
1

For Bayesian estimation we need a prior probability for n.
Suppose we’ve determined it is Poisson w/ known parameter 𝜆𝜆: 
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A radioactive source emits n radioactive particles, where n is random.
Our job is to estimate how many particles were emitted.
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Parm. Standard Results 
for Poisson 

A common model for # of 
times something occurs is 
the Poisson distribution
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But suppose we have an imperfect Geiger counter… 
It misses some particles → Let p be the prob of detecting a particle.
So we only count 𝑘𝑘 ≤ 𝑛𝑛 particles with cond. prob. of  𝑃𝑃[𝑘𝑘|𝑛𝑛]
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This 𝑃𝑃[𝑘𝑘|𝑛𝑛] is the classic binomial distribution:  
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Parm.Data Standard Results for Binomial 

Binomial Dist. is the 
classic result for “k
successes out of n
tries with prob of 

success of p” 
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We could just accept the count k…
Or… devise a Bayesian estimator: map observed k into estimate �𝑛𝑛
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Regardless of which Bayesian estimation form we use, we 
need the posterior probability for n.
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DataParm.

Bayes’ Rule!

So we need to 
determine all this stuff!



4

[ ]
[ ]

[ ], | [ ]
[ | ]

[ ]
P k n P k n P n

P n k
P k P k

= =Need to analyze:

[ ] [ ], | [ ]P k n P k n P n= ( )[ , ] 1 ; 0
!

n
n kkn

P k n p p e k n
k n

λ λ− − 
= − ≤ ≤ 
 

First, the numerator – we have both of the parts so plug in:

Second, the denominator – we have the joint prob and need to 
sum it to get the marginal on k:
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Thinking: Get into a power series! 
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So now we have what we need to form 𝑃𝑃[𝑛𝑛|𝑘𝑘]:
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… which gives us the posterior distribution we need!

What is it???   Compare to regular Poisson [ ] , 0
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Looks like a k-shifted Poisson w/ parameter 𝜆𝜆 1 − 𝑝𝑝 !!!!
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So can use std. Poisson results to get conditional mean and variance:
{ } ( )| 1E n k k pλ= + − { } { }( ){ } ( )2

var | | | 1n k E n E n k k pλ= − = −

k-shift of prob. func. shifts mean by k shift of prob. func. has no effect on variance
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So now if we use quadratic Bayes risk, the MMSE estimate is 
the conditional mean:
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Counter
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particles

Σ
Bayes Est.

�𝑛𝑛
estimated
particles

( )1 pλ −

[ ] , 0
!

n

P n e n
n

λ
λ

λ−= ≥

{ }E n λ=

Expected # 
of Particles

( )1 p−

Prob. of  
Missing a 
Particle

( )1 pλ −

Expected # of  
Missed Particles

Makes Sense: Add this to count!!
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What is the performance of this estimator?
We have general results that say the MMSE estimator… 

• Is unbiased: 𝐸𝐸𝑛𝑛𝑛𝑛 �𝑛𝑛 = 𝐸𝐸𝑛𝑛 𝑛𝑛 = 𝜆𝜆
• Has variance = Bmse
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“Decomposing Joint 
Expected Values”

(variance of 𝑃𝑃[𝑛𝑛|𝑘𝑘]) = 𝜆𝜆 1 − 𝑝𝑝
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Thus, the performance of this estimator is characterized by
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