Ch. 11 General Bayesian Estimators

Introduction

In Chapter 10 we:

- introduced the idea of a "a priori" information on θ
 - \Rightarrow use "prior" pdf: $p(\theta)$
- defined a new optimality criterion
 - ⇒ Bayesian MSE
- showed the Bmse is minimized by E $\{\theta | \mathbf{x}\}$

called:

- "mean of posterior pdf"
- "conditional mean"

In Chapter 11 we will:

- define a more general optimality criterion
 - ⇒ leads to several different Bayesian approaches
 - ⇒ includes Bmse as special case

Why? Provides flexibility in balancing:

- model,
- performance, and
- computations

11.3 Risk Functions

Previously we used Bmse as the Bayesian measure to minimize

$$Bmse = E\left\{ \left(\theta - \hat{\theta}\right)^{2} \right\} \quad w.r.t. \ p(\mathbf{x}, \theta)$$

$$\theta - \hat{\theta} \stackrel{\Delta}{=} \varepsilon$$

So, Bmse is... Expected value of square of error

Let's write this in a way that will allow us to generalize it.

Define a quadratic Cost Function: $C(\varepsilon) = \varepsilon^2 = (\theta - \hat{\theta})^2$

Then we have that $Bmse = E\{C(\varepsilon)\}$

Why limit the cost function to just quadratic?

General Bayesian Criteria

- 1. Define a cost function: $C(\varepsilon)$
- 2. Define Bayes Risk: $\mathcal{R} = E\{C(\varepsilon)\}$ w.r.t. $p(\mathbf{x}, \theta)$

$$\mathcal{R}(\hat{\theta}) = E\left\{C(\theta - \hat{\theta})\right\}$$

Depends on choice of estimator

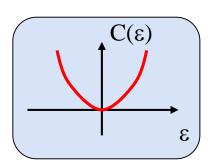
3. Minimize Bayes Risk w.r.t. estimate $\hat{\theta}$

The choice of the cost function can be tailored to:

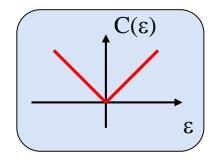
- Express importance of avoiding certain kinds of errors
- Yield desirable forms for estimates
 - e.g., easily computed
- Etc.

Three Common Cost Functions

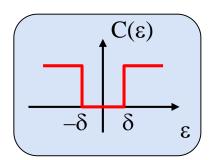
1. Quadratic: $C(\varepsilon) = \varepsilon^2$



2. Absolute: $C(\varepsilon) = |\varepsilon|$



3. Hit-or-Miss:
$$C(\varepsilon) = \begin{cases} 0, & |\varepsilon| < \delta \\ 1, & |\varepsilon| \ge \delta \end{cases}$$



General Bayesian Estimators

Derive how to choose estimator to minimize the chosen risk:

$$\mathcal{R}(\hat{\theta}) = E\{C(\theta - \hat{\theta})\}\$$

$$= \iint C(\theta - \hat{\theta}) \underbrace{p(x, \theta)}_{} dx d\theta$$

$$= p(\theta|x)p(x)$$

$$= \int \left[\int C(\theta - \hat{\theta}) p(\theta|x) d\theta \right] p(x) dx$$

$$\triangleq g(\hat{\theta}) \qquad \text{must minimize this for each } \mathbf{x} \text{ value}$$

So... for a given desired cost function...
you have to find the form of the optimal estimator

