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Important Properties of the KF
1. Kalman filter is an extension of the sequential MMSE 

estimator
• Sequential MMSE is for a fixed parameter
• Kalman is for time-varying parameter, but must have a known 

dynamical model
• Block diagrams are nearly identical except for the Az-1 feedback box in 

the Kalman filter… just a z-1 box in seq. MMSE… the A is the 
dynamical model’s state-transition matrix

2. Inversion is only needed for the vector observation case
3. Kalman filter is a time-varying filter

• Due to two time-varying blocks: gain K[n]  &  Observation Matrix H[n]
• Note: K[n] changes constantly to adjust the balance between “info from 

the data” (the innovation)  vs. “info from the model” (the prediction)

4. Kalman filter computes (and uses!) its own performance 
measure M[n|n] (which is the MMSE matrix)

• Used to help balance between innovation and prediction



2

5. There is a natural up-down progression in the error
• The Prediction Stage increases the error 
• The Update Stage decreases the error M[n|n – 1]  > M[n|n]
• This is OK… prediction is just a natural, intermediate step in the Optimal

processing

5 6 7 8 n
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6. Prediction is an integral part of the KF
• And it is based entirely on the Dynamical Model!!!

7. After a “long” time (as n →∞) the KF reaches “steady-state” 
operation… and the KF becomes a Linear Time-Invariant filter

• M[n|n] and M[n|n – 1] both become constant
• … but still have M[n|n – 1]  > M[n|n]
• Thus,  the gain k[n] becomes constant, too.
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8. The KF creates an uncorrelated sequence… the innovations.
• Can view the innovations as “an equivalent input sequence”
• Or… if we view the innovations as the output, then the steady-state KF is 

a LTI whitening filter (need state-state to get constant-power innovations)

9. The KF is optimal for the Gaussian Case (minimizes MSE)
• If not Gaussian… the KF is still the optimal Linear MMSE estimator!!!

10. M[n|n – 1], M[n|n], and K[n] can be computed ahead of time 
(“off-line”)

• As long as the expected measurement variance σ2
n is known

• This allows off-line data-independent assessment of KF performance
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13.5 Kalman Filters vs. Wiener Filters
They are hard to directly compare… They have different models

• Wiener assumes WSS signal + Noise

• Kalman assumes Dynamical Model w/ Observation Model

So… to compare we need to put them in the same context:

If we let:
1. Consider only after much time has elapsed (as n →∞)

• Gives IIR Wiener case
• Gives steady-state Kalman & Dynamic model becomes AR

2. For Kalman Filter, let σ2
n be constant

• Observation noise becomes WSS

Then… Kalman = Wiener!!! See book for more details
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13.7 Extended Kalman Filter
The dynamical and observation models we assumed when 
developing the Kalman filter were Linear models:

][]1[][ nnn BuAss +−=

][][][][ nnnn wsHx +=

Dynamics:

Observations:

(A matrix is a 
linear operator)

However, many (most?) applications have a
• Nonlinear State Equation 

and/or
• Nonlinear Observation Equation

The “Extended Kalman Filter” is a sub-optimal approach that 
linearizes the model(s) and then applies the standard KF

Solving for the Optimal Kalman filter for the nonlinear model 
case is generally intractable!!!
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EKF Motivation: A/C Tracking with Radar

Case #1: Dynamics are Linear but Observations are Nonlinear

Recall the constant-velocity model for an aircraft:
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Define the state in 
rectangular coordinates:
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For rectangular coordinates 
the state equation is linear
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But… the choice of rectangular coordinates makes the radar’s 
observations nonlinearly related to the state:
A radar can observe range and bearing (i.e., angle to target)

(and radial and angular velocities, which we will ignore here)

So the observations equations – relating the observation to the 
state – are given by:
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Case #2: Observations are Linear but Dynamics are Nonlinear
If we choose the state to be in polar form then the observations will 
be linear functions of the state… so maybe then we won’t have a 
problem???    WRONG!!!

The observation is linear:
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But…  The Dynamics Model is now Non-Linear:
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In each of these cases…
We can’t apply the standard KF because it 
relies on the assumption of linear state and 
observation models!!!
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Nonlinear Models
We state here the case where both the state and observation 
equations are nonlinear…

][])1[(][ nnn Busas +−=

][])[(][ nnn n wshx +=

where a(.) and hn(.) are both nonlinear functions mapping 
a vector to a vector
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What To Do When Facing a Non-Linear Model?
1. Go back and re-derive the MMSE estimator for the the nonlinear 

case to develop the “your-last-name-here filter”??
• Nonlinearities don’t preserve Gaussian so it will be hard to derive…
• There has been some recent progress in this area: “particle filters”

2. Give up and try to convince your company’s executives and the 
FAA (Federal Aviation Administration) that tracking airplanes is not that 
important??

• Probably not a good career move!!!  

3. Argue that you should use an extremely dense grid of radars 
networked together??

• Would be extremely expensive… although with today’s efforts in sensor 
networks this may not be so far-fetched!!!

4. Linearize each nonlinear model using a 1st order Taylor series?
• Yes!!!
• Of course, it won’t be optimal… but it might give the required

performance!
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Linearization of Models
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Using the Linearized Models
[ ]]1|1[ˆ]1[])1|1[ˆ(][]1[]1[][ −−−−−−++−−= nnnnnnnnn sAsaBusAs

Just like what we did in the 
linear case except now have 
a time-varying A matrix

New additive term… But it is known
at each step.  So… in terms of 
development we can imagine that we 
just subtract off this known part… ⇒
Result: This part has no real impact!

[ ]]1|[ˆ][])1|[ˆ(][][][][ −−−++= nnnnnnnnn n sHshwsHx

1. Resulting EKF iteration is virtually the same – except 
there is a “linearizations” step

2. We no longer can do data-free, off-line performance 
iteration
• H[n] and A[n-1] are computed on each iteration using the 

data-dependent estimate and prediction
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Extended Kalman Filter (Vector-Vector)
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