Ch. 11
General Bayesian Estimators



Introduction

In Chapter 10 we:
e Introduced the idea of a “a priori” information on 6
= use “prior” pdf: p(O)
» defined a new optimality criterion
— Bayesian MSE
 showed the Bmse is minimized by E {06|x}

called:
* “mean of posterior pdf”
e “conditional mean”

In Chapter 11 we will:
» define a more general optimality criterion
—> leads to several different Bayesian approaches
= Includes Bmse as special case

Why?  Provides flexibility in balancing:
e model,
 performance, and
e computations



11.3 Risk Functions

Previously we used Bmse as the Bayesian measure to minimize

Bmse = E{(H—é)z} w.r.t. p(x,0)
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0—-0=¢

So, Bmse is... EXxpected value of square of error

Let’s write this in a way that will allow us to generalize it.

Define a quadratic Cost Function: C(g)=¢° = (9 — é)z

( ClE=e )

Then we have that Bmse=E{C(¢)}

Why limit the cost function to just quadratic? €




General Bayesian Criteria

1. Define a cost function: C(g)

2. Define Bayes Risk: ® = E{C(e)} w.r.t. p(x,0)

®(0)=ElC(0-6)]
Depends on choice of estimator }

FaN

3. Minimize Bayes Risk w.r.t. estimate ¢

The choice of the cost function can be tailored to:
 Express importance of avoiding certain kinds of errors
* Yield desirable forms for estimates
— e.g., easily computed
e EtC.




Three Common Cost Functions

1. Quadratic: C(g) = &2

2. Absolute: C(e) =| €|

3. Hit-or-Miss: C(g) =

rO, |g| <0

o > 0 and small
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General Bayesian Estimators
Derive how to choose estimator to minimize the chosen risk:

®(0)=E{c(0-0)}
— jjc:(e—é)p(x,e) dx do
= p(0]x) p(x)

- JUC(Q —é)p(ﬁlx)dﬁl p(x)dx

49(9) % must minimize this for each x value }

So... for a given desired cost function...
you have to find the form of the optimal estimator



The Optimal Estimates for the Typical Costs

1. Quadratic; ®(6) = E{(@—é)z} =Bmse(d) |0 = E{0|x}

2. Absolute: R(é)=E{‘6’—6’A

3. Hit-or-Miss:

[ As we saw in Ch. 10

= mean of p(@|x

} 6 = median of pP(@|x)

N

“Maximum A Posteriori”
& = mode of p(@|x) or MAP

|

-

| p(6lx)

e

|

If p(0]x) Is unimodal & symmetric \
mean = median = mode




Derivation for Absolute Cost Function
Writing out the function to be minimized gives:

9(6)= [16-01p(61x)do

0 0
= [(0-0)p(@1x)d0 + [(0-6)p(0]1x)do
—0 %

region where |(9—é|=é—9 region where |9_é|:9_é

0 o O ba(u)
Now set 29 _ o and use Leibnitz’s rule for —j h(u,v) dv
00 au ¢y (U)

0 o0
= jp(9|x)d9—jp(9|x)d9 -0
S P

which is satisfied if... (area to the left) = (area to the right)
= Median of conditional PDF



Derivation for Hit-or-Miss Cost Function
Writing out the function to be minimized gives:

9(0) = j C(0-0) p(6|x)do

6—5
jl p(0]x)do + jl (0 |x)dé

0+5
0+5 Almost all_trie_plr:ftt)ztzthty }
=1- [p(@1x)do =

0—5 —

[Maximize this integral ]

So... center the integral around peak of integrand
— Mode of conditional PDF



11.4 MMSE Estimators

We’ve already seen the solution for the scalar parameter case
6 = E{0|x}

= mean of p(@|x

Here we’ll look at:
 Extension to the vector parameter case
 Analysis of Useful Properties
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Vector MMSE Estimator

The criterion is... minimize the MSE for each component

Vector Parameter: o=lg, ¢, - 6,

I

Vector Estimate:  o=lg, o, - 0

IS chosen to minimize each of the MSE elements:

E{(6 - 6)°}=[(6,-6)° pw

From the scalar case we know the solution Is:

6, = [6,p(6,1x) d

:j...jap(el,...,ﬁp | x) d6;

= p(X, 0) integrated
over all other 6,’s

o,

=[ap@Ix)do ==

6, = E{6, |}

|
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So... putting all these into a vector gives:

b i a)

E{6 13 EG,13 - E{6, 1%

ZE{[HJ_ 92 gp]T |X}
Vector MMSE Estimate ]

‘ 0= E{OI X} <[ = Vector Conditional Mean

Similarly... Bmse(éi)zﬂcmx]“ pP(Xx) dx 1=1,...,p

Where  Cop ~ Egp [0~ EGO13]f0— E ] |
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Ex. 11.1 Bayesian Fourier Analysis

Signal model 1s:  x[n] = acos(2=f_ n) + bsin(2rf n) + w[n]

a 5 AWGN
0= ~N(0,04l) w/ zero mean and c2
b

0 and w[n] are independent for each n

This i1s a common propagation model called Rayleigh Fading

Write in matrix form: x=HO+w  Bayesian Linear Model
-y .
H =| cosine sine

" "
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Results from Ch. 10 show that

. L HTH] HTx T HH]
0=E{0|x}= 5 |+ 5 5 Copx = —2I+ 5
0'9 O (02 O-H (o)

For f, chosen such that H has orthogonal columns then

- 1] i 5 N-1
L a=f|— > x[n]cos(27f,n)
- o2 - N = -
0=E{0|x}= 1 1 H' x jl> =
o 2%
| O | b=p WZx[n]sm(zﬂfon)
n=0

[ Fourier Coefficients in the Brackets ]

Recall: Same form as classical result, except there f=1
Note: p=~1 ifo/>>26%IN

= If prior knowledge Is poor, this degrades to classical
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Impact of Poor Prior Knowledge

Conclusion: For poor prior knowledge in Bayesian Linear Model
MMSE Est. —» MVU Est.

Can see this holds in general: Recall that
~ 1
0=E{0|x} :u9+[c:51 + HTcgleT H' CH[x + Hpg |

For no prior information: Cgt >0  and pg—0

A Tl yT -1
6 [HTC;tH] "HT C;lx
.

J/

Y

MVUE for General Linear Model
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Useful Properties of MMSE Est. Will be used for

|

] ] Kalman Filter
1. Commutes over affine mappings:
If we have oo = AO + b then a=A0+b

2. Additive Property for independent data sets
Assume 9, X,y X, are jointly Gaussian w/ x, and x, independent

= E{9}+ CQX Cy [Xl — E{Xl}] + Cex C_l [x7 — E{X3}]

>4

Y

a priori Esﬁa Update due to x1 Update due to X, ]

Proof: Letx =[x, x,"]". The jointly Gaussian assumption gives:

0= E{6}+C, C, [x E{x}] l Indep. = Block Diagonal ]
C' 0 |[x, —E{x imoli

_ E{O}Jr[ch ng] X g  —E{x.} Simplify to

1 2410 sz X, — E{X,} get the result

3. Jointly Gaussian case leads to a linear estimator: ¢ =Px+m
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