13.4 Scalar Kalman Filter

Data Model

To derive the Kalman filter we need the data mode!:
gn]=agn-1]+u[n] < StateEquation >

X[n] = 9 n]+wn] < Observation Equation >

Assumptions
1. u[n] is zero mean Gaussian, White, E{u?[n]} = o2

2. w[n] is zero mean Gaussian, White, E{w’[n]} = 04— o vary
3. Theinitia stateisg—1] ~ N(ug,02) with time

4. u[n], w[n], and g[—1] are al independent of each other

To simplify the derivation: let .= 0 (we'll account for this later)



Goal and Two Properties

Goal: Recursively compute §n|n]=E{gn]|x[0], X[1], ..., x[n]}

_ X[n] = [X[0], X[2], ..., x[n]]"
Notation:
X[n] isset of al observations
x[Nn] is asingle vector-observation

Two Properties We Need

1. For the jointly Gaussian case, the MM SE estimator of zero mean
based on two uncorrelated data vectors x, & x,1s (see p. 350 of
text)

0 = E{0 |x1,x2} = E{0|x;} + E{0|x 2}
2.1f 6= 6, + 6, then the MSEE estimator is

0 =E{0|x} = E{6, + 0, | x} = E{6y |} + E{6, | x}

(aresult of the linearity of E{.} operator)



Derivation of Scalar Kalman Filter

Recall from Section 12.6... Innovation: X[n] = x[n] — X[n|n—1]

By MMSE Orthogonality Principle MMSE estimate of
~ x[n] given X[n—1]
E{ X[n]X[n—-1] }=0 (pregiction!!)

X[n] ispart of x[n] that isuncorrelated with the previousdata

Now note: X[n] is equivalent to {X[n—-1],X[n] }
Why? Because we can get get X[n] from it'as follows:
X[n —1]} X[n —1]}

—> = X[n]

x[n] X([n]

n-1
X[l =X[n]+ > aX[K]
k=0

K[nin-1]



What have we done so far?

» Have shown that X[n] <> {X[n—1],X[n] }

. J
Y

uncorrel ated

— Have split current data set into 2 parts:
1. Olddata
2. Uncorrelated part of new data (“just the new facts’)

= §n|n]=E{gn] |X[n]{=E{gn] |X[n—1],>~<[n]}%Because°f tis

So what??!! Waell... can now exploit Property #1!!
= §n|n]=E{gn] [X[n-1}+ E{sn] | X[n]{

=gn|n-1] Now need to

Update based on look more
N innovation part closely at
E;:'dc“o” of 5[”]] of new data each of these!

on past data




Look at Prediction Term: SN |n—1]

Use the Dynamical Model... it isthe key to prediction because it tells us
how the state should progress from instant to instant

§[nIn-1 = E{gn] |X[n-1]j= E{asn -1 +u[n] |X[n-1]]
\ /Y

Now use Property #2:
gn[n-1=aE{gn-1|X[n-1}+ E{u[n] | X[n-1]}
—§n-1n-1] —E{u[n]}=0
EBy Definitionj By independence of u[n]
& X[n-1]... See bottom
4 \ | of p. 433 in textbook.

B (gn|n-1L=an-1|n-1]

The Dynamical Model provides the
\_ update from estimate to prediction!! )




Look at Update Term: E{gn][X[n]}

Use the form for the Gaussian MM SE estimate:

E{s[n]X[n]}

ey |

) S—— X[n] = X[n] - X[n|n-1]

E{s[n] | x[n]} {

.

2K[n]

So.... E{sin] | X[n]} = k[n)({n] - X[n|n 1)

Y
by Prop. #2=qn|n-1+wWn|n-1]

I:Prediction Shows Up Again!!D/
Because w[n] isindep.
of {

Put these Results Together: X0, ..., -1}

gnn]=§n|n-1] +Kn][xn]+&§n|n-1]] | This is the
—ad[n_jn—1] \ Kalman Filter

N

@w to get the gai n?j




Look at the Gain Term:
Need two properties...

