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Ch. 14 Subband Coding

Introduction & 
Multirate Background
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Introduction
Given signal x[n] to compress…

Idea: Split signal into M signals x1[n], x2[n], … , xM[n] 
such that each signal can be more easily/effectively compressed.

Goal: signals x1[n], x2[n], … , xM[n] should be made such that

– Each xi[n] is uncorrelated…

• then using SQ on each is a viable (though still suboptimal) approach

– Some xi[n] have smaller dynamic range

• Then can use fewer bits for a given desired distortion

– Should be a clear way to exploit psychological effects (for audio and 
video) or other effects that imply some xi[n] are more important
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Illustration of Subbands
DTFT 
of x[n]

H6(Ω)

X6(Ω) Each xi[n] is called a 
subband signal

[-π,0) is not shown
(Recall Symmetry)

Next
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Motivational Form (Not Practical)
Compress
& Code

…

x[n]

x1[n]

xM[n]

Compress
& Code

M
U
X

bit
stream

bit
stream

D
E
M
U
X

De-Code

…

bit stream

bit 
stream

Data Link

h1[n]

hM[n]

1ˆ [ ]x n

ˆ [ ]Mx n

ˆ[ ]x n

De-Code

Problems w/ This Form
• Output of each filter is at 

input sampling rate
– Overall sample rate after 

subband filters is M×Fs

• Can’t build Ideal BPFs
– Can’t reconstruct by just 

adding together
• Inefficient to implement M

separate filters

Σ

Ideal
BPFs…
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Fixing Sample Rate Problem: Multirate
Take a look at x1[n]

Ωπ-π 0 π/M-π/M

X1(Ω)

This signal is oversampled by a factor of M
(If it were not oversampled it would fill the entire -π to π)

To sample it slower by a factor of M… just throw away M-1 samples out of 
every M samples (called “Decimation by M”)…

h1[n]
x[n] x1[0]   x1[1]   x1[2]   x1[3]   x1[4]   x1[5]   x1[6]   x1[7]   x1[8]

M = 3

h1[n]
x[n]

↓M x1[0]   x1[3]   x1[6]
M = 3

Next
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Now… we need someway at the decoder side to get back up to the original 
sampling rate (called “Expansion by M”)…

h1[n]
x[n]

↓M

M = 3

Code De-Code
Link

↑M

ˆ ˆ ˆ[0] [3] [6]x x x

ˆ ˆ ˆ[0] 0 0 [3] 0 0 [6]x x x

Has correct # samples/sec…
But can’t have those zeros!!!

A filter can “smooth out” the jumps due to the zeros (called “Interpolation”)….

↑M

ˆ ˆ ˆ[0] [3] [6]x x x

ˆ ˆ ˆ[0] 0 0 [3] 0 0 [6]x x x

k1[n]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[0] [1] [2] [3] [4] [5] [6]x x x x x x x
Ideally:
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Subband Coding System
We can do a similar thing for all the other channels… and the result is:
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Roughly…What should the analysis filters look like?

Gaps will 
result in 

loss of info

Note: These are not true achievable shapes of filter frequency responses
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Subband Coding System Details

Encoding/Decoding Goals:
1. Choose methods matched to resulting channel characteristics
2. Allocate bit budget across the channels

Filter Design Goal: If we remove encode/decode… then we want our filters 
to be designed so that output = input… this is called “Perfect Reconstruction”.  

Analysis Filters must also provide frequency decomposition into 
essentially non-overlapping subbands… should give “easy to code” signals

Synthesis Filters are chosen to give the desired perfect reconstruction.  
Their design will depend on the design of the analysis filters.

Multi-Rate Goal: properly decrease and then restore the sampling rate
Decimation reduces each channel’s sample rate to keep the total analysis 
filter bank’s output sample rate equal to the input sample rate

Interpolation returns each channel to original rate before reconstruction

Next
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To understand how filter banks work we need to understand:

• Effect of decimation on signal spectrum

• Effect of expansion on signal spectrum

• How to choose Analysis & Synthesis filters to achieve perfect 
reconstruction (PR)

Next
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Decimation (Down Sampling)
Consider

H(Ω)
x[n] y[n]

(sampled @ Fs)

First let H(Ω) be an ideal LPF w/ cut-off frequency Ω = π/2… “half-band filter”

Ωπ/2–π

H(Ω)

–π/2 π

Ideal Filter 
for Illustration

Ωπ–π

X(Ω)

( )H z
Ωπ–π π/2-π/2

Y(Ω)

