Ch. 14 Subband Coding

Introduction & Multirate Background

Introduction

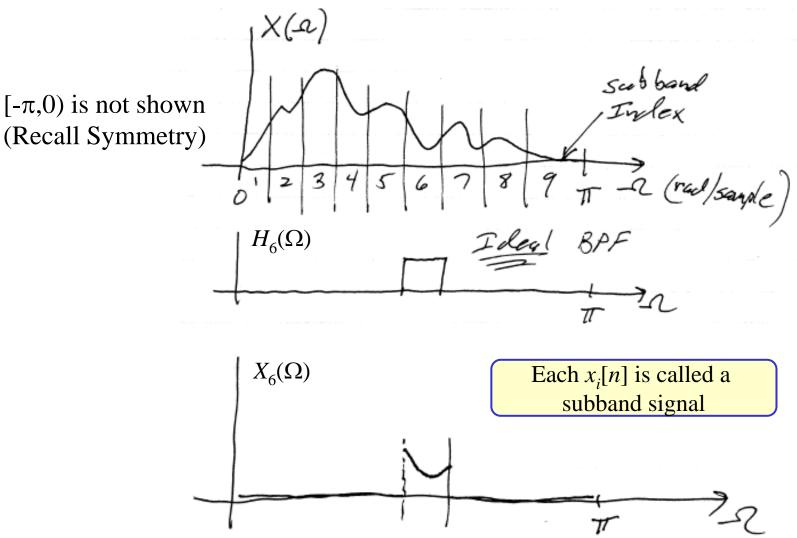
Given signal x[n] to compress...

<u>Idea</u>: Split signal into *M* signals $x_1[n], x_2[n], ..., x_M[n]$ such that each signal can be more easily/effectively compressed.

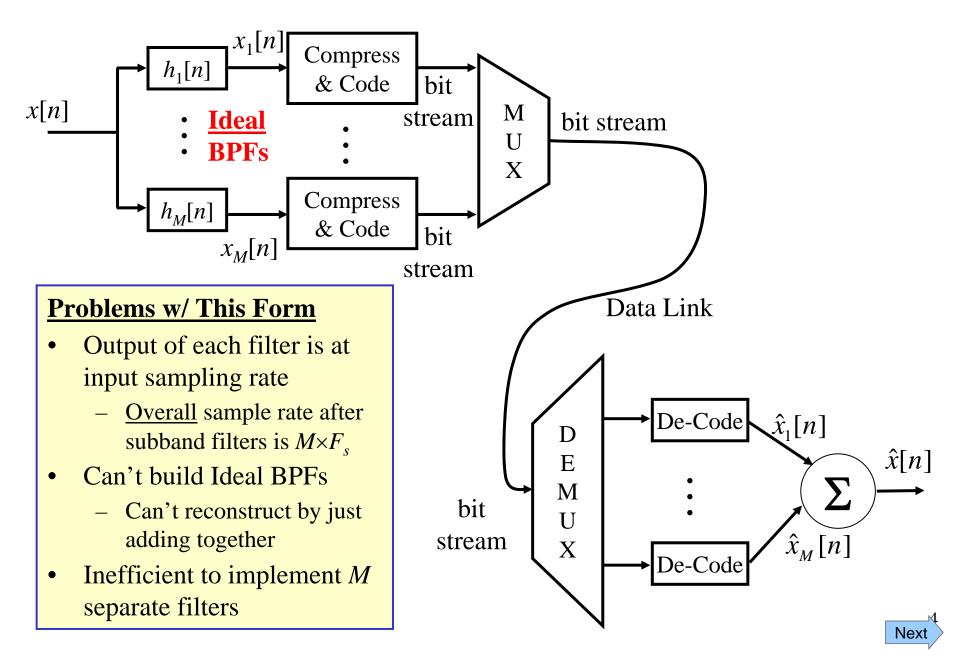
<u>Goal</u>: signals $x_1[n], x_2[n], \dots, x_M[n]$ should be made such that

- Each $x_i[n]$ is uncorrelated...
 - then using SQ on each is a viable (though still suboptimal) approach
- Some $x_i[n]$ have smaller dynamic range
 - Then can use fewer bits for a given desired distortion
- Should be a clear way to exploit psychological effects (for audio and video) or other effects that imply some $x_i[n]$ are more important

