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13.8 Signal Processing Examples
Ex. 13.3 Time-Varying Channel Estimation

Tx Rx
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Multi Path
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Model using a time-varying D-T FIR system

Channel changes with time if:
• Relative motion between Rx, Tx
• Reflectors move/change with time
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Coefficients change at each n
to model time-varying channel
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In communication systems, multipath channels degrade performance
(Inter-symbol interference (ISI), flat fading, frequency-selective 
fading, etc.)

Need To: First… estimate the channel coefficients 
Second… Build an “Inverse Filter” or “Equalizer”

2 Broad Scenarios:
1. Signal v(t) being sent is known (“Training Data”)
2. Signal v(t) being sent is not known (“Blind Channel Est.”)

One method for scenario #1 is to use a Kalman Filter:

“State” to be estimated is h[n] = [hn[0] … hn[p]]T

(Note: “h” here is no longer used to notate the “observation model” here)
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Need State Equation:
Assume FIR tap coefficients change slowly

][]1[][ nnn uAhh +−=

Assumed Known 
That is a weakness!!

Assume FIR taps are uncorrelated with each other…
<“uncorrelated scattering”> 

A, Q , Ch , are Diagonal
cov{h[-1]} = M[-1|-1]
cov{u[n]}
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Have measurement model from convolution view:
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WGN, σ2

Known 
training signal

Need Observation Equation:
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T += hv

Observation “Matrix”
is made up of the 

samples of the known 
transmitted signal

State Vector
is the filter 

coefficients
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Simple Specific Example: p = 2  (1 Direct Path, 1 Multipath)
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Q = cov{u[n]}Typical Realization of Channel Coefficients

Book doesn’t state how 
the initial coefficients 
were chosen for this 
realization

Note: hn[0] decays faster
and that the random 
perturbation is small
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Known Transmitted Signal

Noise-Free Received Signal
<It is a bit odd that the received 

signal is larger than the 
transmitted signal>

Noisy Received Signal
The variance of the noise in the 
measurement model is σ2 = 0.1
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Estimation Results Using Standard Kalman Filter

Initialization: 1.0100]1|1[]00[]1|1[ˆ 2 ==−−=−− σIMh T

Chosen to reflect that little 
prior knowledge is known

In theory we said that we 
initialize to the a priori
mean… but in practice it is 
common to just pick some 
arbitrary initial value and 
set the initial covariance 
quite high… this forces the 
filter to start out trusting 
the data a lot!

Transient due to wrong IC

Eventually Tracks Well!!
hn[0]

hn[1]
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Kalman Filter Gains

Decay down… relies more on model
Gain is zero when signal is noise only

Kalman Filter MMSE

Filter Performance 
improves with time
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Example: Radar Target Tracking

State Model:  Constant-Velocity A/C Model
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Observation Model: Noisy Range/Bearing Radar Measurements 

For this simple example…. assume:
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Velocity perturbations due to wind, slight speed corrections, etc.Velocity perturbations due to wind, slight speed corrections, etc.

in radians
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Extended Kalman Filter Issues

1. Linearization of the observation model (see book for details)
• Calculate by hand, program into the EKF to be evaluated each iteration

2. Covariance of State Driving Noise
• Assume wind gusts, etc. are as likely to occur in any direction w/ same 

magnitude  model as indep. w/ common variance

Need the following:
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σu = what???   Note: ux[n]/ ∆ = acceleration from n-1 to n

So choose σu in m/s so that σu/ ∆ gives a 
reasonable range of accelerations for the 

type of target expected to track
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3. Covariance of Measurement Noise
• The DSP engineers working on the radar usually specify this or build 

routines into the radar to provide time updated assessments of 
range/bearing accuracy

• Usually assume to be white and zero-mean
• Can use CRLBs for Range & Bearing

 Note: The CRLBs depend on SNR so the Range & Bearing measurement 
accuracy should get worse when the target is farther away

• Often assume Range Error to be Uncorrelated with Bearing Error… 
 So… use C[n] = diag{σR

2[n], σβ
2[n]}

• But best to derive joint CRLB to see if they are correlated 
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4. Initialization Issues
• Typically… Convert first range/bearing into initial rx & ry values
• If radar provides no velocity info (i.e. does not measure Doppler) can 

assume zero velocities
• Pick a large initial MSE to force KF to be unbiased

 If we follow the above two ideas, then we might pick the MSE for rx & ry based on 
statistical analysis of conversion of range/bearing accuracy into rx & ry
accuracies

• Sometimes one radar gets a “hand-off” from some other radar or sensor
 The other radar/sensor would likely hand-off its last track values… so use 

those as ICs for the initializing the new radar
 The other radar/sensor would likely hand-off a MSE measure of the quality its 

last track… so use that as M[-1|-1]
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State Model Example Trajectories:  Constant-Velocity A/C Model
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In reality, these would get 
worse when the target is 
far away due to a weaker 

returned signal
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If we tried to directly convert the noisy range and bearing 
measurements into a track… this is what we’d get.

Not a very accurate track!!!!     Need a Kalman Filter!!!

But… Nonlinear Observation Model… so use Extended KF!  

Radar

Note how the track gets worse when 
far from the radar (angle accuracy 

converts into position accuracy in a way 
that depends on range) 

Measurements Directly Give a Poor Track
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Extended Kalman Filter Gives Better Track

Note: The EKF was run with the correct values for Q and C
(i.e., the Q and C used to simulate the trajectory and measurements 
was used to implement the Kalman Filter)

Initialization: s[-1|-1] = [5 5 0 0]T M[-1|-1] = 100I

Picked “Arbitrarily”

Radar
×

Initialization

Set large to assert that little 
is known a priori

• After about 20 samples 
the EKF “attains track” 
even with poor ICs and 
the linearization.
• Track gets worse near 
end where measurements 
are “worse”
• MSE show “obtain track” 
and show that things get 
worse at the end
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MSE Plots Show Performance

First… a transient where 
things get worse

Next… the EKF seems to 
“obtain track”

Finally… the accuracy degrades 
due to “range magnification” of 

bearing errors
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