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Ch. 12 
Linear Bayesian Estimators
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Introduction
In chapter 11 we saw: 

the MMSE estimator takes a simple form when x and θ are 
jointly Gaussian – it is linear and used only the 1st and 2nd order 
moments (means and covariances).

Without the Gaussian assumption, the General MMSE estimator 
requires integrations to implement – undesirable!

So what to do if we can’t “assume Gaussian” but want MMSE?

Keep the MMSE criteria 

But…restrict the form of the estimator to be LINEAR

⇒ “LMMSE Estimator”

LMMSE Estimator = “Wiener Filter”

Something 
similar to 

BLUE!
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Bayesian Approaches
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12.3 Linear MMSE Estimator Solution
Scalar Parameter Case:
Estimate: θ, a random variable realization
Given: data vector x = [x[0] x[1] . . .x[N-1] ]T

Assume:
– Joint PDF p(x, θ) is unknown
– But…its 1st two moments are known
– There is some statistical dependence between x and θ

• E.g., Could estimate θ = salary using x = 10 past years’ taxes owed
• E.g., Can’t estimate θ = salary using x = 10 past years’ number of Christmas 

cards sent

Goal:  Make the best possible estimate while using an affine form 
for the estimator
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Derivation of Optimal LMMSE Coefficients
Using the desired affine form of the estimator, the Bmse is
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Note: aN = 0   if E{θ } = E{x[n]} = 0
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Step #2:  Plug-In Step #1 Result for aN
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where a = [a0 a1 . . . aN-1]T

Note: aT (x – E{x}) = (x – E{x})Ta since it is scalar

Only up to N-1
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Thus, expanding out [aT (x – E{x}) – (θ – E{θ })] 2 gives 
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Step #3:  Minimize w.r.t. a1, a2, … , aN-1
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Only up to N-1

This is where the statistical dependence 
between the data and the parameter is 
used… via a cross-covariance vector

Step #4:  Combine Results
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So the Optimal LMMSE Estimate is:

Note: LMMSE Estimate Only Needs 1st and 2nd Moments… not PDFs!!
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Step #5:  Find Minimum Bmse
Substitute into Bmse result and simplify:
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Totally based on 
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data is useless
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Ex. 12.1 DC Level in WGN with Uniform Prior
Recall: Uniform prior gave a non-closed form requiring integration

…but changing to a Gaussian prior fixed this.

Here we keep the uniform prior and get a simple form:

• by using the Linear MMSE
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12.4 Geometrical Interpretations
Abstract Vector Space

Mathematicians first tackled “physical” vector spaces like RN  

and  CN, etc.

But… then abstracted the “bare essence” of these structures into 
the general idea of a vector space.

We’ve seen that we can interpret Linear LS in terms of “Physical” 
vector spaces.

We’ll now see that we can interpret Linear MMSE in terms of 
“Abstract” vector space ideas.
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Abstract Vector Space Rules

1. There is a well-defined operation of “addition” of vectors that 
gives a vector in the set, and…

• “Adding” is commutative and associative
• There is a vector in the set – call it 0 – for which “adding” it to any 

vector in the set gives back that same vector 
• For every vector there is another vector s.t. when the 2 are added you get 

the 0 vector

2. There is a well-defined operation of “multiplying” a vector by a 
“scalar” and it gives a vector in the set, and…

• “Multiplying” is associative 
• Multiplying a vector by the scalar 1 gives back the same vector

3. The distributive property holds
• Multiplication distributes over vector addition
• Multiplication distributes over scalar addition

An abstract vector space consists of a set of “mathematical objects” 
called vectors and another set called scalars that obey:
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Examples of Abstract Vector Spaces

1. Scalars = Real Numbers                                                    
Vectors = Nth Degree Polynomials w/ Real Coefficients

2. Scalars = Real Numbers                                                    
Vectors = M×N Matrices of Real Numbers

3. Scalars = Real Numbers                                                    
Vectors = Functions from [0,1] to R

4. Scalars = Real Numbers                                                    
Vectors = Real-Valued Random Variables with Zero Mean

Colliding Terminology… 
a scalar RV is a vector!!!
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There is a well-defined concept of inner product s.t. all the rules of 
“ordinary” inner product still hold