Illustration of Subbands

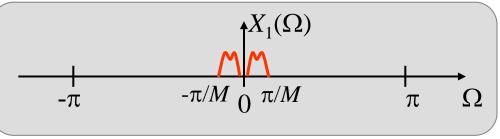


Motivational Form (Not Practical)



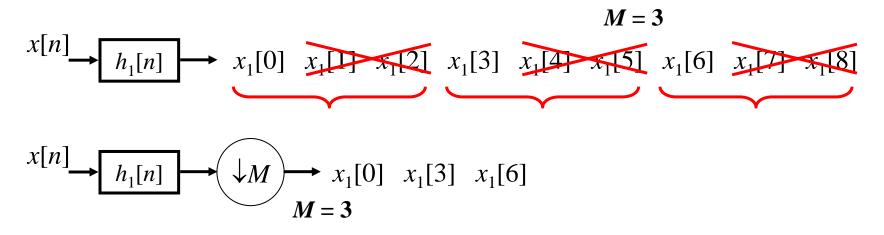
Fixing Sample Rate Problem: Multirate

Take a look at $x_1[n]$

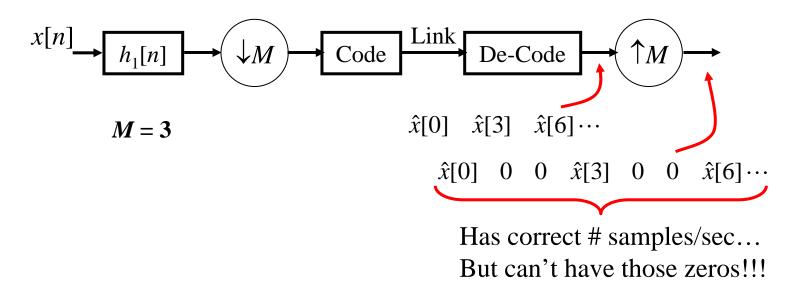


This signal is <u>oversampled</u> by a factor of *M* (If it were not oversampled it would fill the entire $-\pi$ to π)

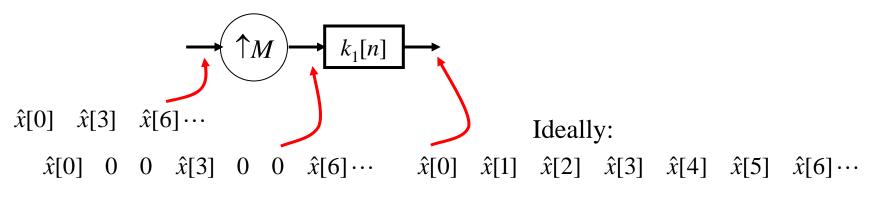
To sample it slower by a factor of M... just throw away M-1 samples out of every M samples (called "<u>Decimation by M</u>")...



Now... we need someway at the decoder side to get back up to the original sampling rate (called "Expansion by M")...



A filter can "smooth out" the jumps due to the zeros (called "Interpolation")....



Subband Coding System

We can do a similar thing for all the other channels... and the result is:

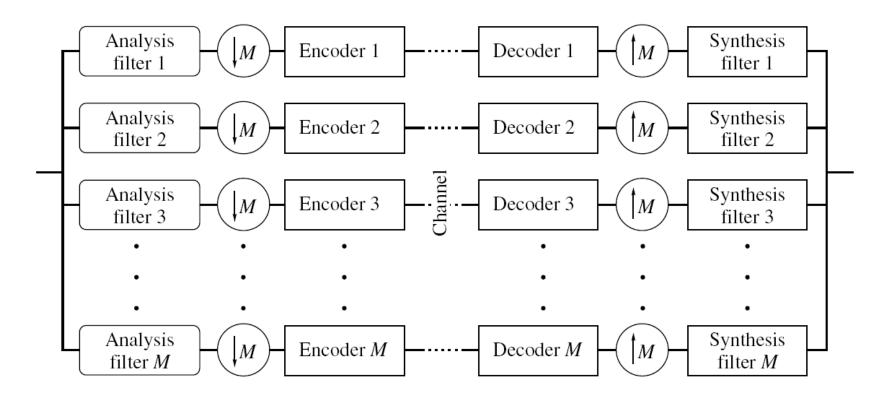
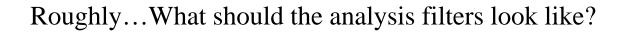


FIGURE 14.7 Block diagram of the subband coding system.