The Optimal Estimates for the Typical Costs

1. Quadratic:
$$\Re(\hat{\theta}) = E\{(\theta - \hat{\theta})^2\} = Bmse(\hat{\theta})$$

As we saw in Ch. 10

$$\hat{\theta} = E\{\theta \mid \mathbf{x}\}$$

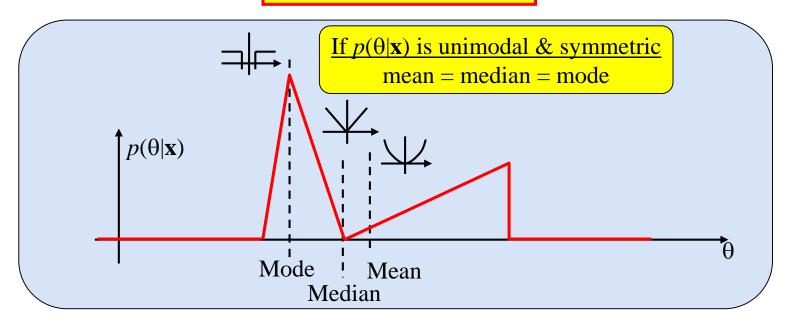
$$\hat{\theta} = E\{\theta \mid \mathbf{x}\}\$$
= mean of $p(\theta \mid \mathbf{x})$

- 2. Absolute: $\Re(\hat{\theta}) = E\{|\theta \hat{\theta}|\}$ $\hat{\theta} = \text{median of } p(\theta \mid \mathbf{x})$

3. **Hit-or-Miss**:

$$\hat{\theta} = \text{mode of } p(\theta \mid \mathbf{x})$$

"Maximum A Posteriori" or MAP



Derivation for Absolute Cost Function

Writing out the function to be minimized gives:

$$g(\hat{\theta}) = \int_{-\infty}^{\infty} |\theta - \hat{\theta}| p(\theta \mid \mathbf{x}) d\theta$$

$$= \int_{-\infty}^{\hat{\theta}} (\hat{\theta} - \theta) p(\theta \mid \mathbf{x}) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) p(\theta \mid \mathbf{x}) d\theta$$

$$= \int_{-\infty}^{\infty} (\hat{\theta} - \theta) p(\theta \mid \mathbf{x}) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) p(\theta \mid \mathbf{x}) d\theta$$
region where $|\theta - \hat{\theta}| = \hat{\theta} - \hat{\theta}$

Now set
$$\frac{\partial g(\hat{\theta})}{\partial \hat{\theta}} = 0$$
 and use Leibnitz's rule for $\frac{\partial}{\partial u} \int_{\phi_1(u)}^{\phi_2(u)} h(u, v) dv$

$$\Rightarrow \int_{-\infty}^{\hat{\theta}} p(\theta | \mathbf{x}) d\theta - \int_{\hat{\theta}}^{\infty} p(\theta | \mathbf{x}) d\theta = 0$$

which is satisfied if... (area to the left) = (area to the right) ⇒ Median of conditional PDF

Derivation for Hit-or-Miss Cost Function

Writing out the function to be minimized gives:

$$g(\hat{\theta}) = \int_{-\infty}^{\infty} C(\theta - \hat{\theta}) \ p(\theta \mid \mathbf{x}) d\theta$$

$$= \int_{-\infty}^{\hat{\theta} - \delta} 1 \cdot p(\theta \mid \mathbf{x}) d\theta + \int_{\hat{\theta} + \delta}^{\infty} 1 \cdot p(\theta \mid \mathbf{x}) d\theta$$

$$= 1 - \int_{\hat{\theta} - \delta}^{\hat{\theta} + \delta} p(\theta \mid \mathbf{x}) d\theta$$
Almost all the probability
$$= 1 - \operatorname{left out}$$
Maximize this integral

So... center the integral around peak of integrand ⇒ Mode of conditional PDF

11.4 MMSE Estimators

We've already seen the solution for the scalar parameter case

$$\hat{\theta} = E\{\theta \mid \mathbf{x}\}$$
= mean of $p(\theta \mid \mathbf{x})$

Here we'll look at:

- Extension to the vector parameter case
- Analysis of Useful Properties

Vector MMSE Estimator

The criterion is... minimize the MSE for each component

Vector Parameter:
$$\mathbf{\theta} = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_p \end{bmatrix}^T$$

Vector Estimate:
$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} \hat{\theta}_1 & \hat{\theta}_2 & \cdots & \hat{\theta}_p \end{bmatrix}^T$$

is chosen to minimize each of the MSE elements:

$$E\{(\theta_i - \hat{\theta}_i)^2\} = \int (\theta_i - \hat{\theta}_i)^2 p(\mathbf{x}, \theta_i) d\mathbf{x} d\theta_i$$

