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10.5 Properties of Gaussian PDF
To help us develop some general MMSE theory for the Gaussian 
Data/Gaussian Prior case, we need to have some solid results for
joint and conditional Gaussian PDFs.  

We�ll consider the bivariate case but the ideas carry over to the 
general N-dimensional case.
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Bivariate Gaussian Joint PDF for 2 RV�s X and Y
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Marginal PDFs of Bivariate Gaussian
What are the marginal (or individual) PDFs? 
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We know that we can get them by integrating:

After performing these integrals you get that:

X ~ N(µX, var{X}) Y ~ N(µY, var{Y})
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Comment on �Jointly� Gaussian
We have used the term �Jointly� Gaussian�

Q: EXACTLY what does that mean?
A: That the RVs have a joint PDF that is Gaussian
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We�ve shown that jointly Gaussian RVs also have Gaussian 
marginal PDFs

Q:  Does having Gaussian Marginals imply Jointly Gaussian?

In other words� if X is Gaussian and Y is Gaussian is it 
always true that X and Y are jointly Gaussian???

A:  No!!!!!

Example for 
2 RVs

See Reading Notes on 
�Counter Example� 

posted on BB
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We�ll construct a counterexample:  start with a zero-mean, 
uncorrelated 2-D joint Gaussian PDF and modify it so it is no 
longer 2-D Gaussian but still has Gaussian marginals.
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But if we modify it by:
� Setting it to 0 in the shaded regions
� Doubling its value elsewhere

We get a 2-D PDF that is not 
a joint Gaussian but the 
marginals are the same 
as the original!!!!
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Conditional PDFs of Bivariate Gaussian
What are the conditional PDFs?

If you know that X has taken value X = xo, how is Y distributed?
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Theorem 10.1: Conditional PDF of Bivariate Gaussian
Let X and Y be random variables distributed jointly Gaussian 
with mean vector [E{X}  E{Y}]T and covariance matrix
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Then p(y|x) is also Gaussian with mean and variance given by:

( )

( )}{}{

}{}{}|{ 2

XExYE

XExYExXYE

o
X

Y

o
X

XY
o

−+=

−+==

σ
ρσ

σ
σ

( ) 22222

2

2
2

1

}|var{

YYY

X

XY
YoxXY

σρσρσ

σ
σσ

−=−=

−==

Slope of Line

Amount of Reduction

Reduction Factor



8

Impact on MMSE

We know the MMSE of RV Y after observing the RV X = xo:
{ }oxXYEY == |�

So� using the ideas we have just seen: 
if the data and the parameter are jointly Gaussian, then
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It is the correlation between the RVs X and Y that allow us to 
perform Bayesian estimation.
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Theorem 10.2: Conditional PDF of Multivariate Gaussian
Let X (k×1) and Y (l×1) be random vectors distributed jointly
Gaussian with mean vector [E{X}T E{Y}T ]T and covariance 
matrix
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Then p(y|x) is also Gaussian with mean vector and covariance 
matrix given by:
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Compare to 
Bivariate Results 

For the Gaussian case� the 
cond. covariance does not depend 
on the conditioning  x-value!!!
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10.6 Bayesian Linear Model
Now we have all the machinery we need to find the MMSE for 
the �Bayesian Linear Model�

wHθx +=

N×1 N×p 
known

p×1
~N(µθ,Cθ)

N×1
~N(0,Cw)

Clearly, x is Gaussian and θ is Gaussian�
But are they jointly Gaussian???

If yes� then we can use Theorem 10.2 to get the MMSE for θ!!!

Answer = Yes!!
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Bayesian Linear Model is Jointly Gaussian
θ and w are each Gaussian and are independent

Thus their joint PDF is a product of Gaussians� 
�which has the form of a jointly Gaussian PDF

Can now use: a linear transform of jointly Gaussian is jointly Gaussian
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Thus, Thm. 10.2 applies!   Posterior PDF is�

! Joint Gaussian

! Completely described by its mean and variance
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Conditional PDF for Bayesian Linear Model
To apply Theorem 10.2, notationally let  X = x and Y = θ.  

First we need    E{X} = H E{θ} + E{w} = Hµθ

E{Y} = E{θ} = µθ
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Then Theorem 10.2 gives the conditional PDF�s mean and cov
(and we know the conditional mean is the MMSE estimate)
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Ex. 10.2: DC in AWGN w/ Gaussian Prior
Data Model:    x[n] = A + w[n]   A & w[n] are independent

),(~ 2
AAN σµ ),0(~ 2σN

Write in linear model form:  

x = 1A + w with  H =  1 =  [ 1  1  �   1]T

Now General Result gives the MMSE estimate as:
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Can simplify using 
�The Matrix Inversion Lemma�
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Aside: Matrix Inversion Lemma
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Continuing the Example� Apply the Matrix Inversion Lemma:
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Use Matrix Inv Lemma

Pass through 1T  

& use 1T 1 = N

Factor Out 1T  

& use 1T 1 = N

Algebraic 
Manipulation

Error Between
Data-Only Est.

& Prior-Only Est.

�Gain�
Factor

a priori 
estimate

� When data is bad (σ2/N >> σ2
A), 

gain is small, data has little use

�When data is good (σ2/N >> σ2
A), 

gain is large, data has large use

AMMSEA µ≈�

xAMMSE ≈�
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Using similar manipulations gives:
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Like || resistors� small one wins!
⇒ var (A|x) is ≈ the smaller of:

� data estimate variance
� prior variance
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Or� looking at it another way:

� additive �information�!
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10.7 Nuisance Parameters

One difficulty in classical methods is that nuisance parameters 
must explicitly dealt with.

In Bayesian methods they are simply �Integrated Away�!!!!

Recall Emitter Location: [x  y  z f0]

In Bayesian Approach�
From  p(x, y, z, f0 | x)  can get p(x, y, z | x):

Nuisance Parameter

∫= 00 )x|,,,()|,,( dffzyxpzyxp x

Then� find conditional mean for the MMSE estimate!