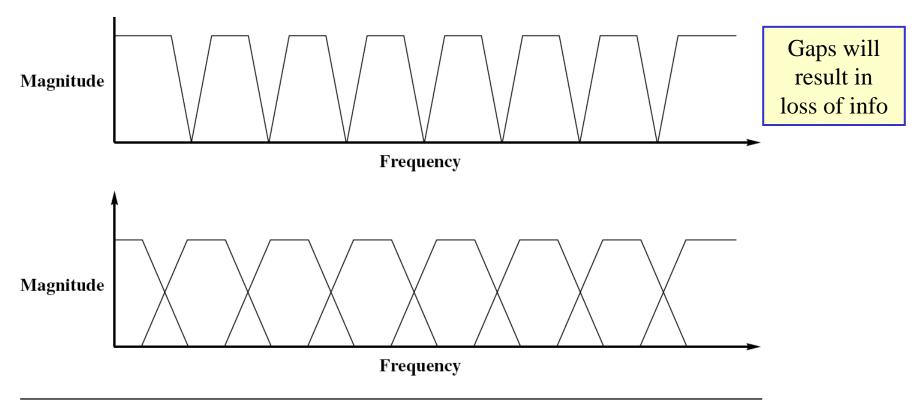


FIGURE 14.8 Nonoverlapping and overlapping filter banks.

Note: These are not true *achievable* shapes of filter frequency responses

Next

Subband Coding System Details

Filter Design Goal: If we remove encode/decode... then we want our filters to be designed so that output = input... this is called "*Perfect Reconstruction*".

<u>Analysis Filters</u> must <u>also</u> provide frequency decomposition into essentially non-overlapping subbands... should give "easy to code" signals

<u>Synthesis Filters</u> are chosen to give the desired perfect reconstruction. Their design will depend on the design of the analysis filters.

Encoding/Decoding Goals:

- 1. Choose methods matched to resulting channel characteristics
- 2. Allocate bit budget across the channels

Multi-Rate Goal: properly decrease and then restore the sampling rate

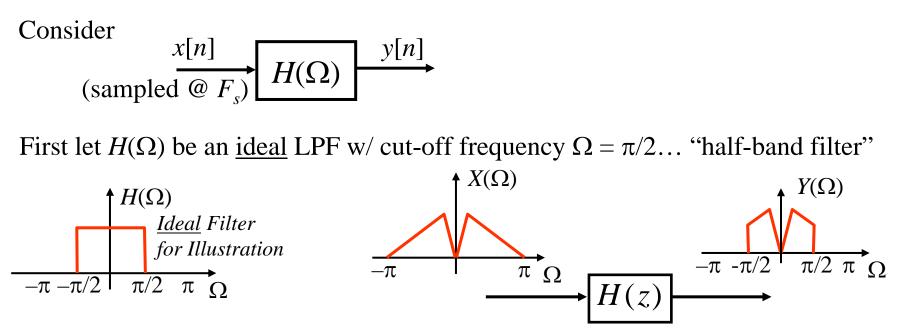
Decimation reduces each channel's sample rate to keep the total analysis filter bank's output sample rate equal to the input sample rate

Interpolation returns each channel to original rate before reconstruction

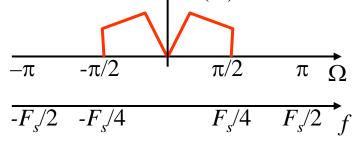
To understand how filter banks work we need to understand:

- Effect of decimation on signal spectrum
- Effect of expansion on signal spectrum
- How to choose Analysis & Synthesis filters to achieve perfect reconstruction (PR)

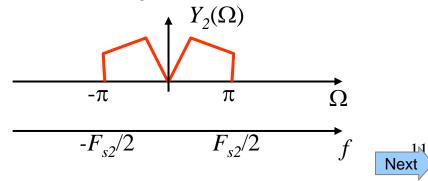
Decimation (Down Sampling)



