Wiener Filter for Deterministic Blur Model

Based on Ch. 5 of Gonzalez & Woods, Digital Image Processing, 2" Ed., Addison-Wesley, 2002

One common application of the Wiener filter has been in the area of
simultaneous de-blurring and de-noising of an image.

From Section 5.5:

f (x,y) Is the original image (2-D signal of x, y spatial variables)

Observed image is g(x,y)=H[ f(x,y)]+n(x,y)
Observed Blur Original 2-D Random
Image Operator Image Noise

If there were only blurring...
e seekto find inverse of H
If there were only noise...

o seek a filter that passes image & removes some noise

The Wiener filter seeks to optimally balance these two issues!



L S1 Blur Model (Section 5.5) ) s, |
Common model for the blur operator is Linear Shift-Invariant (LSI):
Hlaf(xy)+a,f,(xy)]=aH[ f(xy)]|+a,H] f,(xy)] Linearity

H £ (% Y)]= fue () B H[ £, (x—a,y - B)]= fou (x—a,y—B) Shift Inv.

An LSI system can be described by its impulse response:
H[S(xy)]2h(xy)

Then the output is expressed as a 2-D convolution; ~ T"is Is a continuous-
Space version

... Itis possible to

H [f (X, y)} = J J h(x-a,y-p)f(a f)dadp do the same for

o discrete-space
version

o0 o0



Now our blurred image model is:

o0 o0

four (X, Y) = [ [N(x=a,y=B) f(a,B)dadp

—00 —00

Taking the 2-D Fourier transform of the above model gives

Fowe (U, V) =H (u,v)F (u,v)

Where the 2-D Fourier transforms are given by

o0 O

F(u,v)= I j f(x,y)e 2" axdy H(u,v)= j _fh(x,y)e"jz”(””w)dxdy

—00 —00 —00 —00

Frequency Response of Blur

Note that in principle if we know H (u, v) then we can use the
Inverse filter to recover the original image

F(u,v)= Fﬂur(ﬁuv\;)




Blur Caused by Planar Motion (see Section 5.6.3)

A common blur model is that due to planar motion while the camera’s
aperture is open during time interval [0, T].

This means that during [0,T] the image moves in the x and y
directions according to functions x,(t) and y,(t)

Then our observed image model is:

[e¢]

g(xy)= I f(Xx=%(t),y—Y,(t))dt+n(x,y)

—00

Converting to frequency domain gives (see Gonzalez & Woods for steps):

G(u,v)=H (u,v)F(u,v)+N(u,v)

with H (u,v) _ [ e 127l ®+we (] 4y

O'-—.—|



Blur Caused by Uniform Linear Motion (see Section 5.6.3)
This is planar motion with constant speed in each direction:
xo(t) =at/T and yo(t) = bt/T
Then the blur’s frequency response Is two sincs:

sin| z(ua+vb) | | o So this is like a 2-D
H (u,v)= {T e’ lowpass filter!

z(ua+vb)
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Blurred and Noisy Image [ ST ETE——— ]
Now our observed image model is: Process

/.
g(x,y)= j jh(x—a,y—ﬂ) f(a,f)dadB+n(x,y)

—00 —00

Taking the 2-D Fourier transform of the above model gives

G(u,v)=H(u,v)F(uv)+N(u,v)

Solving this using the “Inverse Filtering” Viewpoint gives

This can exacerbate the 4
F (u,v) _ G (U’V) _F (U,V)+M<[\noise when H(u,v) is 0 or

small at some frequencies!

The inverse filter focuses on the de-blurring...
The Wiener filter seeks to optimally balance these two issues.

We will solve the Wiener filter in this Frequency-Domain view



Wiener Filter for Blurred & Noisy Imaages (see Sect. 5.8)

Without going into the details... we will borrow the frequency-
domain view we saw for the IR Wiener smoother. Recall....

—’[]H[] M SO O

Accounting for the blurring and the change to 2-D gives

G(u,v)=H (u,v)F(u,v)+N(u,v)

4

If(u,v)_{ H™ (u,v)Py (u,v) }G(u,v)

H (u,v)|2 P, (u,v)+P, (u,v)

Bayesian!! Thing we
— . are estimating is
Must | Pgr(u,v) = Power Spectral DenS|_ty of Imzflge O p————
Know! | P,,(u,v) = Power Spectral Density of Noise
7



In practice our knowledge needed varies:

e H(u,v) might be reasonably well knovg E.g., white noise

e P, (u,v) might be quite well known constant)

Pnn(u; v) = N,

|

* Prs (u,v) might NOT be known at all!

Then re-arranging gives ﬁ(u,v)_[ ';I*(U’V) }G(u,v)
‘H(u,% N, /Py (u,V)

A common trick is to replace this term by a constant K:

H*(u,zv)
‘H (u,v)‘ +K

If(u,v){ }G(u,v)

then the value of K is chosen interactively to give the best result.
(So this is an “off-line” approach).

With enough attention to detail, this approach can be implemented
using the FFT algorithm and applied to discrete images.



Results for Wiener Filter (sect. 5.8 of Gonzalez and Woods)

Blurred & Noisy Inverse Filter | Wiener Filter
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Iterative Wiener Filter (Not in Gonzalez and Woods)

Start by using the above solution: - H™ (u,v)
F(u,v)= >
‘H (u,v)‘ +K

}G(u,v)

Now use that estimate image to estimate the PSD of the image

A Lots of literature on
I:0 (U’V) = Pf”f,o (U’V) 4 how to estimate the ]

PSD of a WSS process

Re-Estimate image using ﬁl(u’V)L ( )F*(u,z) ( )}G(u,v)
H(u,v) +N,/Ps,(u,Vv
Iterate:
F (uv)=P. (uv) F.(uv)= H (uy) G(u,v)
e fin 2 T ‘H(u,v)‘2+No/Pﬁ’n(u,v) |
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Alternate View (not in Gonzalez and Woods)

An alternate view Is a discrete-image, space-domain approach:

—Hf +n — g &nvectors ]
g l defined similarly
H is blurring matrix formed to f is vector formed by stacking
provide equivalent of 2D conv columns of discrete image

R¢s = Correlation Matrix of Image’s Vector f
R,, = Correlation Matrix of Noise’s Vector n

Recall our general Wiener smoothing with vector parameter:

X=S+W S= RSS(RSS+RWW)_1X
‘ [NxN][NxN][Nx1]

Modifying this to handle the blurring matrix gives

f=R H[HRH +R,, | g

Compare to previous £ (u) H™(u,v) Py (u,v)
- . u,V = >
Freg. Domain result: IH (uv)[ Py (u,v) + Py (u,v)

}G(u,v)
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Iterative VVersion of Alternate View (not in Gonzalez and Woods)

-, - - Lots of literature on how
Initial Fi Itermq' _ . to estimate the Correlation]
e [Use g to get estimate Rgg % Matrix of a WSS process

* Use it to approximate R¢fg = Rgg
e Use that in place of Ry in filter to get f,

Iterationforn=1,2 3, ...:
o Use f,,_4 to estimate Ref 41
o Use Ryfpyq infilter to get f,,
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