8.8 Constrained LS

Why Constrain? Because sometimes we know (or believe!)
certain values are not allowed for 6

For example: In emitter location you may know that the emitter’s
range can’'t exceed the “radio horizon”

Y ou may also know that the emitter is on the left side of the
aircraft (because you got astrong signal from the left-side
antennas and a weak one from the right-side antennas)

Thus, when finding ¢, you want to constrain it to satisfy these
conditions



Constrained LS Problem Statement

Say that S Isthe set of allowable 6 values (due to constraints).
Then we seek 6., €S, such that
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LS Cost with a Linear Equality Constraint

Using Lagrange Multipliers... we need to minimize
J.(0)=(x—H6)" (x—H6)+ 1" (A6 —Db)
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Constrained Optimization: Lagrange Multiplier

x,t  f(x,x,) contours

X1
Constrained Max occurs when:

Vf (x1,x2) = —AVhA(xy,x3)

Constraint: g(x,,x,) = C
g(xy,xp) — C = h(xy,x,) =0
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Ex. The grad vector has

“dope” of bla =
orthogonal to constraint line

V[ (x1,x0) + Alg(xy,x5) —C)]= 0

= Vf(xl,x2)+ZVh(x1,x2):O ‘



LS Solution with a Linear Equality Constraint
Follow the usual steps for Lagrange Multiplier Solution:

1. Set aé]()c =0 = 0. asafunctionof 1 0.,4(A)
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—2H x+2H'HO+AT0L=0 = ec(x)z(HTH) HTX—%(HTH) Al
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2. Solvefor A to make 6.5 satisfy the constraint: A8.(1)=b

solve fO; A=A,

A{éuc —%(HT H)_lAT x} =b = A, = Z{A(HT H)_lAT }_1(A(§uc —b)

3. Plug in to get the constrained solution: @, =0, (3.,)
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Geometry of Constrained Linear LS

The above result can be interpreted geometrically:

Constraint Line

.

Constrained Estimate of the Signal is the
Projection of the Unconstrained Estimate
onto the Linear Constraint Subspace
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8.9 Nonlinear LS

Everything we' ve done up to now has assumed a linear
observation mode!... but we' ve already seen that many
applications have nonlinear observation models. s(0) = HO

Recall: For linear case — closed-form solution

< Not so for nonlinear casel! >

Must use numerical, iterative methods to minimize the LS cost
given by:

J(8) =[x —s(0)]" [x —s(B)]

But first... Two Tricks!!!



Two Tricks for Nonlinear LS

Sometimes it is possible to: s

1. Transform into a Linear Problem Possible to Do
2. Separate out any Linear Parameters Both Tricks
Together )
: . . _ g(0)=a
Trick #1: Seek an invertible function L
0=g (o

such that
s(0(c)) = Hat, which can be easily solved for a5

and then find 6.5 = g X(ass)

Trick #2. See If some of the parameters are linear:

\ELinearin B )

Nonlinear in o

a

P

Try to decompose o :[ } toget s(0)=H(a)p




Example of Linearization Trick

Consider estimation of a sinusoid’ s amplitude and phase (with a

kKnown freguency): - 4]
s[n] = Acos(2xf ,n + @) 0=

¢

But we can re-write this model as:

s{n] = Acos(g) cos(24/,n) — ASn(g)sin(2af,n)

aq 0%

whichislinear ino = [a, o,]7s0; a=(H H)'H'x

Then map this estimate back using I \/&12+&22 ]

e

[ Note that for thisexamplethisis} 0=g ()= t 1[
an

merely exploiting polar-to-
rectangular ideas!!!
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Example of Separation Trick

Consider asignal model of three exponentials:

S[n] = All"n + Azl"

0=[4 4 43 r]’

BVT
Then we can write:
(1 1
A 1"2
H(r) =

JN-1 2(N-D)

Then we need to minimize :

J() = %—H<r)ﬁ<r)]7[x “HMB(]

a

L3(N-D)

2n +A3I/‘3n

O<r<1

s(0) =H(r)p

B(r) =[HT (mH)]HT (r)x

Depends on only one variable...
might conceivably just compute on
agrid and find minimum

= - HOET (AHEHT (x| k- BEETOHEETOx]



Iterative Methods for Solving Nonlinear LS
Goal: Find 0 valuethat minimizes J(0) = [x-s(0)]" [x-s(0)]
without computing it over ap-dimensional grid
Two most common approaches:

1. Newton-Raphson
a. Anaytically find 6J(0)/06
b. Apply Newton-Raphson to find a zero of 6J(6)/06

(i.e. linearize 0J(0)/06 about the current estimate)
c. lteratively Repeat

2. Gauss-Newton
a. Linearize signal model s(6) about the current estimate
b. Solveresulting linear problem
C. Iteratively Repeat

\

Both involve:
* Linearization (but they each linearize something different!)
* Solve linear problem

\_  Iteratively improve result
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Newton-Raphson Solution to Nonlinear LS

To find minimum of J(): set 9/ _,
20
- 2 2(0)
oJ(0)
06 N-1
Need to find Z®@_| " | for J(0)= Y (xli] - solil)?
B o) 20
00, |

859[1]

Taking these partials gives: 8‘;6(,9)— —2 Z(x[] Se[])
j ean =0
e
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hy

hi

1>
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N-1
Now set to zero: 2%k =0 forj=Ll..p
=0

. g(0)=Hyry =0
%/_/
%Z’;ﬁr | Depend nonlinearly on 6

- 0sel0] ds[0]  asel0]
00y 00, 00,
(x[0] — 59 [0])
Osg (1] Osg[1] Osg[1]
00, 00, 00,
Hy = [y =
| ([N =11 = so[N -1)_
Osg[N -1  Osg[N -1 3sg[N -1]
| 00, 00, 00, |
. . asalil Asali .
Define the it row of Hy: h; (8) = selil  seli] - Oseli]
06, 06, 00p
N-1

Then the equation to solveis: g(0)=Hgry = Y rg[nlh;(8) =0
n=0



For Newton-Raphson we linearize g(0) around our current
estimate and iterate: Need this

1
0,.1=0; —H&%—?)} g(ﬂ)]

T N-1 N-1 N-1 n
Mg _ 0N gyt S Calnlha(©) Kom, 0) - Zhn(ﬂ) are[ ]

9=9k

00 00 =0 0 00 = 00
=G, (6) —H(§H9
|:Derivative of Product Rule ] )
Osg[n]
% 00,
2 Oseln]
0”sg[n] orgln]  o(x[n]—sgln) 00>
G (9)]..:# i, j=12,...,p aln] _ -
06,00, 20 o0
oHlry N dsg[n]
‘ —8(:) 9 =G, (0)(x[n] - so[n])-HgH, a0
n=0
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So the Newton-Raphson method becomes:

ol x|
0;.1=0; - { - 9} Hyrg

— - 9=9k

:(A)kJ{HT HA ZG (Gk)(x[”]_s“ [”])}1HA ( _Sﬁk)

1 partlals of signd 2 partlals of s[n]

W.r.t. parameters W.r.t. parameters

Note: if the signal is linear in parameters... this collapses to the non-
Iterative result we found for the linear casel!!

Newton-Raphson L S Iteration Steps:
1. Start with aninitial estimate
2. lterate the above eguation until change is“small”
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Gauss-Newton Solution to Nonlinear LS

First we linearize the model around our current estimate by
using a Taylor series and keeping only the linear terms:

0s
Sg ~Sn +| —
0

0,

) }(9—6/\7)
0=0,

.- _/

'

SH(0,)
Then we use this linearized model inthe LS cost:

J(8) =[x —sq ] [x —s]

T

U

:X—{Sak +Hg (e—ék)} X—éak +Hg (9—‘5k)}]

N
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W O k" 0,
A
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All Known Things
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Thisgivesaform for the LS cost that looks like alinear problem!!
J®) =y -1 o[ |y —H; o
We know the LS solution to that problemis
bra= ] mg [ ]
- HeT H, :_1H§,; [ s5, 5.0,

B TIN T (0  TO T I L  N
_\.HekHek. HekHekjekJrHekHek Hy x—sg,

=1

Gauss-Newton LS Iteration: §k+1=§k+[Hg; Hj FHg; (x—sék)

Gauss-Newton LS Iteration Steps:
1. Start with an initial estimate
2. Iterate the above eguation until change is “small”



Newton-Raphson vs. Gauss-Newton

How do these two methods compare?

G-N: 0k+1—0k+[HBH }HB (—sA)

i A N-1 -
& 0k+1:9k +|:Hng§k o ZGn(Bk)(x[n]_Sék[n]):| HA ( —Sék)

=0 _J
Y

The term of 2"d partials is missing
in the Gauss-Newton Equation

Which is better? See p. 683 of Numerical:|

Typically | prefer Gauss-Newton: ____[Recipes book
» G, matrices are often small enough to be negligible
o ... or theerror term is small enough to make the sum term negligible
e Inclusion of the sum term can sometimes de-stablize the iteration
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