= $p(\mathbf{x}, \boldsymbol{\theta})$ integrated over all other θ_i 's

From the scalar case we know the solution is:

$$\hat{\theta}_{i} = \int \theta_{i} p(\theta_{i} \mid \mathbf{x}) d\theta_{i}$$

$$= \int \cdots \int \theta_{i} p(\theta_{1}, \dots, \theta_{p} \mid \mathbf{x}) d\theta_{1} \cdots d\theta_{p}$$

$$= \int \theta_{i} p(\mathbf{\theta} \mid \mathbf{x}) d\mathbf{\theta}$$

$$\hat{\theta}_{i} = E\{\theta_{i} \mid \mathbf{x}\}$$

So... putting all these into a vector gives:

$$\hat{\mathbf{\theta}} = \begin{bmatrix} \hat{\theta}_1 & \hat{\theta}_2 & \cdots & \hat{\theta}_p \end{bmatrix}^T$$

$$= \begin{bmatrix} E\{\theta_1 \mid \mathbf{x}\} & E\{\theta_2 \mid \mathbf{x}\} & \cdots & E\{\theta_p \mid \mathbf{x}\} \end{bmatrix}^T$$

$$= E\{\begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_p \end{bmatrix}^T \mid \mathbf{x} \}$$

$$\hat{\mathbf{\theta}} = E\{\mathbf{\theta} \mid \mathbf{x}\}$$

$$\mathbf{\hat{\theta}} = E\{\mathbf{\theta} \mid \mathbf{x}\}$$
Vector MMSE Estimate
$$= \text{Vector Conditional Mean}$$

Similarly...
$$Bmse(\hat{\theta}_i) = \int \left[C_{\theta | \mathbf{x}} \right]_{ii} p(\mathbf{x}) d\mathbf{x}$$
 $i = 1, ..., p$

where
$$\mathbf{C}_{\boldsymbol{\theta}|\mathbf{x}} = E_{\boldsymbol{\theta}|\mathbf{x}} \left\{ \left[\boldsymbol{\theta} - E\{\boldsymbol{\theta} \mid \mathbf{x}\} \right] \left[\boldsymbol{\theta} - E\{\boldsymbol{\theta} \mid \mathbf{x}\} \right]^T \right\}$$

Ex. 11.1 Bayesian Fourier Analysis

Signal model is:
$$x[n] = a\cos(2\pi f_o n) + b\sin(2\pi f_o n) + w[n]$$

$$\mathbf{\theta} = \begin{bmatrix} a \\ b \end{bmatrix} \sim N(\mathbf{0}, \sigma_{\theta}^2 \mathbf{I})$$
AWGN
w/ zero mean and σ^2

 θ and w[n] are independent for each n

This is a common propagation model called Rayleigh Fading

Write in matrix form: $\mathbf{x} = \mathbf{H}\mathbf{\theta} + \mathbf{w}$ Bayesian Linear Model

$$\mathbf{H} = \begin{bmatrix} \uparrow & \uparrow \\ cosine & sine \\ \downarrow & \downarrow \end{bmatrix}$$

Results from Ch. 10 show that

$$\hat{\boldsymbol{\theta}} = E\{\boldsymbol{\theta} \mid \mathbf{x}\} = \left[\frac{1}{\sigma_{\theta}^2}\mathbf{I} + \frac{\mathbf{H}^T\mathbf{H}}{\sigma^2}\right]^{-1} \frac{\mathbf{H}^T\mathbf{x}}{\sigma^2} \qquad \mathbf{C}_{\boldsymbol{\theta}\mid\mathbf{x}} = \left[\frac{1}{\sigma_{\theta}^2}\mathbf{I} + \frac{\mathbf{H}^T\mathbf{H}}{\sigma^2}\right]^{-1}$$