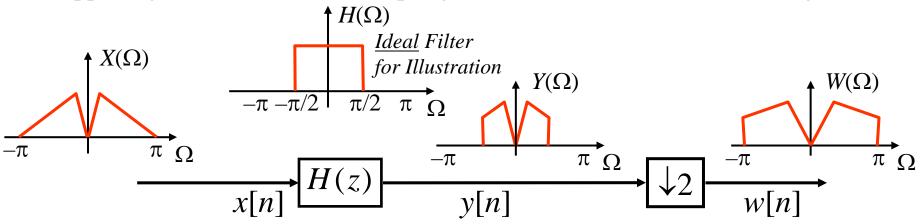
Now... imagine what continuous-time signal would give y[n] if it were sampled at F_s : $Y(\Omega)$ So... if we sampled this CT signal



So... if we sampled this CT signal at half the original rate (@ $F_{s2}=F_s/2$) then we would get this:



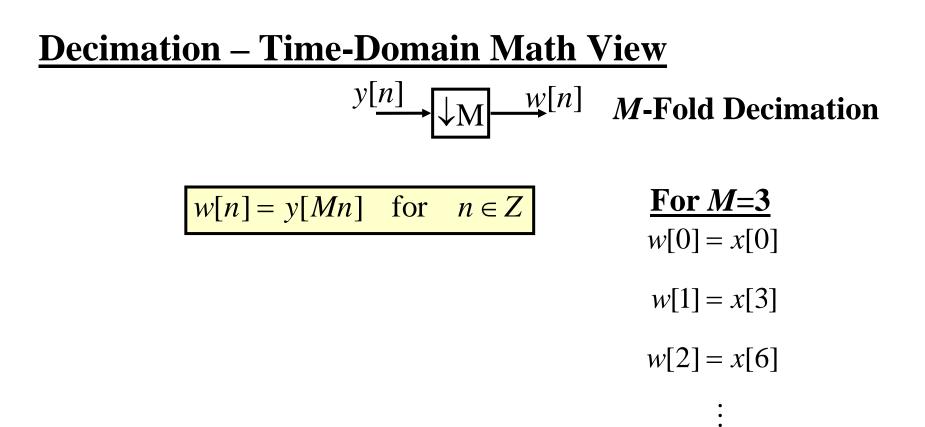
So... just looking at things in the DT domain with the sampling rate change happening because of down-sampling... we should see the SAME thing:



In general... if the filter passes only in the range $\Omega \in [-\pi/M, \pi/M]$ we can downsample by *M*

Now... all of this was based on "intuition" and for an *Ideal* LPF... We need to do a detailed analysis....

Math Analysis of Decimation



To really understand what is happening we need to look in the frequency domain...

