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8.8 Constrained LS
Why Constrain?  Because sometimes we know (or believe!) 
certain values are not allowed for θ

For example:  In emitter location you may know that the emitter’s 
range can’t exceed the “radio horizon”

You may also know that the emitter is on the left side of the 
aircraft (because you got a strong signal from the left-side 
antennas and a weak one from the right-side antennas)

LSθ̂Thus, when finding       you want to constrain it to satisfy these 
conditions
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Constrained LS Problem Statement
Say that Sc is the set of allowable θ values (due to constraints).

Then we seek such thatcCLS S∈θ̂

22
minˆ HθxθHx
θ

−=−
∈ cS

CLS

Types of Constraints

1.  Linear Equality Aθ = b

2.  Nonlinear Equality f (θ) = b

3.  Linear Inequality Aθ ≥ b
Aθ ≤ b

4.  Nonlinear Inequality f (θ) ≥ b
f(θ) ≤ b

H
A
R
D
E
R

Constrained to a line, 
plane or hyperplane

Constrained to lie 
above/below a

hyperplane

We�ll Cover #1�. See Books on Optimization for Other Cases
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LS Cost with a Linear Equality Constraint

Using Lagrange Multipliers… we need to minimize

( ) ( )
λθ

bAθλHθxHθxθ

and

J TT
c

  w.r.t.

)()( −+−−=

Linear Equality 
Constraint

x2

x1

contours of 
(x – Hθ)T (x – Hθ)

Unconstrained 
Minimum

2-D Linear Equality 
Constraint

Constrained 
Minimum
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Constrained Optimization: Lagrange Multiplier 
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Ex.  The grad vector has 
“slope” of b/a ⇒
orthogonal to constraint line

Ex. ax1 + bx2 – c = 0
⇒ x2 = (–a/b)x1 + c/b
A Linear Constraint

Constraint: g(x1,x2) = C
g(x1,x2) – C = h(x1,x2) = 0

x2 f (x1,x2) contours
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LS Solution with a Linear Equality Constraint

)(ˆoffunctionaasˆ λλ CLSCLS
cJ θθ0
θ
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∂
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Follow the usual steps for Lagrange Multiplier Solution:

1.  Set 
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Unconstrained Estimate

2.  Solve for λ to make         satisfy the constraint:CLSθ̂ !"!#$
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3.  Plug in to get the constrained solution: θ )(ˆˆ
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Geometry of Constrained Linear LS
The above result can be interpreted geometrically:

x

ucŝs

cŝ

Constraint Line

Constrained Estimate of the Signal is the 
Projection of the Unconstrained Estimate 

onto the Linear Constraint Subspace
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8.9 Nonlinear LS
Everything we’ve done up to now has assumed a linear
observation model… but we’ve already seen that many 
applications have nonlinear observation models:    s(θ) ≠ Hθ

Recall:  For linear case – closed-form solution

< Not so for nonlinear case!! >

Must use numerical, iterative methods to minimize the LS cost 
given by:   

J(θ) = [x � s(θ)]T [x – s(θ)]

But first… Two Tricks!!!
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Two Tricks for Nonlinear LS
Sometimes it is possible to:

1.  Transform into a Linear Problem
2. Separate out any Linear Parameters

Trick #1: Seek an invertible function 

such that

s(θ(α)) = Hα, which can be easily solved for

and then find
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LSα̂
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LSLS g αθ −=

Sometimes 
Possible to Do 

Both Tricks 
Together

Trick #2: See if some of the parameters are linear:

Try to decompose βαHθs
β

α
θ )()(get to =
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Linear in β!!!
Nonlinear in α
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Example of Linearization Trick
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Consider estimation of a sinusoid’s amplitude and phase (with a 
known frequency): 

But we can re-write this model as:
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Example of Separation Trick
Consider a signal model of three exponentials:
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Depends on only one variable… so 
might conceivably just compute on 

a grid and find minimum  

Then we need to minimize :
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Iterative Methods for Solving Nonlinear LS
Goal:  Find θ value that minimizes J(θ) = [x-s(θ)]T [x-s(θ)]
without computing it over a p-dimensional grid
Two most common approaches:
1.  Newton-Raphson

a.  Analytically find ∂J(θ)/∂θ
b.  Apply Newton-Raphson to find a zero of ∂J(θ)/∂θ

(i.e. linearize ∂J(θ)/∂θ about the current estimate)
c.  Iteratively Repeat

2.  Gauss-Newton
a. Linearize signal model s(θ) about the current estimate
b.  Solve resulting linear problem
c.  Iteratively Repeat

Both involve: 
• Linearization (but they each linearize something different!)
• Solve linear problem
• Iteratively improve result
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Newton-Raphson Solution to Nonlinear LS
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For Newton-Raphson we linearize g(θ) around our current  
estimate and iterate: Need this 
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So the Newton-Raphson method becomes:
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Note: if the signal is linear in parameters… this collapses to the non-
iterative result we found for the linear case!!!

Newton-Raphson LS Iteration Steps:
1. Start with an initial estimate
2. Iterate the above equation until change is “small”
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Gauss-Newton Solution to Nonlinear LS
First we linearize the model around our current estimate by 
using a Taylor series and keeping only the linear terms:
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This gives a form for the LS cost that looks like a linear problem!!

We know the LS solution to that problem is
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+Gauss-Newton LS Iteration:

Gauss-Newton LS Iteration Steps:
1. Start with an initial estimate
2. Iterate the above equation until change is “small”
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Newton-Raphson vs. Gauss-Newton
How do these two methods compare?
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The term of 2nd partials is missing
in the Gauss-Newton Equation

Which is better?
Typically I prefer Gauss-Newton:

• Gn matrices are often small enough to be negligible 
• … or the error term is small enough to make the sum term negligible
• Inclusion of the sum term can sometimes de-stablize the iteration

See p. 683 of Numerical 
Recipes book
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