• <x,y>  =  <y, x>*

• <a1x1+ a2x2,y>  =  a1<x1,y >  +   a2<x2,y> 
• <x,x>  ≥ 0; <x,x>  =  0   iff x = 0

Inner Product Spaces
An extension of the idea of Vector Space… must also have:

Note: an inner product “induces” a norm (or length measure):

||x||2 = <x,x>

So an inner product space has:
1. Two sets of elements: Vectors and Scalars
2. Algebraic Structure (Vector Addition & Scalar Multiplication) 
3. Geometric Structure

• Direction (Inner Product)
• Distance (Norm)

Not needed for Real IP Spaces
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Inner Product Space of Random Variables
Vectors: Set of all real RVs w/ zero mean & finite variance (ZMFV)
Scalars: Set of all real numbers
Inner Product:  <X,Y> = E{XY}
Claim… This is an Inner Product Space 
First… this is a vector space…

Addition Properties: X+Y is another ZMFV   RV
1. It is Associative  and Commutative: X+(Y+Z) = (X+Y)+Z; X+Y = Y+X
2. The zero RV has variance of 0  (What is an RV with var = 0???)
3. The negative of RV  X is  –X

Multiplication Properties: For any real # a,  aX is another ZMFV RV
1. It is Associative: a(bX) = (ab)X
2. 1X = X

Distributive Properties:
1. a(X+Y) = aX + aY
2. (a+b)X = aX + bX

Inner Product is Correlation!
Uncorrelated = Orthogonal

Next…This is an inner product space…
• <a1X1+ a2X2,Y>  = E{(a1X1+ a2X2)Y}   

= a1E{X1Y}+ a2E{X2Y}
• ||X||2 = <X, X> = E{X2} = var{X} ≥ 0
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Use IP Space Ideas for Section 12.3
Apply to the Estimation of a zero-mean scalar RV: ∑
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don’t need aN

Trying to estimate the realization of RV θ via a 
linear combination of N other RVs   x[0], x[1], 
x[2],… x[N-1]

Now…using our new vector space view of RVs, this is the same 
structural mathematics that we saw for the Linear LS !
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Now apply this Orthogonality Principle…
TTE 0x =− }{ )( θ̂θ with xaT=θ̂

axxxxxax0xxa }{}{}{}{}{ )( TTTTTTTT EEEEE =⇒=⇒=− θθθ

θxxx caC = “The Normal Equations”

Assuming that Cxx is invertible…

θxxxcCa 1−= xCcxa xxx
1ˆ −== θθ T

Same as before!!!
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12.5 Vector LMMSE Estimator
Meaning a “Physical” Vector

Estimate: Realization of [ ]Tpθθθ 21=θ

Linear Estimator: aAxθ +=ˆ

Goal: Minimize Bmse for each element

View ith row in A and ith element in a as forming a scalar 
LMMSE estimator for θi

Already know the individual element solutions!   

• Write them down

• Combine into matrix form
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Now… p×N Matrix…
Cross-Covariance Matrix

Still… N×N Matrix…
Covariance Matrix

Can show similarly that Bmse Matrix is
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The Vector LMMSE estimate is:
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Two Properties of LMMSE Estimator
1. Commutes over affine transformations

If bAθα += and θ̂ is LMMSE Estimate

Then bθAα += ˆˆ is LMMSE Estimate for α

2. If α = θ1 + θ2  then 21
ˆˆˆ θθα +=
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Bayesian Gauss-Markov Theorem Like G-M Theorem for 
the BLUE

Let the data be modeled as wHθx +=

known
p×1 random

mean µθ
Cov Mat Cθθ

(Not 
Gaussian)

N×1 random
zero mean 

Cov Mat Cw
(Not Gaussian)
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Application of previous results, evaluated for this data model gives:

( ) θθwθθθθθθε HCCHHCHCCC
1−

+−= TT
MMSE Matrix: 

Same forms as for Bayesian Linear Model (which include Gaussian assumption) 

Except here… the result is suboptimal… unless the optimal estimate is linear

In practice… generally don’t know if linear estimate is optimal… but we use 
LMMSE for its simple form!

The challenge is to “guess” or estimate the needed means & cov matrices

ˆ = εθM C
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