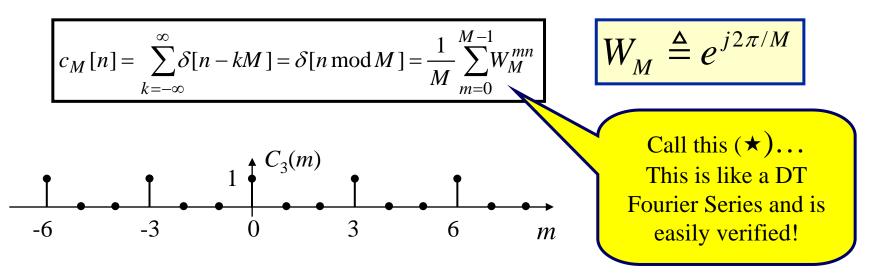
M-Fold Decimation – Frequency-Domain

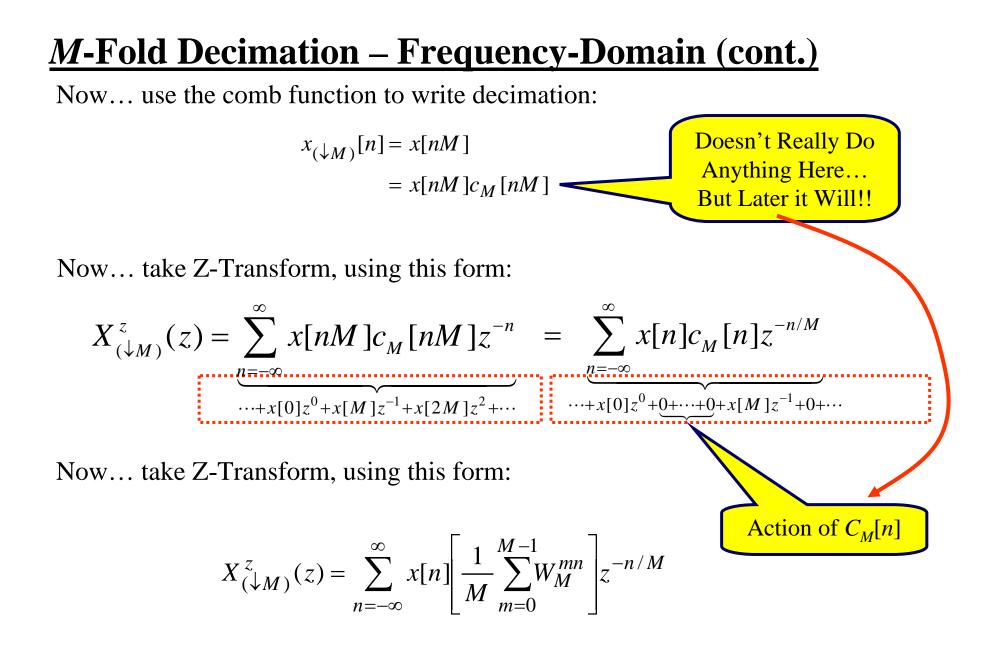
Notation:
$$\{Zx_{(\downarrow M)}\}(z) = X^{z}_{(\downarrow M)}(z) = \{X^{z}(z)\}_{(\downarrow M)}$$

- Similar for DTFT
- Similar for Expansion

Q: What is $X_{(\downarrow M)}(z)$ in terms of X(z)??? What do we expect???!!!! Lower F_s causes Spectral Replicas to Move to Lower Frequencies Should look exactly like sampling at a lower F_s Thus... increased aliasing is possible!!!

To answer this we need to define a useful function ("comb" function):





15 Next

M-Fold Decimation – Frequency-Domain (cont.)

Now... just manipulate:

$$\begin{aligned} X_{(\downarrow M)}^{z}(z) &= \sum_{n=-\infty}^{\infty} x[n] \Biggl[\frac{1}{M} \sum_{m=0}^{M-1} W_{M}^{mn} \Biggr] z^{-n/M} \\ &= \frac{1}{M} \sum_{m=0}^{M-1} \Biggl[\sum_{n=-\infty}^{\infty} x[n] \Bigl(W_{M}^{-m} z^{1/M} \Bigr)^{-n} \Biggr] \\ &= \frac{1}{M} \sum_{m=0}^{M-1} X^{z} (W_{M}^{-m} z^{1/M}) \end{aligned}$$

ZT of Decimated Signal is...

$$X_{(\downarrow M)}^{z}(z) = \frac{1}{M} \sum_{m=0}^{M-1} X^{z} (W_{M}^{-m} z^{1/M})$$

M-Fold Decimation – Frequency-Domain (cont.)

Now to see a little better what this says... convert ZT to DTFT. **<u>Recall</u>**: DTFT is the ZT evaluated on the unit circle:

$$z = e^{j\theta} \implies z^{1/M} = e^{j\theta/M}$$

Also, by definition: $W_M^{-m} = e^{-j2\pi m/M}$

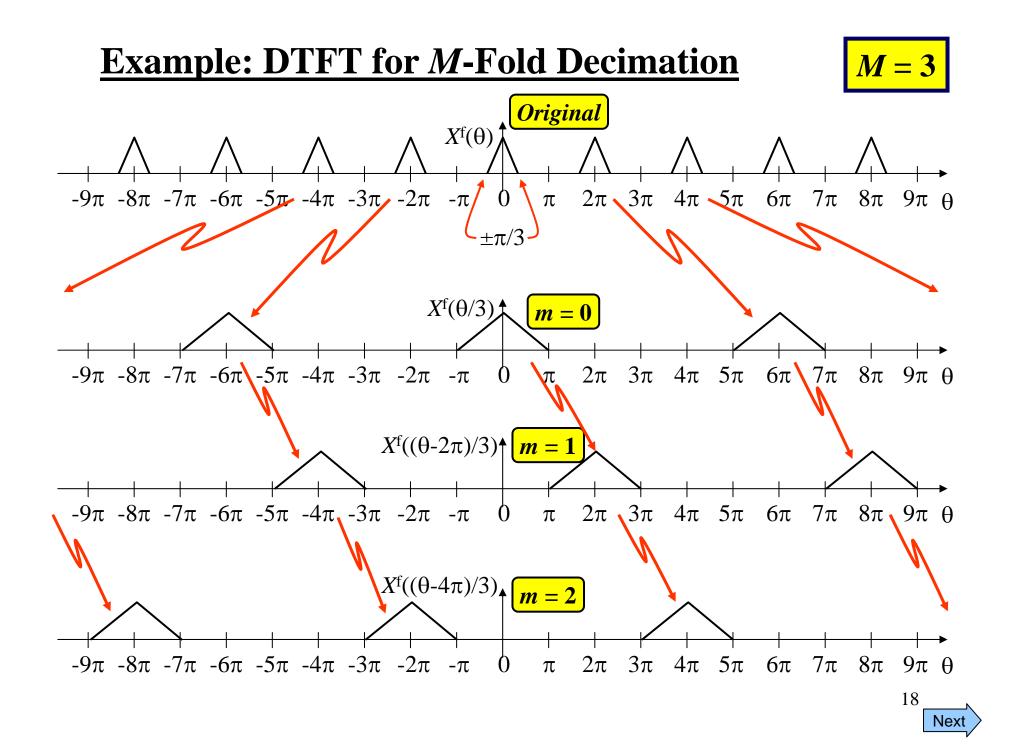
Then we get.... DTFT of Decimated Signal is... $X_{(\downarrow M)}^{f}(\theta) = \frac{1}{M} \sum_{m=0}^{M-1} X^{f}\left(\frac{\theta - 2\pi m}{M}\right)$

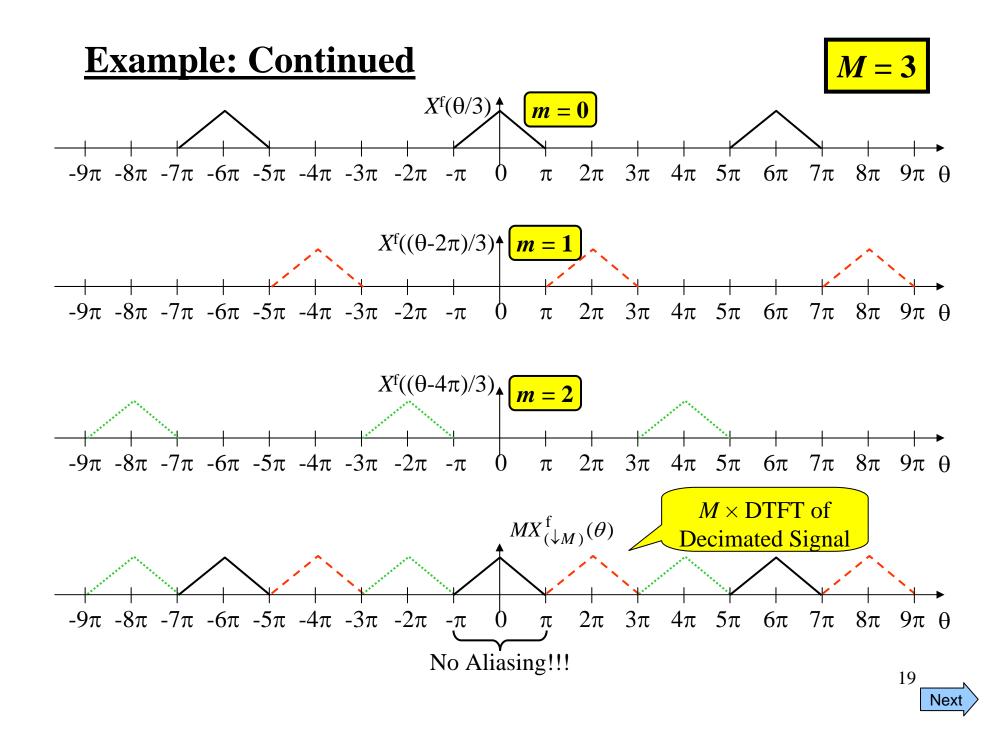
- 1. Axis-Scale $X^{f}(\theta)$ to get $X^{f}(\theta/M)$ a stretch
- 2. Then shift by $2\pi m$ to get new replicas
 - → Decimation Adds Spectral Replicas of Scaled DTFT

