Ch. 12
Linear Bayesian Estimators




Introduction

In chapter 11 we saw:
the MMSE estimator takes a simple form when x and 0 are
jointly Gaussian — it is linear and used only the 15t and 2" order
moments (means and covariances).

Without the Gaussian assumption, the General MMSE estimator
requires integrations to implement — undesirable!

So what to do if we can’t “assume Gaussian” but want MMSE?
Keep the MMSE criteria
But...restrict the form of the estimator to be LINEAR
— “LMMSE Estimator” Something ]

similar to
BLUE!

[ LMMSE Estimator = “Wiener Filter”]




[ Bayesian Approaches]

/\

MMSE

“Squared” Cost Function
(Nonlinear Estimate)

Estimate: 0 = E{9|x}
Err.Cov.: Mg = EX{C9|X}

Jointly Gaussian x and 0
(Yields Linear Estimate)

f — ]
MAP Other
“Hit-or-Miss” Cost
Cost Function -
kFu nctions )

LMMSE

Force Linear Estimate
Known: E{0},E{x}, C

Estimate: 0 = E{0}+Cq,Crr(x - Efx})
Err.Cov.:My =Cgg — CGXC;)l(CX(,

Same!

Bayesian Linear Model
(Yields Linear Estimate)

Estimate: 0 = E{8}+Cq,Crr(x - Efx})

Err.Cov.:My =Cgg — CGXC;)l(CX(,

Estimate: 0= E{0}+CqyH" (HCBHT 5 CW)_l(x —Hpyg)

. T T -1
El’r. COV.. Mé = Cﬂ _COH (HCBH +CW) HCO




12.3 Linear MMSE Estimator Solution

Scalar Parameter Case:

Estimate: 0, a random variable realization
Given: data vector x = [x[0] x[1] . . .X[N-1] ]T
ASsSUme:

— Joint PDF p(x, 0) is unknown
— But...Its 15t two moments are known

— There is some statistical dependence between x and 0
e E.g., Could estimate 6 = salary using X = 10 past years’ taxes owed

* E.g.,, Can’t estimate 6 = salary using x = 10 past years’ number of Christmas
cards sent

Goal: Make the best possible estimate while using an affine form

for the estimator \
ﬁ Handles Non-Zero }
Mean Case

R -1
6=> axn]+a,
n=0
Choose {a,} to minimize Bmse(6) = E,o1(0 - 0)°}




Derivation of Optimal LMMSE Coefficients

Using the desired affine form of the estimator, the Bmse is

-

2
X N-1
Bmse(&) = E: {9 — > apx[n]+ay }
n=0

\

A4

Step #1: Focusona,  9BMmse(0) _

oay
N-1
Passing o/oay through E{} gives —2E{9- > a,x[n]+ay}=0
n=0

N -1
‘ ay = E{0}— Y a, E{x[n]}
n=0

Note: a =0 if E{&} = E{x[n]} =0




Step #2: Plug-In Step #1 Result for a,

i N -1 2
Bmse(d) = E ﬂ > an(x[n]- E{x[n]}) - (60— E{Q})} }
n=0

=E

J\
'

2
{gﬂ (x—E{x}) - (0 - E{@})}

scalar scalar

wherea=[aja, ...a,]"

Only up to N-l]

Note: a’ (x — E{x}) = (x — E{x})"a since it is scalar



Thus, expanding out [aT (X — E{x}) — (8- E{8})] ¢ gives
Bmse(d) = E {a' (x— E{x})(x - E{})" a |+ Efc

=a' E {(x —E{R)(x - ELY)T %+ Etc.

—a' C,a+Etc.