A.E{gn](x{n] - s[n|n-1])} = E{(s[n] —:§[n In—=1])(x[n] - n|n —1}

Y Y

Aside Linear combo of past data... —
<X,y> = <x+z,y> thus L w/ innovation = x[n] = X[n|n—-1]
foranyz Ly

= X[n]

_ The innovation .

B. E{w{n](g[n]-gn|n-1])} =0
* proof ”

» W[N] Isthe measurement noise and by assumption is indep. of the
“dynamical driving noise” u[n] and §[-1]... Inother words: w[n] isindep.
of everything dynamical... So E{w[n]gn]} =0

« §gn|n-1] isbased on past data, which include {w[0], ... , w[n-1]}, and
since the measurement noise hasindep. sampleswe get §n|n—-1] L w{n]



So... we start with the gain as defined above: B i o innovaﬁoa

_ X
k[n]:E{S[n]X[n]}— {S[n][x[n] gn|n- 1] (%)
E{)?z[n]} se Prop. A in num.
X - &nin-1P > ng[n]p inhw@

_ E{[sin] - §n|n-1]]xn] - s[n|n 1]}

{[S[ﬂ] §n|n—1+wn]J* w (X %)
_ Ellstni—8nin-4]9n -§n|n- 1]+vv[n] ﬁ}[?lnj[ﬁéﬁnﬂ

{[S[H] gn|n- 1]+vv[n]]2

) {[S[n] S[n - 1]]2} ....... { [S[n] ........ S[nln ........ 1 ]]\N[n]}

.................................................................................

" o
................................................................................
--------------------------------------------------------------------

EM [n|n-1] '
MSE when g n] is estimated
by 1-step prediction 8




Thisgivesaform for the gain:

M[n|n-1]
o2 +M[n|n-1]

K[n] =

This balances...
e the quality of the measured data
e against the predicted state

In the Kalman filter the prediction acts like the
prior information about the state at time n
before we observe the data at time »n




Look at the Prediction MSE Term:

But now we need to know how to find M[n|n — 1]!!!

Em) (M[n|n-1=a’M[n-1|n-1+c?

M[n|n-1] = E{:S[n]—§[”|”—1]2}

E{:as[n—l] +u[n] —aé[n—1|n—1]]2}

.

Y
Est. Error at previoustime

Use dynamical
model & exploit
form for
prediction

_/

E{:a(s[n—l]_§[n_1|n_1])+u[n]]2} {CrOSS-termS:O |

Why are the cross-terms zero? Two parts;

1.
2.

gn—1] dependson {u[0] ... u[n—1], §-1]}, which are indep. of u[n]
Sn-1|n—-1] dependson {S[0]+W[0] ... Sin— 1]+w[n — 1]}, which are

indep. of u[n]
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Look at a Recursion for MSE Term: M[n|n]

By def.: M[n|n]= E{[s[n] ~§n |n]]2}= E{[E[n]—é[nln—al—k[n](X[n] —§n In—llj)]z}
Term A Term B

Now we'll get three terms:
E{A%}, E{AB}, E{B?

E{AZ} =M[n|n-1]| by definition

2{AB} = ~2K[n]E{[s[n] - §n|n-J[x[n] - §n|n-1]}

= 2k[n]M[n|n=1] from (*x*)... isnum. k[n]

E{BZ}: kz[n]E{[X[n] -9n|n —1]]2}

\ & 7

_ kz[n][Den_ of K[n]] from (%)... isden. k[n]

= k[n][Num. of k[n]]=k[nIM[n|n—1]

Recall: K[n]=—nin-1 _j

o2 +M[n|n-1]




So thisgives...
M[n|n]=M[n|n-1] -2k[n]M[n|n=-1] +K[n]M[n|n-1]

mm) |M[n|n]=1-K[n])M[n|n-1]

Putting all of these results together gives
some very simple equations to iterate..
Called the Kalman Filter

We just derived the form for Scalar State & Scalar Observation.
On the next three charts we give the Kalman Filter equations for:
o Scalar State & Scalar Observation
 Vector State & Scalar Observation
 Vector State & Vector Observation
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Kalman Filter: Scalar State & Scalar Observation

State Model: gnl=agdn-1+u[n]]  u[n WGN; wss; ~ N(0,c?)

