Pre-Chapter 10
Results for Two Random Variables
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posted on BB




Let X and Y be two RV's each with there own PDF: p,(X) and p.(y)
Their complete probabilistic description is captured in...

Joint PDF of X and Y: py(X,y)

Describes probabilities of joint events concerning X and Y.

bd
Pri(a< X <b)and (c<Y <d)}= H Dyy (X, y)dxdy

Marginal PDFs of X and Y: Theindividual PDFs p,(X) and p(y)

Imagine “adding up’ the joint PDF along one direction of a piece of
paper to give values “aong one of the margins’.

Px (X) = _[ Pxy (X, y)dy Py (Y) = _[ Pxy (X, y)dx




Expected Value of Functions of X and Y: Y ou sometimes create a
new RV that is afunction of the two of them: Z = g(X)Y).

E{Z}=Exy {90XY)}= [ [ 90x y) pxy (X, y)dxdy
Example: Z=X+Y

E{Z}=Exy (X +Y}= [ [ (x+ y)pxy (x, y)dxdy

= ”prY(x, y)dxdy + ” YPxy (X, y)dxdy

= _[X{[ Pxy (X, y)dy

dx + I Y{J‘ Pxy (X, y)dx]dy

= [ xpx ()dx+ [ ypy (y)dy

= Ex (XJ+Ey Y]



Conditional PDFs: If you know the value of one RV how isthe

remaining RV now distributed?

Pyix (V%) =1

( Pxy (X, Y)

Px (X)

\O’

Px (X) =0

otherwise

Pxy (x| y) =+

( Pxy (X, Y)

Py (Y)

\O’

Py (y) =0

otherwise

Sometimes we think of a specific numerical value upon which we
are conditioning... pyx(y[X=19)

Other timesit isan arbitrary value...

Pyx(YIX = X) or pyx(ylX) or pyx(yIX)
— v

~

Various Notations




| ndependence: RVs X and Y are said to be independent if
knowledge of the value of one does not change the PDF model for
the other.

Pyix (Y [x) = py ()

Pxpy (X]Y) = px (X)

Thisimplies (and isimplied by)... pxy (X, ¥) = px (X) py (V)

Px (X) py (Y)
Px (X)

Px (X)py (Y)
Py (Y)

Pyix (Y1) = =Py (Y)

Pxy (X]y) = = Px (X)




Decomposing the Joint PDF: Sometimes it is useful to be able to
write the joint PDF in terms of conditional and marginal PDFs.

From our results for conditioning above we get...

Pxy (X, Y) = Pyix (Y [X) Px (X)
Pxy (X Y) = Pxy (X]Y) Py (Y)

From this we can get results for the marginals:

px () = [ Py (X1Y) Py (y)dy

Py (¥) = | Pyix (¥ 1X) px (X)X




Bayes Rule: Sometimesit i1s useful to be able to write one
conditional PDF in terms of the other conditional PDF.

Px (X1Y)py (Y)
Px (X)

Pyix (Y [X) =

Pyix (Y 1X) px (X)
Py (V)

Px (X]y) =

Some alternative versions of Bayes rule can be obtained by
writing the marginal PDFs using some of the above results:

Pxy (XIY)Py (¥) _ Px (X]y) Py (Y)
[ pxvxy)ay [ pxy (x1y)py (y)dy

Pyix (Y[X) =

pY|x(Y|X)px(X): Pyx (Y [X) Px (X)
[ pxy xy)ex [ pyx (¥ 1X) px (X)dx

Pxy (X]Y) =




Conditional Expectations. Once you have a conditional PDF it
works EXACTLY likeaPDF... that is because it |ISa PDF!

Remember that any expectation involves a function of a random
variable(s) times a PDF and then integrating that product.

So the trick to working with expected values is to make sure you
know three things:.

1. What function of which RV's
2. What PDF
3. What variable to integrate over



For conditional expectations... one idea but severa notations!

Exp {90X,Y)}= [ 9(x, Y) pxy (x| y)dx
Uses subscript on E to indicate that you use the cond. PDF.

Does not explicitly state the value at which Y should be fixed so use an arbitrary y

E -y, 100G Y) = [ 90X, Vo) Py (X] o)X
Uses subscript on E to indicate that you use the cond. PDF.
Explicitly states that the value at which Y should be fixed isy,

E{lg(X. V) Y}=[ g% y) pxy (x| y)dx

Uses “conditiona bar” inside brackets of E to indicate use of the cond. PDF.

Does not explicitly state the value at which Y should be fixed so use an arbitrary y

E{g(XY) 1Y = Yo = [ 90% Yo) Pxy (X Vo)

Uses “conditiona bar” inside brackets of E to indicate use of the cond. PDF.

Explicitly states that the value at which Y should be fixed isy,



Decomposing Joint Expectations: When averaging over the joint
PDF it is sometimes useful to be able to decompose it into nested
averaging in terms of conditional and marginal PDFs.

This uses the results for decomposing joint PDFs.

E{g(X,Y)}= Exy {0(X,Y)} ‘ E{g(X,Y)}= HQ(X y) Pxv(Xy) dxdy

Py x (y|X) Px (X)
= Ex{Ele (X, Y)}}‘— j U g(x, y)pYIX(y|X)}pX(X)dX

Ev{9(X.Y)}

Thisisan RV that j
“Inherits’ the PDF of X!!!

\\
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Ex. Decomposing Joint Expectations:

E{9(X,Y)}= Ex {EY|X {Q(X,Y)}}

Let X=#onRedDie Y=#on BlueDie gX,Y)=X+Y

XY 11 12 13 14 |5 |6 [ |

1| (1D | (1#2) | (143) | (1+4) | (145) | (1+6) | Y0 yE-as

2 (@) (2+2)| (2+3)| (2+4) | (2+5) | (2+6) | Y2+ y)2-ss These
ygl constitute

3 (3+1) | (3+2) | (3+3) | (3+4) | (3+5) | (3+6) | Y (3+y)==65 an RV with
y=1 £ uniform

4 | (4+1) | (4+2) | (4+3) | (4+4) | (4+5) | (4+6) | Y (asy)L-75| | Pprobability
y=1 6 of 1/6

5 | (5+1)| (5+2)| (5+3) | (5+4) | (5+5) | (5+6) | Y5+ y)2-as

6 |(6+1)|(6+2)| (6+3)| (6+4) | (6+5) | (6+6) | Y(6+y)%-os ) @

L

6
E(X + Y} = E(E(Y [X}} = D E(Y 19 <=7

x=1
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