SHCEN

nga-l- C@@

v

covarlance Cross- covarlance variance

matrix

vectors

“E{(x—EDN)(0-EOD)} ¢, = E{(0 - E{O}) (x— EH3)'}
cyy = E{(0- B’}

Note: ¢, =c,, ‘

Bmse(d) =a' Cya—2a’ Cyp + Coy




Step #3: Minimize w.r.t. a;, a,, ... , 8y

aBmse(é) ~ \( Only up to N-1 ]

0
oa

2C,ya—2Cyy =0 I:> a= C;&c}:\xe al = CQXC;&

Step #4: Combine Results

between the data and the parameter is

This is where the statistical dependence
used... via a cross-covariance vector

N1
6= > a,x[n]+ay
n=0

=a'x+ [E{e}— al E{x}]: E{o}+a' (x—E{x})
So the Optimal LMMSE Estimate is:
0 = E{0}+ C Crx (X — E{x})

6 = C@XC)_()](-X

[Note: LMMSE Estimate Only Needs 15t and 2" Moments... not PDFs!!] o




Step #5: Find Minimum Bmse
Substitute into Bmse result and simplify:

Bmse(d) =a' Cya—2a’ Cyp + Coy

-1 -1 -1
— C6’xCxxCxxCxxCxH — 2CHXCXXCXQ + Coo

1 1
= CoxCxxCxo — 2CoxCxxCxo + Coo

Bmse(0) = Cgg — CoxCxCxp

Note: If © and x are statistically independent then C,, =0

=)

6 = E{6}

Bmse(é) = Cyy

\

Totally based on
prior info... the
data is useless



Ex. 12.1 DC Level in WGN with Uniform Prior

Recall: Uniform prior gave a non-closed form requiring integration

...but changing to a Gaussian prior fixed this.
Here we keep the uniform prior and get a simple form:

* by using the Linear MMSE

For this problem the LMMSE estimate Is: A= CAXCXXX

rcxx ~ E{(A1+vv A1+WT}

_ 2a44T 2
\ d < =oxll" +0°l A& W are
€c T uncorrelated
Cox = E{AX}= E{A(A1+w) }
2.T B =
\ = (TAl ~ 02 .
A= A X
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12.4 Geometrical Interpretations

Abstract Vector Space
Mathematicians first tackled “physical” vector spaces like RN
and CN, etc.

But... then abstracted the “bare essence” of these structures into
the general idea of a vector space.

We’ve seen that we can interpret Linear LS in terms of “Physical”
vector spaces.

We’ll now see that we can interpret Linear MMSE in terms of
“Abstract” vector space ideas.
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Abstract VVector Space Rules

An abstract vector space consists of a set of “mathematical objects”
called vectors and another set called scalars that obey:

1.

2.

3.

There is a well-defined operation of “addition” of vectors that
gives a vector in the set, and...
“Adding” is commutative and associative

There is a vector in the set — call it 0 — for which “adding” it to any
vector in the set gives back that same vector

For every vector there is another vector s.t. when the 2 are added you get
the O vector
There is a well-defined operation of “multiplying” a vector by a
“scalar” and it gives a vector in the set, and...
“Multiplying” is associative
Multiplying a vector by the scalar 1 gives back the same vector
The distributive property holds
Multiplication distributes over vector addition
Multiplication distributes over scalar addition
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Examples of Abstract \Vector Spaces

1.

Scalars = Real Numbers
Vectors = Nt Degree Polynomials w/ Real Coefficients

Scalars = Real Numbers
Vectors = MxN Matrices of Real Numbers

Scalars = Real Numbers
Vectors = Functions from [0,1] to R

Scalars = Real Numbers
Vectors = Real-Valued Random Variables with Zero Mean

Colliding Terminology...
a scalar RV is a vector!!!

13



Inner Product Spaces

An extension of the idea of Vector Space... must also have:

There Is a well-defined concept of inner product s.t. all the rules of

“ordinary” inner product still hold
N /( Not needed for Real IP Spaces }
e <Xy> = <y, x> \

¢ S@Xp T AKXy, Yy = <Xy >+ 2<%y~
e XX>2>0;<xx>=0 iff x=0

Note: an inner product “induces” a norm (or length measure):
Ix[[2 = <x,x>

So an inner product space has:
1. Two sets of elements: Vectors and Scalars
2. Algebraic Structure (Vector Addition & Scalar Multiplication)
3. Geometric Structure
e Direction (Inner Product)
e Distance (Norm)



Inner Product Space of Random Variables
Vectors: Set of all real RVs w/ zero mean & finite variance (ZMFV)

Scalars: Set of all real numbers

Inner Product: <X.Y> = E{XY} Inner Product is Correlation!
' ’ Uncorrelated = Orthogonal

Claim... This is an Inner Product Space
First... this is a vector space...

