Bayesian Ex. — Imperfect Geiger Counter’
A radioactive source emits n radioactive particles, where n is random.
Our job is to estimate how many particles were emitted. )

Source

A common model for # of
P [n] n' times something occurs is
emitted the Poisson distribution

particles

For Bayesian estimation we need a prior probability for n.
Suppose we’ve determined it is Poisson w/ known parameter A:

P[n]=e‘l/1—|, n>0 E{n}=2| |var{n}=21
A n!
A
Parm. [ Standard Resul?]
for Poisson

TBased on pp. 287 — 290 of L. Scharf, Statistical Signal Processing. Detection, Estimation, and Time
Series Analysis, Addison-Wesley, 1991. Which itself was based on a 1958 book by E. T. Jaynes!



But suppose we have an imperfect Geiger counter...
It misses some particles — Let p be the prob of detecting a particle.
So we only count k < n particles with cond. prob. of P[k|n] >

Imperfect
Source Counter Binomial Dist. is the
classic result for “k
P[n] n " Pk|n] k g successes out of n
emitted counted ST p]fOt,’, 2
particles particles Aic)ess kL
This P[k|n] Is the classic binomial distribution:
n - Ek|n{=n
P[k|n]:(ka"(1—p) ‘. 0<k<n k10 =P
f\\ var{k [n} =np(1- p)
— N
Data Parm. Standard Results for Binomial




We could just accept the count k...
Or... devise a Bayesian estimator: map observed k into estimate 7

Source Counter Bayes Est.

P[n] n " Plk|n] K " B(k) -
emitted counted estimated
particles particles particles

Regardless of which Bayesian estimation form we use, we
need the posterior probability for n.

Pl (K] = P[k,n] P[k|n]P[n]

\ P[k] - P[k]
7:-]% \
,_/ \—
Parm. || Data [_‘ Sbve need to ]
d

etermine all this stuff!

Bayes’ Rule!




_ Plk,n] _ P[k|n]PIn]
Pinik]= P[k]  PLk]

First, the numerator — we have both of the parts so plug in:

Need to analyze:

n

P[k,n]=P[k|n]P[n] » P[k,n]:(mpk(l—p)”keﬂl—; 0<k<n

nl

Second, the denominator — we have the joint prob and need to
sum it to get the marginal on k:

=iP[k,n]=i[E)pk(l—p)”ke*ﬁ—: ) P[k]=e“’%

n=k n=k How?
H ?

Thinking: Get into a power series! =——»| = Ak -~k

k 1k -1p
pl gt _E (2p) Usee* =1/0! + x/1! + x?/20 + x3 /3! + -




So now we have what we need to form P[n|k]:

."'Fl.! \ k Nk 1 Afe
. . 1- e A /nl
P[k,n]_('ki(n—k)!}p (1-p) n.
P[k] e (Ap) Tl

P[n K] =

... Which gives us the posterior distribution we need!

P[n|k] = (n—lk)![/l(l_ p)]n_k e P n>k>0

What is it??? Compare to regular Poisson Pl[n]:e‘M—l, n>0
n!

Looks like a k-shifted Poisson w/ parameter A(1 — p)!!!!
(2(1-p)"

A AL-p
Poyln-kl=¢ TV n-k=0
So can use std. Poisson results to get conditional mean and variance:
E{n|kl=k+4(1-p) var {n |k} = E{(n—E{n|k})’ [k|=2(2- p)

k-shift of prob. func. shifts mean by k shift of prob. func. has no effect on variance



So now If we use quadratic Bayes risk, the MMSE estimate IS
the conditional mean:

A=E{n|k}=k+A1(1-p)

Source Counter Bayes Est.

P[n] —————Plkin] — ) —
emitted counted estimated
particles particles particles

T A(1-p)
P,[nN]J=e*—, n>0 l@
n!
E{n} =4 y (1—p)7 —> 1(1—10)7
Expected # Prob. of Expected # of
of Particles Missing a Missed Particles
Particle

Makes Sense: Add this to count!!




What is the performance of this estimator?

We have general results that say the MMSE estimator...
e Isunbiased: E,; {n} = E,{n} =2
e Has variance = Bmse

“Decomposing Joint ]
Expected Values”

Bmse = E,, {(n—f)’| =, {En|k (n—E{n] k})z}} —E, {A(1- p)} = A(1- p)

. J
Y

(variance of P[n|k]) = A(1 — p)

Thus, the performance of this estimator is characterized by

E{i-n}=0 var {fi—n}=Bmse=A1(1-p)




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

