Ch. 8 Math Preliminaries for
Lossy Coding

8.5 Rate-Distortion Theory



Introduction

e Theory provide insight into the trade between
Rate & Distortion

e This theory Is needed to answer:
— What do typical R-D curves look like?
— What factors impact the R-D trade-off?

— For a given practical case, what is the best R-D curve
that | can expect?
 Tells designers when to stop trying to improve!

— Etc.

o Our Goal Here: To express the R-D function in
terms of Info Theory & see what it tells




Expression for Distortion
Need math form for Distortion... Recall:

D =E{d(X,Y)}
d(x,y;) fx (X)P(y; [ x)dx
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Simple Example for Distortion

In compression we wish to minimize D by designing a mapping
from values of X (continuous) into values of Y (discrete)

_ RV X can take any value here
Simple Example: — A -~

l l I I I l l Compressmn”
from XtoY

Clearly our map doesn’t impact f,(x)...But it does specify P(yj|x)!!

In fact, designing a compression algorithm is equivalent to
specifying P(y;|x).... Including determining how many y;
values to use



Goal for Picking Compression Algorithm
Thus, D is a function of P(y;[x): D =E{d(X,Y)}= D(P(yj |x))

When we design a compression algorithm we want one that
minimizes the distortion D

=> Pick P(y;|x) to minimize D(P(y;|x))

But walit!!!...

We need to worry about how large or small the Rate is!

=» Constrained minimization of D(P(y;|x)) to find
the theoretical lower bound on the R-D curve




Info Theory View of Rate-Distortion

Recall that we said the Avg. Mutual Info I(X;Y) was the theoretical
minimum rate needed to convey the amount of info about X that Is
In some specified Y...

Info-Theory R-D Goal #1: For given rate value R find the P(y;[x)
that minimizes the avg distortion E{d(X,Y)} under the rate constraint
I(X;Y) <R

Info-Theory R-D Goal #2: For given distortion value D find the
P(y;[x) that minimizes the avg rate 1(X;Y) under the distortion
constraint E{d(X,Y)} <D

These two complementary goals actually result in the same
Info Theory R-D function...

We’ll focus on #2:

R(D) = min 1 (X;Y)

P(y;lx): E{d(X,Y)}<D




Notice that the minimization is over P(y;[x) and involves E{d(X,Y)}
and 1(X;Y)... We need these two things as functions of P(y;[x)...

We’ve already seen that for the first one:
E{d(X,Y)}=D(P(y; |x))
The second one is a bit harder to see: 1(X;Y)=h(X)-h(X |Y)

with (XYY == [ [ty (X190 £, (9)100, [ fyy (x] y) | cbecy
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But... using Bayes’ Rule we see the conditioning we needD
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Has the order of the Recall_: A Prob. Function can
conditioning we need... but be written as a PDF that has
.
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Example: R-D Function for Gaussian Source

Approach:« Find lower bound for I(X;Y) given the desired
distortion level D

 Show this bound “can be achieved”

Let X be Gaussian w/ Zero Mean & Variance 2

Distortion Constraint: E{(X-Y)2} <D Dot Use formal
First consider case where D < 62 Math to get this —
reason it out by
1(X:Y)=h(X)=h(X]Y) definition

—h(X)=h(X =Y |Y)

<h(X —Y)
2h(X)-h(X=Y) (%)
Y

Now want to minimize this lower bound while meeting the distortion constraint

=>» That means we need to maximize h(X - Y)



For notational ease let h(z)2h(X -Y)

We know that the Diff Entropy h(Z) is maximized if Z is
Gaussian... so assume that.

Further... if Z has variance of D, then E{(X-Y)?} =D

... and we meet the distortion goal!

Since Z is Gaussian we know that h(Z) = % log, [27zeD]

Since X Is Gaussian we know that h(X) = llogz [2;;952}
2

Then (%) gives 1(X;Y)> %Iog2 [2%602]—%|0g2 [272eD]

4 I(X;Y)z%log{%ﬂ (For D < 06?)




Now consider case where D > 2
Note that: E{(X —0)°}=0°<D

=>» Setting Y = 0 satisfies the Dist. Goal

=>»Don’t have to even send anything and
you still meet the Dist. Goal!!!

S 1(X:Y)=1(X;0)=0

Combining these two cases (and noting that it is possible to
actually achieve this bound — see the textbook) we have

[ 2
L log, >, for D<o?

R(D):< 2 D ‘ D(R):GZZ_ZR, RZO

0, for D > o
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A-D Curve for Gaussian with a°=10
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In Practice

The above results guide practical ideas and give bounds for
comparing actual Rates & Distortions

These ideas also motivate “Operational Rate-Distortion”

In the above Info Theory View:
D was a probabilistic average over the ensemble
R was a lower limit

In Operational R-D View:
D is “what we actually achieve on this particular signal”
R Is “the best rate we can get using a specified algorithm

< More On This Later>
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