Now… imagine what continuous-time signal would give y[n] if it were 
sampled at Fs:

Ωπ–π π/2-π/2

Y(Ω)

fFs/2Fs/4-Fs/4-Fs/2

So… if we sampled this CT signal at 
half the original rate (@ Fs2=Fs/2) 
then we would get this:

Ωπ-π

Y2(Ω)

fFs2/2-Fs2/2
Next
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Ωπ–π

X(Ω)

↓2( )H z
–π

Ωπ/2–π

H(Ω)

–π/2 π

Ideal Filter 
for Illustration

So… just looking at things in the DT domain with the sampling rate change 
happening because of down-sampling… we should see the SAME thing:

In general… if the filter passes only in the range Ω∈[-π/M, π/M] we can 
downsample by M

Now… all of this was based on “intuition” and for an Ideal LPF… We need to 
do a detailed analysis….

Ωπ–π

Y(Ω)

Ωπ

W(Ω)

x[n] y[n] w[n]

Next
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[ ] [ ] forw n y Mn n Z= ∈

M-Fold Decimation

[0] [0]

[1] [3]

[2] [6]

w x

w x

w x

=

=

=

For M=3

Decimation – Time-Domain Math View 

↓M
y[n] w[n]

Math Analysis of Decimation

To really  understand what is happening we need to look in the 
frequency domain…

Next
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Notation:
)(

zz
)()( )}({)()}({ MMM zXzXzZx ↓↓↓ == • Similar for DTFT

• Similar for Expansion

Q: What is X(↓M)(z) in terms of X(z)???
What do we expect????!!!! 
Lower Fs causes Spectral Replicas to Move to Lower Frequencies
Should look exactly like sampling at a lower Fs

Thus… increased aliasing is possible!!!
To answer this we need to define a useful function (“comb” function):

∑∑
−

=

∞

−∞=
==−=

1

0

1]mod[][][
M

m

mn
M

k
M W

M
MnkMnnc δδ

Call this ( )…
This is like a DT 

Fourier Series and is 
easily verified!m0 3 6-3-6

1
C3(m)

M-Fold Decimation – Frequency-Domain

2 /j M
MW e π
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][][

][][)(

nMcnMx

nMxnx

M

M

=

=↓

Now… use the comb function to write decimation:

Doesn’t Really Do 
Anything Here…
But Later it Will!! 

Action of CM[n] 

∑ ∑
∞

−∞=

−
−

=
↓

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

n

Mn
M

m

mn
M

z
M zW

M
nxzX /

1

0
)(

1][)(

Now… take Z-Transform, using this form:

M-Fold Decimation – Frequency-Domain (cont.)

Now… take Z-Transform, using this form:

0 1 2

( )

[0] [ ] [2 ]

( ) [ ] [ ]z n
MM

n

x z x M z x M z

X z x nM c nM z

−

∞
−

↓
=−∞

+ + + +

= ∑
0 1

/

[0] 0 0 [ ] 0

[ ] [ ] n M
M

n

x z x M z

x n c n z

−

∞
−

=−∞

+ + + + + + +

= ∑
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( )

)(1
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1][)(
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−∞=
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⎦
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⎢
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⎢
⎣

⎡
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Now… just manipulate:

)(1)( /1
1

0
)(

Mm
M

M

m

zz
M zWX

M
zX −

−

=
↓ ∑=

ZT of Decimated Signal is…

M-Fold Decimation – Frequency-Domain (cont.)

Next



17

Now to see a little better what this says… convert ZT to DTFT.

MjMj ezez //1 θθ =⇒=

1. Axis-Scale Xf(θ) to get Xf(θ/M) – a stretch
2. Then shift by 2πm to get new replicas

Decimation Adds Spectral Replicas of Scaled DTFT

∑
−

=
↓ ⎟

⎠
⎞

⎜
⎝
⎛ −

=
1

0

ff
)(

21)(
M

m
M M

mX
M

X πθθ

Mmjm
M eW /2π−− =Also, by definition:

DTFT of Decimated Signal is…

Stretches 
Spectrum

M-Fold Decimation – Frequency-Domain (cont.)

