10.5 Properties of Gaussian PDF

To help us develop some general MMSE theory for the Gaussian
Data/Gaussian Prior case, we need to have some solid results for
joint and conditional Gaussian PDFs.

We’ll consider the bivariate case but the 1deas carry over to the
general N-dimensional case.
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Marginal PDFs of Bivariate Gaussian
What are the marginal (or individual) PDFs?

We know that we can get them by integrating:
p@)=[" peeyydy P =] plx.y)ds

After performing these integrals you get that:
X ~ My, variX}) Y~ Ny, var{Y})




“Counter Example”
posted on BB

Comment on “Jointly” Gaussian{See Reading Notes Oﬂ

We have used the term “Jointly” Gaussian...

Q: EXACTLY what does that mean?
A: That the RVs have a joint PDF that 1s Gaussian

1 || Xy ! RS Example for
p(x,y)= 75 €Xp| — = C 2 RVs
27|C| 2\ y-uy V= Ay

We’ve shown that jointly Gaussian RVs also have Gaussian
marginal PDFs

Q: Does having Gaussian Marginals imply Jointly Gaussian?

In other words... 1f X 1s Gaussian and Y 1s Gaussian 1s 1t
always true that X and Y are jointly Gaussian???



We’ll construct a counterexample: start with a zero-mean,
uncorrelated 2-D joint Gaussian PDF and modify it so it is no
longer 2-D Gaussian but still has Gaussian marginals.

4y

Py (6,9) = ————expl S CCTSN >
A 2 2 : SNS~—F—""/*

But if we modify it by:
* Setting it to 0 in the shaded regions
e Doubling its value elsewhere

Yy A
We get a 2-D PDF that 1s not
a joiit Gaussian but the @3 >
marginals are the same

as the original!!!!



Conditional PDFs of Bivariate Gaussian
What are the conditional PDFs?

If you know that X has taken value X = x_, how 1s Y distributed?

L%] c{ 25 o.smw

p(x|xo) _ p(xo,y)/ 0.8v25x16 16

p(y|xg) = —~
POO) ™ pxg.y) dy '
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Normalizer
5,,,

Slope of Line s ‘
cov{X,Y}/var{X} = pc,/c, |

Note: Conditioning on correlated RV i
* shifts mean _ SR N
* reduces variance )




Theorem 10.1: Conditional PDF of Bivariate Gaussian

Let X and Y be random variables distributed jointly Gaussian
with mean vector [E{X} E{Y}]’ and covariance matrix

- var(X)  coviX,Y)| | 6% oy
B cov(Y,X) var(t) ) ;

Oyx Oy

Then p(y|x) is also Gaussian with mean and variance given by:

E{Y | X =x,} = E{Y}+2L (x, - E{X})
(o2
) Slope of Line
= B} + 22X (x, - E(X})
Ox
2
var{Y | X =x,} = 0§ -2 _ Amount of Reduction

™~ Reduction Factor




Impact on MMSE

We know the MMSE of RV Y after observing the RV X = x:

N

Y=E{Y|X=x,]

So... using the 1deas we have just seen:
if the data and the parameter are jointly Gaussian, then

Vamase = E{Y | X =x,} = E{} + C:g” (x, - E{X})
X

It 1s the correlation between the RVs X and Y that allow us to
perform Bayesian estimation.




Theorem 10.2: Conditional PDF of Multivariate Gaussian

Let X (kx1) and Y (/x1) be random vectors distributed jointly
Gaussian with mean vector [E{X}” E{Y}’]! and covariance

matrlX C— [CXX CXY] B I:(k X k) (k X l):|

CYX CYY (Z X k) (l X Z)

Then p(y|x) 1s also Gaussian with mean vector and covariance
matrix given by:

--------------------------------------------------------------------------------
. .
o *e

_ 1
E{Y|X=x,}=E{Y}+CyxCxx (x, —E{X})[ | [Cyx=x, =Cyy —~CyxCxxCxy
o2
E{Y | X =x,}= E{Y}+ (x, —E{X}) - var{Y | X =x,} = of — —L
Ox
For the Gaussian case... the
Compare to cond. covariance does not depend
BlVarlate Results on the conditioning x-value!!!

9



10.6 Bayesian Linear Model

Now we have all the machinery we need to find the MMSE for
the “Bayesian Linear Model”

x=HO+w

[ﬁ Nxp Nx1
known ,Cy) ~N(0,C )

Clearly, x is Gaussian and 6 is Gaussian...

