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Pre-Chapter 10
Results for Two Random Variables

See Reading Notes 
posted on BB
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Let X and Y be two RVs each with there own PDF: pX(x) and pY(y)

Their complete probabilistic description is captured in…

Joint PDF of X and Y: pXY(x,y)

Describes probabilities of joint events concerning X and Y.
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Marginal PDFs of X and Y: The individual PDFs pX(x) and pY(y)

Imagine “adding  up” the joint PDF along one direction of a piece of 
paper to give values “along one of the margins”.
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Expected Value of Functions of X and Y: You sometimes create a 
new RV that is a function of the two of them: Z = g(X,Y). 
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Example: Z = X + Y
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Conditional PDFs : If you know the value of one RV how is the 
remaining RV now distributed?
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Sometimes we think of a specific numerical value upon which we 
are conditioning… pY|X(y|X = 5)

Other times it is an arbitrary value… 

pY|X(y|X = x)  or pY|X(y|x) or   pY|X(y|X)

Various Notations
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Independence: RVs X and Y are said to be independent if 
knowledge of the value of one does not change the PDF model for 
the other.
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Decomposing the Joint PDF: Sometimes it is useful to be able to 
write the joint PDF in terms of conditional and marginal PDFs.

From our results for conditioning above we get…
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From this we can get results for the marginals:
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Bayes’ Rule:  Sometimes it is useful to be able to write one 
conditional PDF in terms of the other conditional PDF. 
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Some alternative versions of Bayes’ rule can be obtained by 
writing the marginal PDFs using some of the above results:
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Conditional Expectations: Once you have a conditional PDF it 
works EXACTLY like a PDF… that is because it IS a PDF!

Remember that any expectation involves a function of a random 
variable(s) times a PDF and then integrating that product.  

So the trick to working with expected values is to make sure you
know three things:

1. What function of which RVs

2. What PDF

3. What variable to integrate over
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For conditional expectations… one idea but several notations!
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Uses subscript on E to indicate that you use the cond. PDF.  

Does not explicitly state the value at which Y should be fixed so use an arbitrary y

Uses subscript on E to indicate that you use the cond. PDF.  

Explicitly states that the value at which Y should be fixed is yo

Uses “conditional bar” inside brackets of E to indicate use of the cond. PDF.  

Does not explicitly state the value at which Y should be fixed so use an arbitrary y

Uses “conditional bar” inside brackets of E to indicate use of the cond. PDF.

Explicitly states that the value at which Y should be fixed is yo
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Decomposing Joint Expectations: When averaging over the joint 
PDF it is sometimes useful to be able to decompose it into nested 
averaging in terms of conditional and marginal PDFs.  

This uses the results for decomposing joint PDFs.

{ } { }

{ }{ }),(

),(),(

| YXgEE

YXgEYXgE

XYX

XY

=

= { }

dxxpxypyxg

dxdyyxpyxgYXgE

Xx

YXgE

XYy

xpxyp
XY

XY

XXY

)()|(),(

),(),(),(

)},({

|

)()|(

|

|

∫ ∫

∫ ∫





=

=

!!!! "!!!! #$

!"!#$

This is an RV that 
“inherits” the PDF of X!!!
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Ex. Decomposing Joint Expectations: 

Let X = # on Red Die       Y = # on  Blue Die        g(X,Y) = X + Y
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These 
constitute 

an RV with 
uniform 

probability 
of 1/6
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