Recall: DTFT is the ZT evaluated on the unit circle:

Then we get….
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M = 3

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π
±π/3

θ

Xf(θ)
Original

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π

Xf(θ/3)

θ

m = 0

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π

Xf((θ-2π)/3)

θ

m = 1

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π

Xf((θ-4π)/3)

θ

m = 2

Example: DTFT for M-Fold Decimation 
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M = 3

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π

Xf(θ/3)

θ

m = 0

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π

Xf((θ-2π)/3)

θ

m = 1

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π

Xf((θ-4π)/3)

θ

m = 2

)(f
)( θMMX ↓

0 π 2π 3π 4π 5π 6π 7π 8π 9π-π-2π-3π-4π-5π-6π-7π-8π-9π θ

M × DTFT of 
Decimated Signal

No Aliasing!!!

Example: Continued
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1.  The M-decimated signal will have no aliasing… only if
the signal being decimated has: MX /for  0)(f πθθ >=

This makes complete sense from an 
“ordinary” sampling theorem view point!!!

2.  After M-decimating an Mth-band signal, the spectrum of 
the decimated signal will fill the [-π, π] band.

Such a signal is called 
an “Mth-Band Signal”

Example: Insights

Next
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Although decimation changes the digital frequency of the 
signal, the corresponding “physical” frequency is not 
changed… as the following example shows:

↓3
x[n]

Fs1=60 MSPS

x(↓3)[n]

Fs2= 60/3 
= 20 MSPS

0 π-π θ

X(↓3)(θ)

0 f

2
2sF

2
2sF

−

-10 
MHz

10 
MHz

0 π-π θ

Xf(θ)

0 f

2
1sF

2
1sF

−

-10 
MHz

10 
MHz

Signal Still Occupies Same Physical Frequency

Note
Expansion 
Also Has 
No Effect 

on Physical 
Frequency

Effect on “Physical” Frequency
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Q: What is X(↑L)(z) in terms of X(z)???
What do we expect????!!!! 
Certainly NOT the same as really sampling at a higher rate   
because of the inserted zeros!!!

Frequency Domain analysis answers this!!!

)()()(
Lzz

L zXzX =↑

ZT of Expanded Signal is…

L-Fold Expansion – Frequency-Domain

0 2

1  zeros 1  zeros

[0] 0 0 [1] 0 0 [2]L L

L L

x z x z x z− −

− −

= + + + + + + + + + +

( ) ( )( ) [ ]z n
L L

n

X z x n z
∞

−
↑ ↑

=−∞

= ∑

[ ] ( )Ln z L

n

x n z X z
∞

−

=−∞

= =∑
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Now to see a little better what this says… convert ZT to DTFT.
Recall: DTFT is the ZT evaluated on the unit circle:

θθ jLLj ezez =⇒=

DTFT of Decimated Signal is…

)()( ff
)( θθ LXX L =↑

Scrunches 
Spectrum

L-Fold Expansion – Frequency-Domain (cont.)
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0 π 2π 3π 9π-π-2π-3π

)(f θX

θ

……
L = 3

θ

)(f θLX

0 π 2π 3π-π-2π-3π

……
π/3-π/3

Expansion Causes Images 
to Appear in the [-π,π] Range

…
θ0 π 2π 3π-π-2π-3π

…
π/3-π/3

Here’s what we’d have if we REALLY sampled
3 times as fast… No Images!!!

Example: DTFT for L-Fold Expansion
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Effect of Non-Ideal Filters

Ωπ–π

X(Ω)

↓2( )H z
Ωπ/2–π

H(Ω)

–π/2 π

x[n] y[n] w[n]

Y(Ω)

Ωπ–π 2π–2π

Y((Ω-2π)/2)

Ω

Y(Ω/2)

Ωπ–π 2π–2π 4π-4π
0

–3π 3π

π–π 2π–2π 4π-4π
0

–3π 3π

AliasingAliasing

W(Ω)

Ωπ–π 2π–2π 4π-4π
0

–3π 3π

Aliasing
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Summary
So… in practice we can change the rate of a signal… but there will always be some 
error due to non-ideal filters (both in the case of downsampling and in the case of 
upsampling).
Generally, we can design the filters to make these errors negligible …
BUT… such filters are long FIR filters and that can lead to efficiency issues

Note: Similar analyses can be done for
• HPF followed by Decimation 
• Interpolation followed by HPF

↓M( )H Ω
x[n] y[n] w[n] ↑M ( )K Ω

w[n] v[n] u[n]
1

0

1 2( )
M

m

mW Y
M M

π−

=

Ω −⎛ ⎞Ω = ⎜ ⎟
⎝ ⎠

∑

( ) ( ) ( )Y X HΩ = Ω Ω w/ H(Ω) having a passband
width of π/M

( ) ( ) ( )U K W MΩ = Ω Ω w/ K(Ω) having a 
passband width of π/M
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