If yes...

But are they jointly Gaussian???

then we can use Theorem 10.2 to get the MMSE for 0!!!

Answer = Yes!!
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Bavesian Linear Model is Jointly Gaussian

0 and w are each Gaussian and are independent
Thus their joint PDF 1s a product of Gaussians...
...which has the form of a jointly Gaussian PDF

Can now use: a linear transform of jointly Gaussian is jointly Gaussian

A TH Tl Tty Gaussian ]
1l

0 I 0 w

Thus, Thm. 10.2 applies! Posterior PDF is...
» Joint Gaussian
» Completely described by its mean and variance
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Conditional PDF for Bayesian Linear Model
To apply Theorem 10.2, notationally let X =xand Y = 0.

First we need E{X}=HE{0} + E{w} = Hp,

E{Y} = E{8} =

And also |[Cyy =Cy Cxx = E{(X —E{X})(X —E{X})T}

= E{[H(0 - o)+ wIH(O - o)+ w]' |

_HE{(e uf,)(e o T + Bl |

Cross Terms are Zero
because O and w are

independent

CXX = HCB HT +E{WWT}
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Similarly... Cyx =Cey = E{(ﬂ — g (X - ux)T}

_ T
Use E{0w} =0 E{(O—ue)(H0+w—Hu9)T} =) [Co, =CoH
E{pgw}i =0

E{(O—lle)(ﬂ—lle)THT}
Then Theorem 10.2 gives the conditional PDF’s mean and cov
(and we know the conditional mean 1s the MMSE estimate)
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Ex. 10.2: DC in AWGN w/ Gaussian Prior
Data Model: x[n]=A4 + w[n] A & w[n] are independent

el

~N(uy,07%) ~ N(0,5?)

Write in linear model form:

x=14+w with H=1 =11 ... 1]¥

Now General Result gives the MMSE estimate as:

. 2 2 2y -1
Aypyase = E{A|x} = g+ o1’ (o311 +0° D)7 (x-1uy)

2 2
T o T\—-1
—,uA+—1 (I+ /2111 ) (x-1py)

G O
A\ J
Y
Can simplify using

“The Matrix Inversion Lemma”
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Aside: Matrix Inversion Lemma

(A+BCD) ' =A"" - A_lB(DA_lB + C_l) DA

% fﬁ r‘mj Ej

Special Case (m = 1):




Continuing the Example...

-1
2
o T
(1+0—§11 j (x—1uy)

p OAqT
Apyppse = Hg+—51
(o2

2

Apply the Matrix Inversion Lemma:

Use Matrix [nv Lemle

11’ Pass through 17
x—1 g
j( 'UA){ &usel’l1 =N

o2 N r )
=l +—§1{1T B 7, 2 ITJ (x —lﬂA){ gacthoOIut_l
o N+o“ /oy use =N ]
o> N - I
= 1+ 1; 1— — [(NX = Nuy) Alg.ebmz.c
o N+o“ /oy Manipulation
__
0-2 When d bad (c?/N 2)
7 _ A = « When data is bad (6%/N >> 62 ),
AMMSE —Hat 2 2 (x H A) gain 1s small, data has little use
1 cy+o0° /N .
C X v Apmse = Ha
Y Y _
a priori “Gain”’ Error Between *When data is good (62/N >> c2)),
estimate Factor Data-Only Est.  gain 1s large, data has large use

& Prior-Only Est.

Apprgse = X
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Using similar manipulations gives:

Or...

2
o |63
N 1
var(A|x) = > = 7
47N cy O°/N
_—

Like || resistors... small one wins!
= var (A|x) is = the smaller of:
» data estimate variance

* prior variance
N -

looking at 1t another way:

1 1 1

> T3
var(4|x) oy o©°/N

... additive “information”!
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10.7 Nuisance Parameters

One difficulty in classical methods is that nuisance parameters
must explicitly dealt with.

In Bayesian methods they are simply “Integrated Away™’!!!!

Recall Emitter Location: [x v z f,)]
TNuisance Parameterj
In Bayesian Approach...

From p(x, y, z, f,| X) can get p(x, y, z| X):

p(x,3,2|%) = [ p(x, 3,2, fo | %) dfy

Then... find conditional mean for the MMSE estimate!