For f_o chosen such that **H** has orthogonal columns then

$$\hat{\mathbf{\theta}} = E\{\mathbf{\theta} \mid \mathbf{x}\} = \begin{bmatrix} \frac{1}{\sigma^2} \\ \frac{1}{\sigma_{\theta}^2} + \frac{1}{\sigma^2} \end{bmatrix} \mathbf{H}^T \mathbf{x}$$

$$\hat{b} = \beta \begin{bmatrix} \frac{2}{N} \sum_{n=0}^{N-1} x[n] \cos(2\pi f_o n) \\ \hat{b} = \beta \begin{bmatrix} \frac{2}{N} \sum_{n=0}^{N-1} x[n] \sin(2\pi f_o n) \end{bmatrix}$$

$$\beta = \frac{1}{1 + \frac{2\sigma^2/N}{\sigma_{\theta}^2}}$$

Fourier Coefficients in the Brackets

Recall: Same form as classical result, except there $\beta = 1$

Note:
$$\beta \approx 1$$
 if $\sigma_{\theta}^2 >> 2\sigma^2/N$

⇒ if prior knowledge is poor, this degrades to classical

Impact of Poor Prior Knowledge

<u>Conclusion</u>: For poor prior knowledge in Bayesian Linear Model MMSE Est. → MVU Est.

Can see this holds in general: Recall that

$$\hat{\boldsymbol{\theta}} = E\{\boldsymbol{\theta} \mid \mathbf{x}\} = \boldsymbol{\mu}_{\boldsymbol{\theta}} + \left[\mathbf{C}_{\boldsymbol{\theta}}^{-1} + \mathbf{H}^T \mathbf{C}_{\mathbf{w}}^{-1} \mathbf{H}\right]^{-1} \mathbf{H}^T \mathbf{C}_{\mathbf{w}}^{-1} \left[\mathbf{x} + \mathbf{H} \boldsymbol{\mu}_{\boldsymbol{\theta}}\right]$$

For no prior information: $C_{\theta}^{-1} \to 0$ and $\mu_{\theta} \to 0$

$$\hat{\mathbf{\theta}} \to \left[\mathbf{H}^T \mathbf{C}_{\mathbf{w}}^{-1} \mathbf{H} \right]^{-1} \mathbf{H}^T \mathbf{C}_{\mathbf{w}}^{-1} \mathbf{x}$$

MVUE for General Linear Model

Useful Properties of MMSE Est.

Will be used for Kalman Filter

1. Commutes over affine mappings:

If we have
$$\alpha = A\theta + b$$
 then $\hat{\alpha} = A\hat{\theta} + b$

2. Additive Property for independent data sets

Assume θ , x_1 , x_2 are jointly Gaussian w/ x_1 and x_2 independent

$$\hat{\mathbf{\theta}} = E\{\mathbf{\theta}\} + \mathbf{C}_{\mathbf{\theta} \mathbf{x}_1} \mathbf{C}_{\mathbf{x}_1}^{-1} [\mathbf{x}_1 - E\{\mathbf{x}_1\}] + \mathbf{C}_{\mathbf{\theta} \mathbf{x}_2} \mathbf{C}_{\mathbf{x}_2}^{-1} [\mathbf{x}_2 - E\{\mathbf{x}_2\}]$$
a priori Estimate

Update due to \mathbf{x}_1

Update due to \mathbf{x}_2

Proof: Let $\mathbf{x} = [\mathbf{x}_1^T \ \mathbf{x}_2^T]^T$. The jointly Gaussian assumption gives:

$$\hat{\mathbf{\theta}} = E\{\mathbf{\theta}\} + \mathbf{C}_{\theta x} \mathbf{C}_{x}^{-1} [\mathbf{x} - E\{\mathbf{x}\}] \qquad \text{Indep.} \Rightarrow \text{Block Diagonal}$$

$$= E\{\mathbf{\theta}\} + \begin{bmatrix} \mathbf{C}_{\theta x_{1}} & \mathbf{C}_{\theta x_{2}} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{x_{1}}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{x_{2}}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} - E\{\mathbf{x}_{1}\} \\ \mathbf{x}_{2} - E\{\mathbf{x}_{2}\} \end{bmatrix} \qquad \text{Simplify to get the result}$$

3. Jointly Gaussian case leads to a linear estimator: $\hat{\theta} = Px + m$