17 Next

Stretches

Spectrum





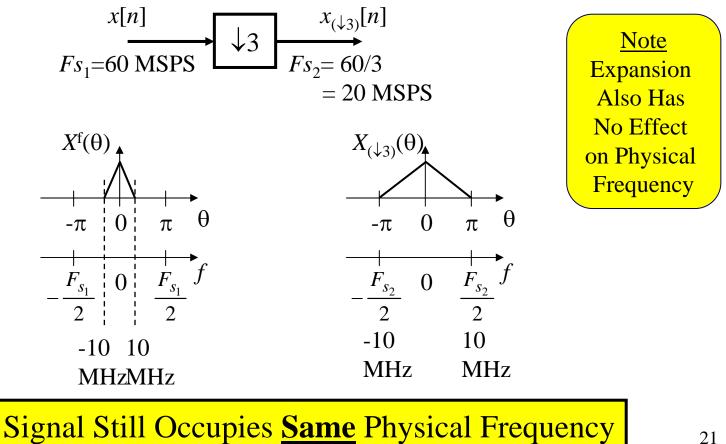
Example: Insights

1. The *M*-decimated signal will have no aliasing... <u>only if</u> the signal being decimated has: $X^{f}(\theta) = 0$ for $|\theta| > \pi/M$ This makes complete sense from an "ordinary" sampling theorem view point!!! Such a signal is called an "Mth-Band Signal"

2. After *M*-decimating an Mth-band signal, the spectrum of the decimated signal will fill the $[-\pi, \pi]$ band.

Effect on "Physical" Frequency

Although decimation changes the digital frequency of the signal, the corresponding "physical" frequency is not changed... as the following example shows:



L-Fold Expansion – Frequency-Domain

Q: What is $X_{(\uparrow L)}(z)$ in terms of X(z)??? What do we expect???!!!! Certainly <u>NOT</u> the same as <u>really</u> sampling at a higher rate because of the inserted zeros!!!

Frequency Domain analysis answers this!!!

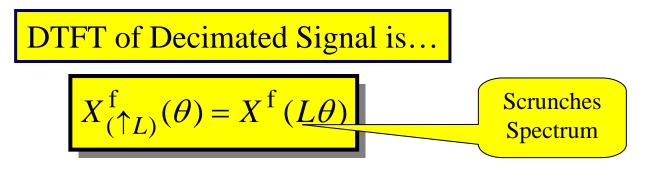
$$X_{(\uparrow L)}^{z}(z) = \sum_{n=-\infty}^{\infty} x_{(\uparrow L)}[n] z^{-n}$$

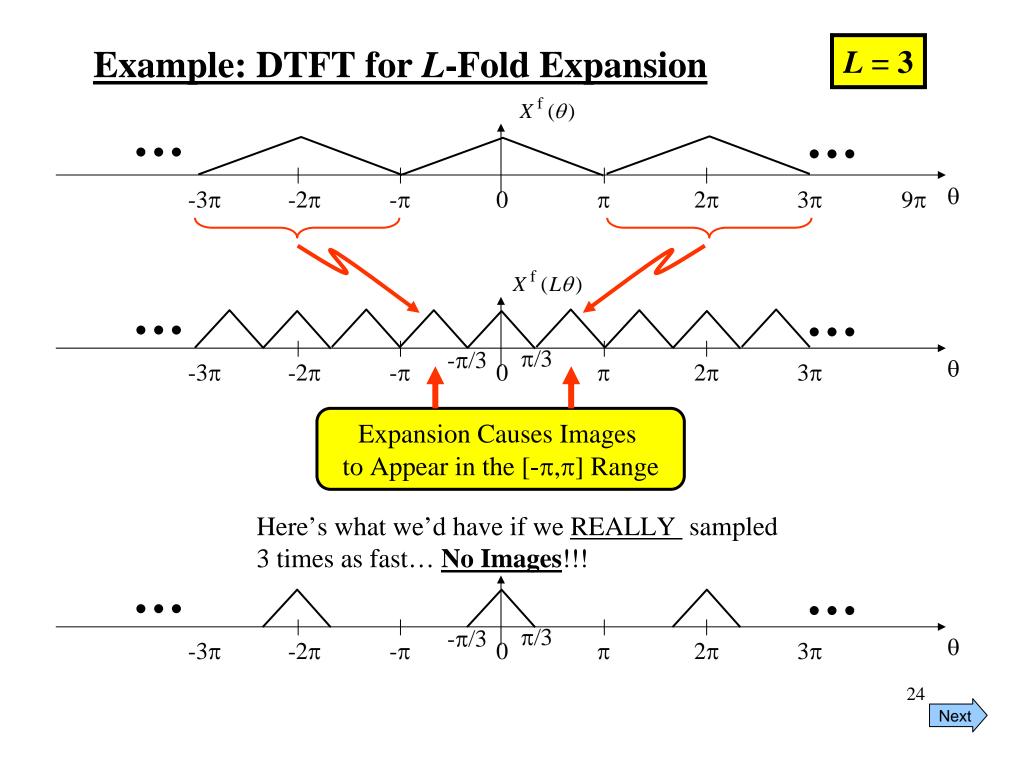
= +...+ x[0]z⁰ + 0+...+0 + x[1]z^{-L} + 0+...+0 + x[2]z^{-2L}
= $\sum_{n=-\infty}^{\infty} x[n] z^{-Ln} = X^{z}(z^{L})$
ZT of Expanded Signal is...
$$X_{(\uparrow L)}^{z}(z) = X^{z}(z^{L})$$