Addition Properties: X+Y is another ZMFV RV
1. Itis Associative and Commutative: X+(Y+Z) = (X+Y)+Z; X+Y =Y+X
2. The zero RV has variance of 0 (What is an RV with var = 0???)
3. The negative of RV X is =X

Multiplication Properties: For any real # a, aX is another ZMFV RV
1. Itis Associative: a(bX) = (ab)X
2. 1X =X

Next...This is an inner product space...
Distributive Prope_rtles: o <aXi+aX,Y> = E{(a, X+ a,X,)Y}
L atty)=ax+ay = a E{X Y}+ a,E{X,Y}
2. (atb)X=aX+bX
. IX||? = <X, X>=E{X?} =var{X} >0
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Use IP Space Ideas for Section 12.3
Apply to the Estimation of a zero-mean scalar RV: 6= Za X[n]
Trying to estimate the realization of RV 0 via a =

linear combination of N other RVs x[0], x[1],
X[2],... X[N-1]

Zero-Mean...
don’t need a,

Now...using our new vector space view of RVS, this Is the same
structural mathematics that we saw for the Linear LS !

N =2 Case Minimize: ‘ —0

% Connects to Geometry Connects to MSE

Recall Orthogonality Principlell!

10 i B
x[0] Each RV is viewed Estimation Error L Data Space
as a vector .

E{(0-0)x[n1}=0 y




Now apply this Orthogonality Principle...
E{(0-0)x"}=0" with

E{(@ ~a' x)xT}: o' = E{éb(T}: a' E{XXT} = E{XHT}z E{xxT}a

Q:aTx

Cyx@=Cxg| “The Normal Equations”

Assuming that C,, is invertible...

-1
a= Cxxcxé’

=)

f=ax= c@(CXXx

Same as beforelll
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12.5 Ve/ctor L MMSE Estimator

Meaning a “Physical” \ector }

Estimate: Realization of ez[el O, - ep]T

L_inear Estimator: 0 =AX +a

Goal: Minimize Bmse for each element

View it row in A and it element in a as forming a scalar
LMMSE estimator for 6,

Already know the individual element solutions!
- Write them down
- Combine into matrix form
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Solutions to Vector LMMS

E

The Vector LMMSE estimate Is:

0 = E{0}+ Cy,

Cx[X — E{x}]

\

Now... pxN Matrix...
Cross-Covariance Matrix

IFE{6} =0 &E{x}=0 mmm)

[ Still... NxN Matrix...

Covariance Matrix

|

9 COxCxxX

Can show similarly that Bmse Matrix is

M; = E{(0-0)(0-0)"}

M =Coo —CoxC

—1
xxCXO

o ) D)

prior Cov. Matrix




Two Properties of LMMSE Estimator

1. Commutes over affine transfoArmations
If a=A0+b and 0 is LMMSE Estimate

Then a = Aé +b is LMMSE Estimate for a

2.1fa=0,+0,then 6=0,+0,
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Bayesian Gauss-Markov Theo rem{ Like G-M Theorem for}

the BLUE
Let the data be modeled as X = HO +

~\ Nx1 random A
><1 random zero mean
mean p, Cov Mat C,,

Cov Mat Cgygq (Not Gaussian) )
(Not

Application of previous results, evaluated for this data model gives:

] 1
0=pg+CooH' (HCOOHT +Cw) [X—Hpg]

. MMSE Matrix:
T T B
C8 = COG —CBQH (HCBBH +CW) HCOQ I\/Ié — Ca
Same forms as for Bayesian Linear Model (which include Gaussian assumption)
Except here... the result is suboptimal... unless the optimal estimate is linear

In practice... generally don’t know if linear estimate is optimal... but we use
LMMSE for its simple form!

The challenge is to “guess” or estimate the needed means & cov matrices o
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