Gain has same kind of\

Initialization: (Assume p parameters)
e Collect first p datasamples x[Q], . . ., X[p-1]
» Use “Batch” LSto compute: 6, ; X,
 Then start sequential processing

dependence on Relative
Goodness between:
O Current Estimate
o New Data Point

N _/
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Sequential LS Block Diagram

Observati onsj

X[n] +

Predicted
Observation

X[n]—h\0, 4

Xna hy, o

2

Compute

Gan

v

>k

>

Previous
Estimate

n-1

n-1 + Kn (X[ nj— h-rl;én—l)

Updated
Estimate

=l
-]
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