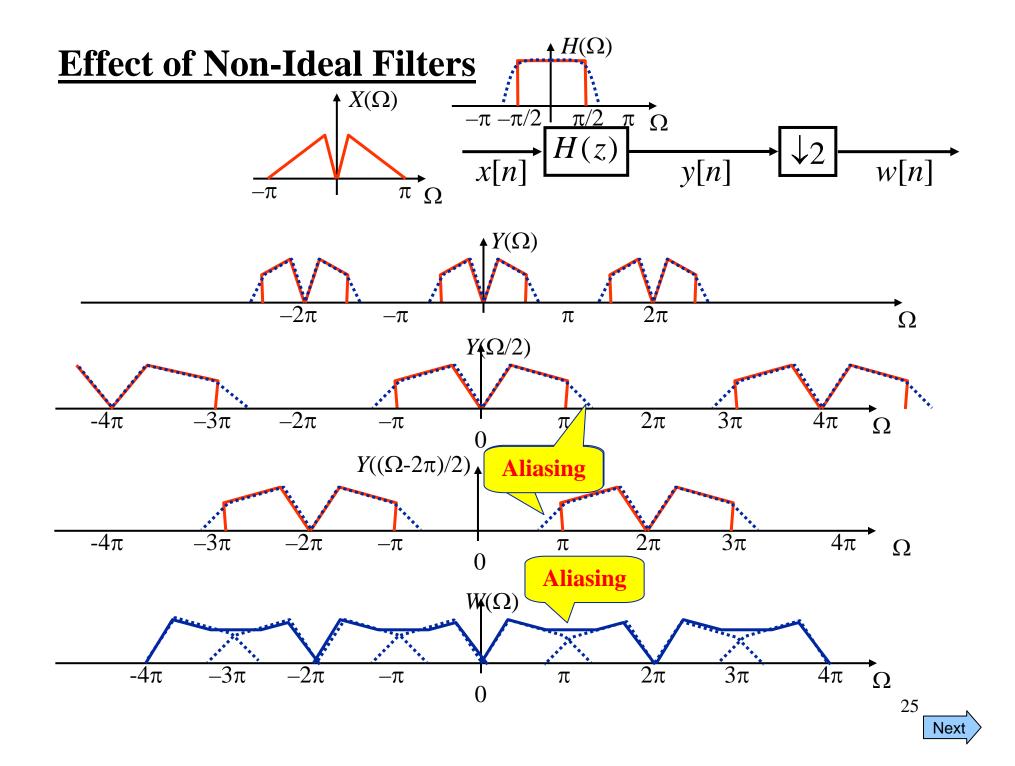
L-Fold Expansion – Frequency-Domain (cont.)

Now to see a little better what this says... convert ZT to DTFT. **<u>Recall</u>**: DTFT is the ZT evaluated on the unit circle:

$$z = e^{j\theta} \implies z^L = e^{jL\theta}$$







<u>Summary</u>

So... in practice we can change the rate of a signal... but there will always be some error due to non-ideal filters (both in the case of downsampling and in the case of upsampling).

Generally, we can design the filters to make these errors negligible ...

<u>**BUT**</u>... such filters are long FIR filters and that can lead to efficiency issues

<u>Note</u>: Similar analyses can be done for

- <u>HPF</u> followed by Decimation
- Interpolation followed by <u>HPF</u>