Observation Model: | X[ n] = n] +w{n] win] WGN; ~ N(O, aﬁ)

Initialization: 9-1-1=Ed-1} = 4 Must Know: 15 0%, & 0, 0%,
M[-1|-1 = E{(d-1} -§-1|-1)*} = o

Prediction: gn|n-1=ayn-1|n-1]

Pred. MSE:

Kalman Gain:

Update:

Est. MSE:

M[n|n-1=a*M[n-1|n-1]+ 0o’

K[ = M[n|n-1]
o’ +M[n|n-1]

gn|n]=§n|n-1+K[n](Xn]-§n|n-1)

M[n|n]=@1-K[n)M[n|n-1]
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Kalman Filter: Vector State & Scalar Observation

State Model: sin]=As[n-1]+Bu[n] spxL,Apxp;Bpxr;u~N(0,Q)rx1
Observation Model: | X[ N] :hT[n]s[n] +wnj; hT[n] px1 wn] WGN; -~ N (O, of)
Initialization: s[-1|-1] = E{s[-1]} = TH Must Know: j; C; A, B, h, Q, o5,

M[-1|-1] = E{(S[—ll} —8[—1|-2)(s[-1} —-s[-1|-1])" }= C,
Prediction: sin|n-1] = As[n-1|n-1]

Pred. MSE (pxp):

Kalman Gain (px1):

Update:

Est. MSE (pxp):_:

M[n|n-1]=AM[n-1|n-1JA" + BQB'

K[n]= ; 1YI_[[ﬂln_l:h[n]
o, +h [N]M[n n—l]h[nl
§[n|n]=§[n|n—1]+K[n](x[n]—!1T[n]§[n|n—l]z

X[ n|n-1]

o J/

_~ . N .
x[n]: innovations

M[n|n] = (I-K[nh"[n]M[n|n—1]

14



Kalman Filter: Vector State & Vector Observation

State Model: [s[n] = As[n—1]+Bu[n] s px1; A pxp;Bpxr;u~N(0,Q)rx1

Observation: |x[n] =H[n]s[n]+w[n]; x M x1 H[n] M x p;w[n] ~ N(0,C[n]) M x1

Initialization: ~1|-1 = E{s[-1]} = I, Must Know: p,, C, A, B, H, Q, C[n]}
M[-1]|-1] = E{s{-10} - §[-1|~2)(s[-1} - §[-1|-1)" }=C,

Prediction: sin|n-1] = As[n-1|n-1]

Pred. MSE (pxp):  |M[n|n-1]= AM[n-1|n—-1]A" + BQB'

Kalman Gain (pxM): |K[n] = M[n|n—1]H"[n]| C[n] + H[n[M[n| n—l]HT[n]J

Update: s[n|n] =s[n|n—1+K[n](x[n] - H[n]s[n|n-1])
K[nn—1]

-~ - S -
x[n]: innovations

Est. MSE (0x0).- [\ |n] = (1= K[n[H[N])M[n|n—1] 15




Kalman Filter Block Diagram

Estimated

Estimated

Innovations Driving Noise

Observations

N

Bu[n]

x[n] +

x[n

——————————

A = H[nN] : - Az
x[n|n-1] ! s[n|n-1]
| e o e e e e - Il e e e e e e e e e - - 1
Embedded Embedded
Observation Dynamical
Predicted Model Predicted Model

Observation State

Looks a lot like Sequential LS/MMSE except it
has the Embedded Dynamical Model!!!
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Overview of MMSE Estimation

Gen. MMSE Force Linear
Assume /[ “Squared”’ Cost Function }\ Any PDF

Gaussian 0 = E{0|x) Known 274 Moments

Jointly

0=E{0! +Co.Ci(x—E
Gaussian 10} + Coy xx(x {X})

Bavesian
Linear
Model

~ —1
0= ],lﬂ + CGHT (HCBHT + CW) (X — Hue)

Linear
Seq. Filter

Optimal
Seq. Filter

(No Dynamics)

0,=0,_1+kn[x[n]- h-r|1-9n—1]

Optimal
Kalman Filter

(w/ Dynamics)

s[n|n] =s[n|n-1] + K[n](x[n] - H[n]As[n—1|n-1])

(w/ Dynamics)
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